Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T17:17:51.702Z Has data issue: false hasContentIssue false

Brachiopod Shells: Recorders of the Present and Keys to the Past

Published online by Cambridge University Press:  21 July 2017

Nancy Buening*
Affiliation:
Department of Geology, University of California, Davis, CA 95616 USA
Get access

Extract

The Brachiopod shell provides more than protection for the organism dwelling within: it provides a structural record of growth and a chemical record of fluctuations in the environment in which it formed. Typically, a shell formed by an accretionary process will have growth lines visible on the shell surface that can be used to measure chronological age directly. This is common in many fossil and modern bivalve molluscs where growth bands are prominent (see, e.g., Lutz and Rhoads, 1980; Jones, 1983; Tanabe, 1988). However, growth increments are not always so easily identified in other shelled organisms. For instance, growth lines in brachiopod shells are often indistinct, and the time interval represented by each growth line is uncertain. When growth information can't be obtained directly, we must turn to an alternative method (Jones and Gould, 1999). Fortunately, periodicities in the chemical composition of a shell may serve as proxies for age (e.g., Buening and Carlson, 1992). The shell chemistry of brachiopods reflects, for the most part, the changes in chemistry of the surrounding seawater. For instance, partitioning of oxygen isotopes (18O/16O ratio) in shell carbonate is sensitive to temperature (e.g., Hoefs, 1997). Thus, if brachiopods precipitate shells in water that is affected by seasonal temperature variations, then fluctuations of the 18O/16O ratio of the shell should provide a record of annual temperature variation in ambient seawater. Consequently, this seasonal record may be used in conjunction with structural growth lines to reconstruct the life history of the individual, as well as the local environmental conditions in which the brachiopod lived.

Type
Research Article
Copyright
Copyright © 2001 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlis, D. S., Grossman, E. L., Yancey, T. E., and McLerran, R. D. 1988. Isotope stratigraphy and paleodepth changes of Pennsylvanian cyclical sedimentary deposits. Palaios, 3:487506.Google Scholar
Banner, J. L., and Kaufman, J. 1994. The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri. Geological Society of America Bulletin, 106:10741082.Google Scholar
Berner, R. A. 1989. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291:339376.Google Scholar
Bickert, T., Pätzold, J., Samtlebn, C., and Munnecke, A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, 61:27172730.Google Scholar
Brand, U. 1989. Biogeochemistry of Late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry, 7:159193.Google Scholar
Brand, U. 1994. Morphochemical and replacement diagenesis of biogenic carbonates, p. 217282. In Wolf, K. H. and Chilingarian, G. V. (eds.), Diagenesis, IV.Google Scholar
Brenchley, P. J., Carden, G. A. F., and Marshall, J. D. 1995. Environmental changes associated with the “first strike” of the late Ordovician mass extinction. Modern Geology, 20:6982.Google Scholar
Broecker, W. S. 1989. The salinity contrast between the Atlantic and Pacific oceans during glacial time. Paleoceanography, 4:207212.Google Scholar
Bruckschen, P., and Veizer, J. 1997. Oxygen and carbon isotopic composition of Dinantian brachiopods: Paleoenvironmental implications for the Lower Carboniferous of western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:243264.Google Scholar
Bruckschen, P., Bruhn, F., Veizer, J., and Buhl, D. 1995a. 87Sr/86 Sr isotopic evolution of Lower Carboniferous seawater: Dinantian of western Europe. Sedimentary Geology, 100:6381.Google Scholar
Bruckschen, P., Bruhn, F., Meijer, J., Stephan, A., and Veizer, J. 1995b. Diagenetic alteration of calcitic fossil shells: Proton microprobe (PIXE) as a trace element tool. Nuclear Instruments and Methods in Physics Research B, 104:427431.CrossRefGoogle Scholar
Bruhn, F., Bruckschen, P., and Veizer, J. 1994. Isotopic composition and diagenetic alteration of lower Carboniferous brachiopod shells: Constraints from proton microprobe (PIXE) trace element analysis. Mineralogical Magazine, 58A:128129.Google Scholar
Budd, D. A. 1992. Dissolution of high-Mg calcite fossils and the formation of biomolds during mineralogical stabilization. Carbonates and Evaporites, 7:7481.CrossRefGoogle Scholar
Buening, N. 1998. Synchrotron x-ray fluorescence analyses of elemental concentrations in selected brachiopod shells: A sensitive tool to detect diagenesis. Geological Society of America, 1998 Annual Meeting. Abstracts with Programs, 30:384.Google Scholar
Buening, N., and Carlson, S. J. 1992. Geochemical investigation of growth in selected Recent articulate brachiopods. Lethaia, 25:331345.CrossRefGoogle Scholar
Buening, N., Carlson, S. J., Spero, H. J., and Lee, D. E. 1998. Evidence for the early Oligocene formation of a proto-subtropical convergence from oxygen isotope records of New Zealand Paleogene brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 138:4368.Google Scholar
Buening, N., and Spero, H. J. 1996. Oxygen and carbon isotope analyses of the articulate brachiopod Laqueus californianus: A recorder of environmental changes in the subeuphotic zone. Marine Biology, 127:105114.CrossRefGoogle Scholar
Burton, E. A., and Walter, L. K. 1991. The effects of Pco2 and temperature on magnesium incorporation in calcite in seawater and MgCl2-CaCl2 solutions. Geochimica et Cosmochimica Acta, 55:777785.Google Scholar
Carlson, S. J. 1989. The articulate brachiopod hinge mechanism: morphological and functional variation. Paleobiology, 15:364386.Google Scholar
Carpenter, S. J., and Lohmann, K. C. 1995. 18O and 13C values of modern brachiopod shells. Geochimica et Cosmochimica Acta, 59:37493764.Google Scholar
Clarke, F. W., and Wheeler, W. C. 1917. The inorganic constituents of marine invertebrates. United States Geological Survey Professional Paper, 102:156.Google Scholar
Clayton, R. N., and DeGens, E. T. 1959. Use of carbon isotope analyses of carbonates for differentiating freshwater and marine sediments. AAPG Bulletin, 43:890897.Google Scholar
Compston, W. 1960. The carbon isotopic compositions of certain marine invertebrates and coals from the Australian Permian. Geochimica et Cosmochimica Acta, 18:122.Google Scholar
Croweli, J. C. 1978. Gondwana glaciation, cyclothems, continental positioning, and climate change. American Journal of Science, 278:13451372.Google Scholar
Curry, G. B. 1982. Ecology and population structure of the Recent brachiopod Terebratulina from Scotland. Palaeontology, 25:227246.Google Scholar
Cusack, M., Curry, G. B., Clegg, H., and Abbott, G. 1992. An intracrystalline chromoprotein from red brachiopod shells: implications for the process of biomineralisation. Comparative Biochemistry and Physiology, 102B:9395.Google Scholar
Diener, A., Ebneth, S., Veizer, J., and Buhl, D. 1996. Strontium isotope stratigraphy of the Middle Devonian: Brachiopods and conodonts. Geochimica et Cosmochimica Acta, 60:639652.Google Scholar
Dodd, J. R. 1967. Magnesium and strontium in calcareous skeletons: a review. Journal of Paleontology, 41:13131329.Google Scholar
Dwyer, G. S. 2000. Unraveling the signals of global climate change. Science, 287:246247.Google Scholar
Emig, C. C. 1990. Examples of post-mortality alteration in Recent brachiopod shells and (paleo)ecological consequences. Marine Biology, 104:233238.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C. 1951. Carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, 62:417425.CrossRefGoogle Scholar
Epstein, S., and Mayeda, T. 1953. Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4:213224.Google Scholar
Erez, J., and Luz, B. 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, 47:10251031.Google Scholar
Frank, J. R., Carpenter, A. B., and Oglesby, T. W. 1982. Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (upper Cambrian), southeast Missouri. Journal of Sedimentary Petrology, 52:631638.Google Scholar
Freiwald, A. 1995. Bacteria-induced carbonate degradation: A taphonomic case study of Cibicides lobatulus from a high-boreal carbonate setting. Palaios, 10:337346.Google Scholar
Frisia-Bruni, S. 1990. TEM investigation of the shell of the brachiopod Thecospira tyrolensis (Loretz): A clue to understanding growth and replacement of prismatic and/or fibrous low Mg-calcite. Rivista Italiana di Paleontologia e Stratigrafia, 56:7792.Google Scholar
Gaspard, D. 1989. Quelques aspects de la biodégradation des coquilles de brachiopodes; conséquences sur leur fossilisation. Bull. Soc. Geol. France, 8:12071216.Google Scholar
Gaspard, D. 1990. Diagenetic modifications of shell microstructure in the Terebratulida (Brachiopoda, Articulata), p. 5356. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, II. Van Nostrand Reinhold, New York.Google Scholar
Gaspard, D. 1993. Articulate brachiopod shell formation (Terebratulida & Rhynchonellida) and diagenetic evolution, p. 2129. In Kobayashi, I., Mutvei, H., and Sahni, A. (eds.), Structure, Formation and Evolution of Fossil Hard Tissues. Tokai University Press.Google Scholar
Grossman, E. L. 1994. The carbon and oxygen isotope record during the evolution of Pangea: Carboniferous to Triassic, p. 207228. In Klein, G. D. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Society of America Special Paper 128.Google Scholar
Grossman, E. L., Zhang, C., and Yancey, T. E. 1991. Stable-isotope stratigraphy of brachiopods from Pennsylvanian shales in Texas. Geological Society of America Bulletin, 103:953965.Google Scholar
Grossman, E. L., Mii., H.-S., Zhang, C., and Yancey, T. E. 1993. Stable isotopes in Late Pennsylvanian brachiopods from the United States: Implications for Carboniferous paleoceanography. Geological Society of America Bulletin, 105:12841296.Google Scholar
Grossman, E. L., Mii., H.-S., Zhang, C., and Yancey, T. E. 1996. Chemical variation in Pennsylvanian brachiopod shells–Diagenetic, taxonomic, microstructural, and seasonal effects. Journal of Sedimentary Research, 66:10111022.Google Scholar
Grossman, E. L., Mazzullo, S. J., Yancey, T. E., and Mii, H.-S. 2001. A 70-million-year record of ∂18O variation in the Permo-Carboniferous: Implications for seawater ∂18O. In Eleventh Annual V. M. Goldschmidt Conference, Abstract 3822. LPI Contribution No. 1088, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
Hayward, B., Moore, P., and Gibson, G. 1990. How warm was the late Oligocene in New Zealand? Coconuts, reef corals and larger foraminifera. Geological Society of New Zealand Newsletter, 90:3941.Google Scholar
Henrich, R., and Wefer, G. 1986. Dissolution of biogenic carbonates: Effects of skeletal structure. Marine Geology, 71:341362.CrossRefGoogle Scholar
Hoefs, J. 1997. Stable Isotope Geochemistry. Springer, Berlin.Google Scholar
Holmden, C., and Muehlenbachs, K. 1993. The 18O/16O ratios of 2-billion-year-old seawater inferred from ancient oceanic crust. Science, 259:17331736.CrossRefGoogle ScholarPubMed
de B. Hornibrook, N. 1992. New Zealand Cenozoic marine paleoclimates: A review based on the distribution of some shallow water and terrestrial biota, p. 83106. In Tsuchi, R. and Ingle, J. C. Jr. (eds.), Pacific Neogene: Environment, Evolution, and Events. University of Tokyo Press.Google Scholar
Hughes, W. W., Rosenberg, G. D., and Tkachuck, R. D. 1988. Growth increments in the shell of the living brachiopod Terebratalia transversa . Marine Biology, 98:511518.CrossRefGoogle Scholar
Huyer, A., and Smith, R. L. 1985. The signature of El Niño off Oregon, 1982–1983. Journal of Geophysical Research, 90:7137142.Google Scholar
James, N. P., Bone, Y., and Kyser, T. K. 1997. Brachiopod ∂18O values do reflect ambient oceanography: Lacepede shelf, southern Australia. Geology, 25:551554.Google Scholar
Jones, D. S. 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist, 71:384391.Google Scholar
Jones, D. S., and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology, 25:158187.Google Scholar
Keith, M. L., and Weber, J. N. 1964. Carbon and oxygen isotopic compositions of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28:17871816.Google Scholar
Knauth, L. P., and Epstein, S. 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochimica et Cosmochimica Acta, 40:10951108.Google Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences, 26:573613.Google Scholar
Kump, L. R., Kasting, J. F., and Crane, R. G. 1999. The Earth System. Prentice-Hall, Inc., New Jersey.Google Scholar
Lajtha, K., and Michener, R. H. 1994. Introduction, p. xixix. In Lajtha, K. and Michener, R. H. (eds.), Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, London.Google Scholar
Land, L. S. 1967. Diagenesis of skeletal carbonates. Journal of Sedimentary Petrology, 37:914930.Google Scholar
Land, L. S. 1995. Comment on “Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater” by H. Qing and J. Veizer. Geochimica et Cosmochimica Acta, 59:28432844.CrossRefGoogle Scholar
Lea, D. W., Pak, D. K., and Spero, H. J. 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science, 289:17191724.CrossRefGoogle ScholarPubMed
Lear, C. H., Elderfie D, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269272.Google Scholar
Lee, D. E. 1986. Paleoecology and biogeography of the New Zealand Paleogene brachiopod fauna, p. 477483. In Racheboeuf, P. R. and Emig, C. C. (eds.), Les Brachiopodes fossiles et acutels.Google Scholar
Lee, X., and Wan, G. 2000. No vital effect on ∂18O and ∂13C values of fossil brachiopod shells, Middle Devonian of China. Geochimica et Cosmochimica Acta, 64:26492664.Google Scholar
Long, D. G. F. 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Anticosti island, Quebec. Palaeogeography, Palaeoclimatology, Palaeoecology, 104:4359.CrossRefGoogle Scholar
Lowenstam, H. A. 1961. Mineralogy, O18/O16 ratios, and strontium and magnesium contents of Recent and fossil brachiopods and their bearing on the history of the oceans. Journal of Geology, 69:241260.Google Scholar
Lutz, R. A., and Rhoads, D. C. 1980. Growth patterns within the molluscan shell: an overview, p. 203254. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum, New York.Google Scholar
Machel, H. G., Mason, R. A., Mariano, A. N., and Mucci, A. 1991. Causes and emission of luminescence in calcite and dolomite, p. 925. In Barker, C. E. and Kopp, O. C. (eds.), Luminescence Microscopy: Quantitative and Qualitative Aspects. SEPM Short Course Volume 25, Tulsa, OK.Google Scholar
MacKinnon, D. I. 1974. The shell structure of Spiriferide Brachiopoda. Bulletin of the British Museum (Natural History), Geology, Volume 25.Google Scholar
Major, R. P., Halley, R. B., and Lukas, K. J. 1988. Cathodoluminescent biomineralic ooids from the Pleistocene of the Florida continental shelf. Sedimentology, 35:843855.Google Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geology Magazine, 129:143160.Google Scholar
Marshall, J. D., Brenchley, P. J., Mason, P., Wolff, G. A., Astini, R. A., Hints, L., and Meidla, T. 1997. Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:195210.Google Scholar
McConnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53:151162.Google Scholar
McConnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53:163171.Google Scholar
Mii, H.-S., and Grossman, E. L. 1994. Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell. Geology, 22:661664.Google Scholar
Mii, H.-S., Grossman, E. L., and Yancey, T. E. 1999. Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation. Geological Society of America Bulletin, 111:960973.Google Scholar
Mii, H.-S., Grossman, E. L., Yancey, T. E., Chuvashov, B., and Egorov, A. 2001. Isotopic records of brachiopod shells from the Russian Platform—evidence for the onset of mid-Carboniferous glaciation. Chemical Geology, 175:133147.Google Scholar
Milliman, J. D. 1974. Marine Carbonates. Springer-Verlag, New York.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2:119.Google Scholar
Moberley, R. Jr. 1968. Composition of magnesian calcites of algae and pelecypods by electron microprobe analysis. Sedimentology, 11:6182.Google Scholar
Moore, C. H. 1989. Carbonate Diagenesis and Porosity. Elsevier, Amsterdam.Google Scholar
Morrison, J. O., and Brand, U. 1986. Geochemistry of Recent marine invertebrates. Geoscience Canada, 13:237254.Google Scholar
Morse, J. W., and Mackenzie, F. T. 1990. Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam.Google Scholar
Mucci, A. 1987. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater. Geochimica et Cosmochimica Acta, 5:19771984.Google Scholar
O'Neil, J. R. 1986. Theoretical and experimental aspects of isotopic fractionation, p. 140. In Valley, J. W., Taylor, H. P. Jr., and O'Neil, J. R. (eds.), Stable Isotopes in High Temperature Geological Processes, Reviews in Mineralogy, Volume 16.Google Scholar
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics, 51:55475558.Google Scholar
Palmer, M. R., and Edmond, J. M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92:1126.Google Scholar
Palmer, M. R., and Elderfield, J. M. 1992. Controls over the strontium composition of river water. Geochimica et Cosmochimica Acta, 56:20992111.Google Scholar
Peck, L. S., Clarke, A., and Holmes, L. J. 1987. Summer metabolism and seasonal changes in biochemical composition of the Antarctic brachiopod Liothyrella uva (Broderip, 1833). Journal of Experimental Marine and Biological Ecology, 114:8597.CrossRefGoogle Scholar
Popp, B. N., Anderson, T. F., and Sandberg, P. A. 1986a. Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones. Geological Society of America Bulletin, 97:12621269.Google Scholar
Popp, B. N., Anderson, T. F., and Sandberg, P. A. 1986b. Textural, elemental, and isotopic variations among constituents in middle Devonian limestones, North America. Journal of Sedimentary Petrology, 56:715727.Google Scholar
Qing, H., Barnes, C. R., Buhl, D., and Veizer, J. 1998. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts: Relationships to geological events and implications for coeval seawater. Geochimica et Cosmochimica Acta, 62:17211733.Google Scholar
Qing, H., and Veizer, J. 1994. Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater. Geochimica et Cosmochimica Acta, 58:44294442.Google Scholar
Rahimpour-Bonab, H., Bone, Y., and Moussavi-Harami, R. 1997. Stable isotope aspects of modern molluscs, brachiopods, and marine cements from cool-water carbonates, Lacepede Shelf, South Australia. Geochimica et Cosmochimica Acta, 61:207218.Google Scholar
Railsback, L. B. 1990. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochimica et Cosmochimica Acta, 54:15011509.Google Scholar
Railsback, L. B., Ackerley, S. C., Anderson, T. F., and Cisne, J. L. 1990. Paleontological and isotope evidence for warm saline deep waters in Ordovician oceans. Nature, 343:156159.Google Scholar
Rao, C. P. 1996. Elemental composition of marine calcite from modern temperate brachiopods, bryozoans and bulk carbonates, Eastern Tasmania, Australia. Carbonates and Evaporites, 11:118.Google Scholar
Richter, F. M., Rowley, D. B., and DePaolo, D. J. 1992. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters, 109:1123.Google Scholar
Rosenberg, G. D., and Hughes, W. W. 1989. Ontogenetic variations in the distribution of Ca and Mg in skeletal tissues of vertebrates and invertebrates, p. 339347. In Crick, R. E. (ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Rush, P. F., and Chafetz, H. S. 1990. Fabric-retentive, non-luminescent brachiopods as indicators of original 13C and 18O composition: A test. Journal of Sedimentary Petrology, 60:968981.Google Scholar
Samtleben, C., Munnecke, A., Bickert, T., and Pätzold, J. 2001. Shell succession, assemblage and species dependent effects on the C/O-isotopic composition of brachiopods — examples from the Silurian of Gotland. Chemical Geology, 175:61107.Google Scholar
Savard, M. M., Veizer, J., and Hinton, R. W. 1995. Cathodoluminescence at low Fe and Mn concentrations; a SIMS study of zones in natural calcites. Journal of Sedimentary Research, 65:208213.Google Scholar
Shackleton, N. J., and Kennett, J. P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP sites 277, 279, and 281, p. 743755. In Kennett, J. P., Houtz, R. E., et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Volume 29. U. S. Government Printing Office.Google Scholar
Shackleton, N. J., and Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research, 3:3955.Google Scholar
Sous, C., Oliver, A., and Rodrigues-Fernandez, L. 1996. Elemental analyses of marine skeletons. Nuclear Instruments and Methods in Physics Research B, 109/110:617620.Google Scholar
Stanley, G. D., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: A geochemical approach. Paleobiology, 21:179199.Google Scholar
Tanabe, K. 1988. Age and growth rate determinations of an intertidal bivalve, Phacosoma japonicum, using internal shell increments. Lethaia, 21:231241.Google Scholar
Thayer, C. W. 1975. Size-frequency and population structure of brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 17:139148.Google Scholar
Thompson, J. B., and Newton, C. R. 1988. Late Devonian extinction and episodic climatic cooling or warming?, p. 2934. In McMillian, N. J. et al. (eds.), Devonian of the World, Vol. III, Proceedings of the Second International Symposium on Devonian System.Google Scholar
Timms, A. E., and Brunton, C. H. C. 1991. Growth rates and periodicity in Antiquatonia and Plicatifera, Lower Carboniferous productacean brachiopods, p. 4147. In MacKinnon, D. I., Lee, D. E., and Campbell, J. D. (eds.), Brachiopods Through Time, Proceedings of the 2nd International Brachiopod Congress, University of Otago. A. A. Balkema, Rotterdam.Google Scholar
Tucker, M. E. 1991. The diagenesis of fossils, p. 84104. In Donovan, S. K. (ed.), The Process of Fossilization. Belhaven Press.Google Scholar
Tucker, M. E., and Bathurst, R. G. C. 1990. Meteoric diagenesis, p. 181183. In Tucker, M. E. and Bathurst, R. G. C. (eds.), Carbonate Diagenesis, Volume 1. Blackwell Scientific Publications.Google Scholar
Van Geldern, R., Joachimski, M. M., Day, J., Alverez, F., Jansen, U., and Yolkin, E. A. 2001. Secular changes in the stable isotopic composition of Devonian brachiopods. In Eleventh Annual V M. Goldschmidt Conference, Abstract 3532. LPI Contribution No. 1088, Lunar and Planetary Institute, Houston (CD-ROM).Google Scholar
Veizer, J. 1983. Chemical diagenesis of carbonates: Theory and application of trace element technique, p. 3.13.100. In Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S. (eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course No. 10, SEPM, Tulsa.Google Scholar
Veizer, J. 1995. Reply to the comment by L. S. Land on “Oxygen and carbon isotopic composition of Ordovician brachiopods: Implications for coeval seawater.” Geochimica et Cosmochimica Acta, 59:28452846.Google Scholar
Veizer, J., Fritz, P., and Jones, B. 1986. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans. Geochimica et Cosmochimica Acta, 50:16791696.Google Scholar
Veizer, J., Godderis, Y., and Francois, L. M. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature, 408:698701.Google Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Diener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C., Podlaha, H., Azmy, K., and Ala, D. 1997b. Review Paper: Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:159172.CrossRefGoogle Scholar
Veizer, J., Buhl, D., Diener, A., Ebneth, S., Podlaha, O. B., Bruckschen, P., Jasper, T., Korte, C., Schaaf, M., Ala, D., and Azmy, K. 1997a. Strontium isotope stratigraphy: potential resolution and event correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:6577.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Podlaha, H. 1999. 87Sr/86Sr, ∂13C and ∂18O evolution of Phanerozoic seawater. Chemical Geology, 161:5988.Google Scholar
Wadleigh, M. A., and Veizer, J. 1992. 18O/16O and 13C/12C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater. Geochimica et Cosmochimica Acta, 56:431443.CrossRefGoogle Scholar
Walter, L. M. 1985. Relative reactivity of skeletal carbonates during dissolution: Implications for diagenesis, p. 316. In Schneiderman, N. and Harris, P. M. (eds.), Carbonate Cements.Google Scholar
Walter, L. M., and Morse, J. W. 1985. The dissolution kinetics of shallow marine carbonates in seawater. Geochimica et Cosmochimica Acta, 49:15031513.Google Scholar
Wefer, G., and Berger, W. H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100:207248.Google Scholar
Wenzel, B., and Joachimski, M. M. 1996. Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 122:143166.Google Scholar
Williams, A. 1990. Biomineralization in the lophophorates, p. 6782. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume 1, Van Nostrand Reinhold, New York.Google Scholar
Williams, A. 1997. Shell structure, p. 267320. In Kaesler, R. (ed.), Treatise on Invertebrate Paleontology, Part H, revised, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., Brunton, C. H. C., and MacKinnon, D. I. 1997b. Morphology, p. 321422. In Kaesler, R. (ed.), Treatise on Invertebrate Paleontology, Part H, revised, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Williams, A., James, M. A., Emig, C. C., MacKay, S., and Rhodes, M. C. 1997a. Anatomy, p. 7188. In Kaesler, R. (ed.), Treatise on Invertebrate Paleontology, Part H, revised, Brachiopoda, Volume 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wolfe, J. A. 1992. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America, p. 421436. In Prothero, D. R. and Berggren, W. A. (eds.), Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press.Google Scholar
Woo, K.-Y., Anderson, T. F., and Sandberg, P. A. 1993. Diagenesis of skeletal and nonskeletal components of mid-Cretaceous limestones. Journal of Sedimentary Petrology, 63:1832.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.CrossRefGoogle Scholar