Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T07:10:31.019Z Has data issue: false hasContentIssue false

The Use of Ostracods in Palaeoenvironmental Studies, or What can you do with an Ostracod Shell?

Published online by Cambridge University Press:  21 July 2017

Ian Boomer
Affiliation:
Department of Geography, University of Newcastle, Newcastle NE1 7RU
David J. Horne
Affiliation:
Department of Zoology, Natural History Museum, London, SW7 5BD
Ian J. Slipper
Affiliation:
Department of Earth and Environmental Sciences, University of Greenwich, Kent, ME4 4TB
Get access

Abstract

Over recent decades ostracods have become established indicators of ecosystem health, biodiversity and environmental change. With applications ranging across the earth sciences (from modern pollution studies to sea-level change, basin evolution, plate tectonics, palaeoceanography) and related disciplines such as archaeology, ecology and genetics, their utility extends to almost every aquatic and semi-aquatic habitat, from the deep ocean to high mountain springs. Their temporal range is now known to cover the last 500 million years of earth history.

The study of fossil ostracod assemblages follows traditional palaeontological lines of investigation, including taphonomy, morphometries and diversity, but there are a number of methodological approaches, specific to the ostracods, that render them potentially one of the most versatile organisms in the fossil record. Ostracods have been employed on a range oftemporal and spatial scales to reconstruct past environments, from world-wide, geological-scale global events in the deep-sea through to smaller-scale studies of lakes and their archives of local environmental change over recent centuries.

Much information can be obtained from ostracod assemblages but it is particularly through recent advances in the chemical and physical study of single shells or carapaces that the utility of these organisms has been brought to the fore. In this paper the potential palaeoenvironmental information derived from an ostracod assemblage, a single species, or an individual shell is reviewed. The main applications for ostracods are outlined for marine and non-marine ecosystems. Finally, the role of the ostracods in detailing the recent history of the Aral Sea is outlined.

Type
Research Article
Copyright
Copyright © 2003 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. 1990. What the sex ratio tells us: a case from marine ostracods, p. 175185 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.CrossRefGoogle Scholar
Agalarova, D.A., Kadyrova, Z.K. and Kulieva, S.A. 1961. Ostracoda from Pliocene and post Pliocene deposits of Azerbaijan (In Russian), Baku, 420 p.Google Scholar
Ainsworth, N.R., Burnett, R. and Kontrovitz, M. 1990. Ostracod colour change by thermal alteration, offshore Ireland and Western UK. Marine and Petroleum Geology, 7:288297.CrossRefGoogle Scholar
Ainsworth, N.R., O'neill, M. and Rutherford, M.M. 1989. Jurassic and Upper Triassic biostratigraphy of the North Celtic Sea and Fastnet Basins, p. 144 In Batten, D.J. and Keen, M.C. (eds.), Northwest European Micropalaeontology and Palynology. Ellis Horwood, Chichester.Google Scholar
Aladin, N.V. 1993. Salinity tolerance, morphology and physiology of the osmoregulation organs in Ostracoda with special reference to Ostracoda from the Aral Sea, p. 387404 In Jones, P. and Mckenzie, K. (eds.), Ostracoda in the Earth and Life Sciences. AA Balkema, Rotterdam.Google Scholar
Aladin, N.V. and Potts, W.T.W. 1991. Changes in the Aral Sea ecosystem during the period 1960–1990. Hydrobiologia, 237:113.Google Scholar
Anadon, P., Gliozzi, E. and Mazzini, I. 2002. Paleoenvironmental reconstruction of marginal marine environments from combined paleoecological and geochemical analyses on ostracods, p. 227248 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.CrossRefGoogle Scholar
Anderson, F.W. 1967. Ostracods from the Weald Clay of England. Bulletin of the Geological Survey of Great Britain, 27:237269.Google Scholar
Anderson, F.W. 1985. Ostracod faunas in the Purbeck and Wealden of England. Journal of Micropalaeontology, 4(2): 168.Google Scholar
Andrews, J.E., Boomer, I., Bailiff, I., Balson, P., Bristow, C., Chroston, P.N., Funnell, B.M., Harwood, G.M., Jones, R., Maher, B.A. and Shimmield, G.B. 2000. Sedimentary evolution of the North Norfolk barrier coastline in the context of Holocene sea-level change, p. 219251 In Shennan, I. and Andrews, J. (eds.), Holocene Land-Ocean Interaction and Environmental Change around the North Sea. Volume 166. Geological Society of London, Special Publication, London.Google Scholar
Ayress, M., Neil, H., Passlow, V. and Swanson, K. 1997. Benthonic ostracods and deep watermasses: A qualitative comparison of Southwest Pacific, Southern and Atlantic Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 131:287302.CrossRefGoogle Scholar
Baltanas, A. and Geiger, W. 1998. Intraspecific morphological variability: morphometry of valve outlines. In: Martens, K. (ed.) Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods, 127142. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Baltanas, A., Otero, M., Arqueros, L., Rossetti, G. and Rossi, V., 2000. Ontogenetic changes in the carapace shape of the nonmarine ostracod Eucypris virens (Jurine). Hydrobiologia, 419, 6572.Google Scholar
Bate, R.H. and East, B.A. 1975. The ultrastructure of the ostracode (Crustacea) integuement. Bulletin of American Paleontology, 65:529547.Google Scholar
Benson, R.H. 1975. The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages. Lethaia, 8, 6983.CrossRefGoogle Scholar
Benson, R.H. 1988. Ostracods and palaeoceanography. In De Deckker, P., Colin, J.-P. and Peypouquet, J.-P. (eds), Ostracoda in the Earth Sciences, 126. Elsevier.Google Scholar
Benson, R. 1990. Ostracoda and the discovery of global Cainozoic palaeoceanographical events, p. 4158 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.Google Scholar
Benson, R.H., Chapman, R.E. and Deck, L.T. 1984. Paleoceanographic events and deep-sea ostracodes. Science, 224:13341336.CrossRefGoogle ScholarPubMed
Benson, R.H. and Sylvester-bradley, P.C. 1971. Deep-sea ostracodes and the transformation of ocean to sea in the Tethys. Bulletin Centre Recherches Pau-SNPA, 5, 6391.Google Scholar
Bischoff, J. L. and Cummins, K. 2001. Wisconsin glaciation of the Sierra Nevada (79,000 − 15,000 yrBP) as recorded by rock flour in sediments of Owens Lake, California. Quaternary Research, 55:1421.CrossRefGoogle Scholar
Boomer, I. 1993. Palaeoenvironmental indicators from Late Holocene and contemporary ostracoda of the Aral Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 103:141153.Google Scholar
Boomer, I. 1999. Late Cretaceous and Cainozoic bathyal Ostracoda from the Central Pacific (DSDP Site 463). Marine Micropaleontology, 37:131147.CrossRefGoogle Scholar
Boomer, I., Aladin, N., Plotnikov, I. and Whatley, R. 2000. The Palaeolimnology of the Aral Sea: A review. Quaternary Science Reviews, 19(13): 12591278.Google Scholar
Boomer, I. and Eisenhauer, G. 2002. Ostracod faunas as palaeoenvironmental indicators in marginal marine environments, p. 135150 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. American Geophysical Union, Boston.Google Scholar
Boomer, I., von Grafenstein, U., Guichard, F. and Bieda, S. in press. The distribution of modern and Holocene Ostracoda (Crustacea) in the Caspian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Boomer, I. and Whatley, R. 1992. Ostracoda and dysaerobia in the Lower Jurassic of Wales: the reconstruction of past oxygen levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 99:373379.Google Scholar
Boomer, I. and Whatley, R. 1996. Ostracod endemism on mid-Pacific guyots from ODP legs 143 and 144, p. 403412 In Moguilevsky, A. and Whatley, R. (eds.), Microfossils and Oceanic Environments. University of Wales, Aberystwyth - Press, Aberystwyth.Google Scholar
Boomer, I., Whatley, R.C. and Aladin, N.V. 1996. Aral Sea Ostracoda as palaeoenvironmental indicators. Lethaia, 29:7785.Google Scholar
Braccini, E. and Peypouquet, J.-P. 1996. Estimation of the intensity of the oxygen minimum zone in the Santonian/Maastrichtian of the southern margin of Tethys based on the analysis of architectural variability of ostracod shells. In Keen, M.C. (ed) Proceedings of the 2nd European Ostracodologists' Meeting, University of Glasgow: 6774.Google Scholar
Brenchley, P.J. and Harper, D.A.T. 1998. Palaeoecology: Ecosystems, environments and evolution. Chapman and Hall. 402 pp.Google Scholar
Brouwers, E.M. 1988a. Palaeobathymetry on the continental shelf based on examples using ostracods from the Gulf of Alaska, p. 5576 In De Deckker, P., Colin, J.-P. and Peypouquet, J.-P. (eds), Ostracoda in the Earth Sciences. Elsevier.Google Scholar
Brouwers, E.M. 1988b. Sediment transport detected from the analysis of ostracod population structures: An example from the Alaskan Continental Shelf, p. 231244 In De Deckker, P., Colin, J. P. and Peypouquet, J. P. (eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam.Google Scholar
Chivas, A.R., De Deckker, P., Cali, J.A., Chapman, A., Kiss, E. and Shelley, J.M.G. 1993. Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators, p. 113121 In Swart, P.K., Lohmann, K.C., Mckenzie, J. and Savin, S. (eds.), Climate Change in Continental Isotopic Records. American Geophysical Union, Geophysical Monograph 78.Google Scholar
Chivas, A., De Deckker, P. and Shelley, J. 1983. Magnesium, strontium and barium partitioning in nonmarine ostracode shells and their use in paleoenvironmental reconstructions - a preliminary study, p. 238249 In Maddocks, R.F. (ed.), Applications of Ostracoda. University of Houston Geosciences, Houston.Google Scholar
Chivas, A.R., De Deckker, P. and Shelley, J.M.G. 1985. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature, 316:251253.CrossRefGoogle Scholar
Chivas, A., De Deckker, P. and Shelley, J.M.G. 1986. Magnesium and strontium in nonmarine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia, 143:135142.Google Scholar
Chivas, A., De Deckker, P. and Shelley, J. 1986. Magnesium content of nonmarine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeography, Palaeoclimatology, Palaeoecology, 54:4361.Google Scholar
Coles, G., Whatley, R.C. and Moguilevsky, A. 1994. The ostracod genus Krithe from the Tertiary and Quaternary of the North Atlantic. Palaeontology. 37 (1): 71120.Google Scholar
Cronin, T.M. and Raymo, M.E. 1997. Orbital forcing of deep-sea benthic species diversity. Nature, 385:624627.Google Scholar
Cronin, T.M., Boomer, I., Dwyer, G. S. and Rodriguez-Lazaro, J., 2002. Ostracoda and Paleoceanography. In Holmes, J.A. and Chivas, A.R. (eds). The Ostracoda: applications in Quaternary research. AGU Geophysical Monograph Series, Vol. 131: 99120.Google Scholar
Danielopol, D.L., Ito, E., Wansard, G., Kamiya, T., Cronin, T.M. and Baltanas, A. 2002. Techniques for collection and study of Ostracoda. In Holmes, J. A. and Chivas, A.R. (eds). The Ostracoda: applications in Quaternary research. AGU Geophysical Monograph Series, Vol. 131: 536.Google Scholar
Danielopol, D. and Wouters, K. 1992. Evolutionary (Paleo)biology of Marine interstitial Ostracoda. Geobios, 25(2):207211.Google Scholar
De Deckker, P. 2002. Ostracod Palaeoecology, p. 121134 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.Google Scholar
Didie, C. and Bauch, H.A. 2000. Species composition and glacial-interglacial variations in the ostracode fauna of the northeast Atlantic during the last 200,000 years. Marine Micropaleontology, 40:105129.CrossRefGoogle Scholar
Didie, C. and Bauch, H.A. 2002. Implications of Upper Quaternary stable isotope records of marine ostracodes and benthic foraminifers for paleoecological and paleoceanographical investigations, p. 279300 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.CrossRefGoogle Scholar
Dingle, R.V. 1980. Marine Santonian and Campanian Ostracods from a borehole at Richards Bay, Zululand. Annals of the South African Museum, 82: 170.Google Scholar
Dingle, R.V. and Lord, A.R. 1990. Benthic ostracods and deep watermasses in the Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 80:213235.CrossRefGoogle Scholar
Dingle, R.V., Lord, A.R. and Boomer, I.D. 1989. Ostracod faunas and water masses across the continental margin off southwestern Africa. Marine Geology, 87:323328.Google Scholar
Forester, R.M. 2000. Spring and groundwater ostracodes in the Death Valley Region (abstract). Devils Hole 2000 Workshop, Furnace Creek, Death Valley, California.Google Scholar
Frogley, M.R., Griffiths, H.I. and Martens, K. 2002. Modern and fossil ostracods from ancient lakes, p. 167184 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.Google Scholar
Fryer, G. 1993. The freshwater Crustacea of Yorkshire. Yorkshire Naturalists' Union and Leeds Philosophical and Literary Society, 313 p.Google Scholar
Holmes, J.A. 1996. Trace-element and stable-isotope geochemistry of nonmarine ostracod shells in Quaternary palaeoenvironmental reconstruction. Journal of Paleolimnology, 15:223235.Google Scholar
Holmes, J. and Chivas, A.R. 2002. Ostracod shell chemistry - Overview, p. 185204 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.Google Scholar
Honigstein, A., Rosenfeld, A., Lipson-Benitah, S. and Braun, M. 1993. Small-scale Cenomanian transgression pulses, indicated by ostracode and foraminifera assemblages, near Jerusalem, Israel, p. 153162 In Jones, P. and Mckenzie, K. (eds.), Ostracoda in the Earth and Life Sciences. AA Balkema, Rotterdam.Google Scholar
Horne, D.J. 1995. A revised ostracod biostratigraphy for the Purbeck-Wealden of England. Cretaceous Research, 16:639663.Google Scholar
Horne, D.J. 1999. Ocean circulation modes of the Phanerozoic: implications for the antiquity of deep-sea benthonic invertebrates, Crustaceana, 72 (8), 9991018.Google Scholar
Horne, D.J. 2002. Ostracod biostratigraphy of the Purbeck Limestone Group in Southern England. Special Papers in Palaeontology, 68:5370.Google Scholar
Horne, D.J., Baltanas, A. and Paris, G. 1998. Geographical distribution of reproductive modes in living nonmarine ostracods, In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in nonmarine ostracods: 7799. Backhuys, Leiden, the Netherlands.Google Scholar
Horne, D.J. and Martens, K. 1998. An assessment of the importance of resting eggs for the evolutionary success of Mesozoic nonmarine cypridoidean Ostracoda (Crustacea). Archiv für Hydrobiologie Special Issues Advances in Limnology. 52, 549561.Google Scholar
Horne, D., Jarvis, I. and Rosenfeld, A. 1990. Recovering from the effects of an Oceanic Anoxic Event: Turonian Ostracoda from S.E. England, p. 123138 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.CrossRefGoogle Scholar
Horne, D.J. and Martens, K. 1999. Geographical parthenogenesis in European nonmarine ostracods: postglacial invasion or Holocene stability? Hydrobiologia, 391, 17.Google Scholar
Hourne, D.J. and Slipper, I.J. 1992. Letter to the Editor: “Milankovitch cycles and microfossils: principles and practice of palaeoecological analyses illustrated by Cenomanian chalk-marl rhythms” by C. R. Paul – a comment. Journal of Micropalaeontology, 11: 241244.Google Scholar
Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Horne, D. and Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event. Cretaceous Research, 9:3103.CrossRefGoogle Scholar
Jeppsson, L., Aldridge, R.J. and Dorning, K.J. 1995. Wenlock (Silurian) oceanic episodes and events. Journal of the Geological Society of London, 152, 487498.Google Scholar
Kamiya, T. 1988. Contrasting population ecology of two species of Loxoconcha (Ostracoda, Crustacea) in recent Zostera beds: adaptive differences between phytal and bottom-dwelling species. Micropaleontology, 34:316331.Google Scholar
Kaufman, D.S. 2000. Amino acid racemization in ostracodes, p. 145160 In Goodfriend, G., Collins, M., Fogel, M., Macko, S. and Wehmiller, J. (eds.), Perspectives in Amino Acid and Protein Geochemistry. Oxford University Press, New York.Google Scholar
Kaufmann, D. S. 2003. Amino acid paleothermometry of Quaternary ostracodes from the Bonneville Basin, Utah. Quaternary Science Reviews, 22, 899914.Google Scholar
Keyser, D. in press. Cytological aspects in the noding process of Cyprideis torosa . Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Kilenyi, T.I. 1971. Some basic questions in the palaeoecology of ostracods. In Oertli, H.J. (ed.), Paleoecologie ostracodes, Pau 1970. Bulletin Centre Recherche Pau-SNPA, 5 suppl.:3144.Google Scholar
Kilenyi, T.I. 1972. Transient and balanced genetic polymorphism as an explanation of variable noding in the ostracode genus Cyprideis torosa. Micropaleontology, 18(1):4763.Google Scholar
Krömmelbein, K. 1962. Zur Taxonomie und Biochronologie stratigraphische wichtiger Ostracoden-Arten aus der oberjurassisch? – unterkretazischen Bahia-Serie (Wealden-Fazies) NE-Brasiliens. Senckenbergiana Lethaea, 43: 437527.Google Scholar
Kutzbach, J. E. and Guetter, P. J. 1990. Simulated circulation of an idealized ocean for Pangaean time. Paleoceanography, 5: 299317.CrossRefGoogle Scholar
Larwood, J., Whatley, R. and Boomer, I. 1996. Ostracod evolution on seamounts: evidence from Horizon Guyot, Central Pacific Ocean (DSDP sites 44 and 171) and the Ninetyeast Ridge, East Indian Ocean (DSDP Site 214), p. 385402 In Moguilevsky, A. and Whatley, R. (eds.), Microfossils and Oceanic Environments. University of Wales, Aberystwyth - Press, Aberystwyth.Google Scholar
Lethiers, F. and Raymond, D. 1991. Les crises du Dévonien supérieur par l'étude des faunes d'ostracodes dans leur cadre paléogéographique. Palaeogeography, Palaeoclimatology, Palaeoecology, 88, 133146.Google Scholar
Lethiers, F. and Whatley, R. 1994. The use of Ostracoda to reconstruct the oxygen levels of Late Palaeozoic oceans. Marine Micropaleontology, 24:5769.Google Scholar
Majoran, S., Agrenius, S. and Kucera, M. 2000. The effect of temperature on shell size and growth rate in Krithe praetexta praetexta (Sars). Hydrobiologia, 419:141148.Google Scholar
Mandelstam, M., Markova, L., Rosyeva, T. and Stepanaitys, N. 1962. Ostracoda of the Pliocene and post-Pliocene deposits of Turkmenistan. Turkmenistan Geological Institute, Ashkhabad, 288 p.Google Scholar
Martens, K. 1998. Sex and parthenogensis. Evolutionary Ecology of Reproductive Modes in Nonmarine Ostracods. Backuys Publishers, Leiden, 336 p.Google Scholar
Martens, K. and Schön, I. 1999. Crustacean biodiversity in subterranean, ancient lake and deep-sea habitats. Crustaceana, 72(8):721722.Google Scholar
Martin, G P.R. 1940. Ostracoden des norddeutschen Purbeck und Wealden. Senckenbergiana, 22, 275361.Google Scholar
Mazzini, I., Anadon, P., Barbieri, M., Castorini, F., Ferreli, L., Gliozzi, E., Mola, M. and Vittori, E. 1999. Late Quaternary sea-level changes along the Tyrrhenian coast near Orbetello (Tuscany, central Italy): palaeoenvironmental reconstruction using ostracods. Marine Micropaleontology, 37(3/4):289312.Google Scholar
Mcculloch, M. and De Deckker, P. 1989. Sr isotope constraints on the Mediterranean environment at the end of the Messinian salinity crisis. Nature, 342:6265.Google Scholar
Neil, J.V. 2000. Factors influencing intraspecific variation and polymorphism in marine podocopid Ostracoda, with particular reference to Tertiary species from Southeastern Australia. Hydrobiologia, 419:161180.Google Scholar
Ozawa, H. and Kamiya, T. 2001. Paleoceanographic records related to glacio-eustatic fluctions in the Pleistocene Japan Sea coast based on ostracods from the Omma Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:2748.CrossRefGoogle Scholar
Pang, Q. and Whatley, R. 1990. The biostratigraphical sequence of Mesozoic nonmarine ostracod assemblages in northern China, p. 239250 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.Google Scholar
Park, L. E. and Downing, K.F. 2000. Implications of phylogeny reconstruction for ostracod speciation models in Lake Tanganyika. Advances in Ecological Research, 31:303330.Google Scholar
Penney, D.N. 1987. Application of Ostracoda to sea-level studies. Boreas, 16:237247.Google Scholar
Peypouquet, J.-P. 1975. Les variation des caractères morphologiques internes chez les Ostracodes des genres Krithe et Parakrithe: relation possible avec la teneur en dissous dans l'eau. Bulletin de l'Institut de Geologique du Bassin d'Aquitaine, 17:8188.Google Scholar
Peypouquet, J.-P., Carbonel, P., Ducasse, O., Tolderer-Farmer, M. and Lété, C. 1988. Environmentally cued polymorphism of ostracods, p. 10031018 In Hanai, T., Ikeya, N. and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda its fundamentals and applications. Volume 11. Kodansha Ltd., Tokyo.Google Scholar
Peypouquet, J.-P., Ducasse, O., Gayet, J. and Pratviel, L. 1980. Agradation et dégradation des tests d'ostracodes. Intérêt pour la connaissance de l'évolution paleohydrologique des domaines margino-littoraux., p. 357369, Cristallisation, déformation, dissolution des carbonates. Réunion spéciale, Bordeaux III.Google Scholar
Puckett, T.M. 1994; Planktonic foraminiferal and ostracode biostratigraphy of upper Santonian through lower Maastrichtian strata in central Alabama: Gulf Coast Association of Geological Societies Transactions, v. 44, 585595.Google Scholar
Raup, D.M. and Stanley, S.M. 1978. Principles of Paleontology (2nd Edition). W. H. Freeman and Co., San Francisco, 481 pp.Google Scholar
Reyment, R.A. 1988. Applications of ostracods in quantitative geology, p. 257276 In De Deckker, P., Colin, J.P. and Peypouquet, J.-P. (eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam.Google Scholar
Rosenfeld, A. 1982. The secretion process of the Ostracod carapace, p. 1224 In Bate, R., Robinson, E. and Sheppard, L.M. (eds.), Fossil and Recent Ostracods. E. Horwood, Chichester.Google Scholar
Rosenfeld, A. and Vesper, B. 1977. The variability of the sieve-pores in recent and fossil species of Cyprideis torosa (Jones, 1850) as an indictor for salinity and palaeosalinity, p. 5567 In Loffler, H. and Danielopol, D. (eds.), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda. Junk, The Hague.Google Scholar
Schäfer, W. 1972. Ecology and palaeoecology of marine environments. The University of Chicago Press, 568 pp.Google Scholar
Schön, I., Verheyen, E and Martens, K. 2000. Speciation in Ancient lake ostracods: comparative analysis of Baikalian Cytherissa and Tanganyikan Cyprideis . Verh. Internat. Verein. Limnol., 27, 26742677.Google Scholar
Schreve, D.C., Bridgland, D.R., Allen, P., Blackford, J.F., Gleed-Owen, C.P., Griffiths, H.I., Keen, D.H. and White, M.J. 2002. Sedimentology, palaeontology and archaeology of late Middle Pleistocene River Thames terrace deposits at Purfleet, Essex, UK. Quaternary Science Reviews, 21: 14231464.Google Scholar
Schudack, M.E. and Schudack, U., 2002. Ostracods from the Middle Dinosaur Member of the Tendaguru Formation (Upper Jurassic of Tanzania). Neues Jahrbuch fur Geologie und Paläontologie, Monatshefte., 2002 (6), 321336.Google Scholar
Schudack, M.E., Turner, C.E. and Peterson, F. 1988. Biostratigraphy, Paleoecology and biogeography of charophytes and ostracodes from the Upper Jurassic Morrison Formation, Western Interior, USA. Modern Geology, 22, 379414.Google Scholar
Sheppard, L.M. 1978. The exploration application of the range tables, p. 473523 In Bate, R.H. and Robinson, E. (eds), A stratigraphical index of British Ostracoda. Geological Journal Special Issue No. 8. Seel House Press.Google Scholar
Slipper, I.J. 1998. Turonian/Coniacian Ostracoda from Dover (England, S. E. In Crasquin-Soleau, S., Braccini, E. and Lethiers, F., What About Ostracoda! Bulletin du Centre de Recherches Elf Exploration et Production, Mémoires. 20: 375391.Google Scholar
Sohn, I.G. 1958. Chemical constituents of ostracodes; some applications to paleontology and paleoecology. Journal of Paleontology, 32:730736.Google Scholar
Szczechura, J. 1979. Freshwater ostracods from the Nemegt Formation (Upper Cretaceous) of Mongolia. Palaeontologica Polonica, 38, 65121.Google Scholar
Sztejn, J. 1991. Ostracods from the Purbeckian of central Poland. Acta Palaeontologica Polonica, 36, 115142.Google Scholar
Van Harten, D. 1988. Chronoecology, a non-taxonomic application of ostracods, p. 4754 In De Deckker, P., Colin, J.-P. and Peypouquet, J.-P. (eds), Ostracoda in the Earth Sciences. Elsevier.Google Scholar
Van Harten, D. 1995. Differential food detection: A speculative reinterpretation of vestibule variability in Krithe (Crustacea: Ostracoda). p. 3336 In Ríha, J. (ed) Ostracoda and Biostratigraphy. Balkema, Rotterdam.Google Scholar
Van Harten, D. 1996. Cyprideis torosa revisited. Of salinity, nodes and shell size, p. 226230 In Keen, M.C. (ed.), Proceedings of the 2nd European Ostracodologists Meeting, London.Google Scholar
Van Harten, D. 2000. Variable noding in Cyprideis torosa (Ostracoda, Crustacea): an overview, experimental results and a model from Catastrophe Theory. Hydrobiologia, 419:131139.Google Scholar
Von Grafenstein, U. 2002. Ostracod shell chemistry - Overview, p. 249266 In Holmes, J.A. and Chivas, A.R. (eds.), The Ostracoda: Applications in Quaternary Research. Geophysical Monograph 131. American Geophysical Union, Boston.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J. and Johnsen, S.J. 1999. A mid-European decadal Isotope-Climate record from 15,500 to 5000 years B.P. Science, 284:16541657.Google Scholar
Wansard, G., Roca, J.R. and Mezquita, F. 1999. Experimental determination of strontium and magnesium partitioning in calcite of the freshwater ostracod Herpetocypris intermedia . Archiv für Hydrobiologie, 145(2):237253.Google Scholar
Whatley, R. 1983. Some simple procedures for enhancing the use of Ostracoda in Palaeoenvironmental analysis. Norwegian Petroleum Directorate, Bulletin, 2:129146.Google Scholar
Whatley, R. C. 1988. Population structure of ostracods: some general principles for the recognition of palaeoenvironments, p. 245256 In De Deckker, P., Colin, J.P. and Peypouquet, J.P. (eds.), Ostracoda in the Earth Sciences. Elsevier, Amsterdam.Google Scholar
Whatley, R. 1990. Ostracoda and Global events, p. 324 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.Google Scholar
Whatley, R. 1993. Ostracoda as biostratigraphical indices in Cenozoic deep-sea sequences, p. 155167 In Hailwood, E.A. and Kidd, R.B. (eds.), High Resolution Stratigraphy. Volume No. 70. Geological Society of London Special Publication.Google Scholar
Whatley, R. 1995. Ostracoda and oceanic palaeoxygen levels. Mitteilungen aus dem Hamburgischen Zoologisches Museum und Institut, 92:337353.Google Scholar
Whatley, R. 1996. The bonds unloosed: The contribution of Ostracoda to our understanding of deep-sea events and processes, p. 325 In Moguilevsky, A. and Whatley, R. (eds.), Microfossils and Oceanic Environments. University of Wales, Aberystwyth - Press, Aberystwyth.Google Scholar
Whatley, R. and Roberts, R. 1995. Marine Ostracoda from Pitcairn, Oeno and Henderson Islands. Biological Journal of the Linnean Society, 56:359364.Google Scholar
Whatley, R. and Zhao, Q. 1993. The Krithe problem: A case history of the distribution of Krithe and Parakrithe (Crustacea, Ostracoda) in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 103:281297.Google Scholar
Wilkinson, I.P. and Riley, N.J. 1990. Namurian entomozoacean Ostracoda and eustatic events, p. 161174 In Whatley, R. and Maybury, C. (eds.), Ostracoda and Global Events. Chapman Hall.Google Scholar
Williams, M., Floyd, J.D., Miller, C.G. and Siveter, D.J. 2001. Scottish Ordovician ostracodes: a review of their palaeoenvironmental, biostratigraphical and palaeobiogeographical significance. Transactions of the Royal Society of Edinburgh - Earth Sciences, 91(3-4):499508.Google Scholar
Chun-Hui, Ye. 1994. Succession of Cypridacea (Ostracoda) and nonmarine Cretaceous stratigraphy of China. Cretaceous Research, 15, 285303.Google Scholar