Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T11:56:02.603Z Has data issue: false hasContentIssue false

Deficits in speed discrimination following lesions of the lateral suprasylvian cortex in the cat

Published online by Cambridge University Press:  02 June 2009

Tatiana Pasternak
Affiliation:
Departments of Neurobiology and Anatomy, Physiology, and Center for Visual Science, University of Rochester, Rochester
Kris M. Horn
Affiliation:
Departments of Neurobiology and Anatomy, Physiology, and Center for Visual Science, University of Rochester, Rochester
John H.R. Maunsell
Affiliation:
Departments of Neurobiology and Anatomy, Physiology, and Center for Visual Science, University of Rochester, Rochester

Abstract

We examined the role of the lateral suprasylvian (LS) cortex in motion perception by testing the ability of three cats to detect moving targets and to discriminate differences in stimulus direction and speed before and after making bilateral ibotenic acid lesions in LS. The lesions had little or no effect on contrast sensitivity for detecting moving sinusoidal gratings. Moreover, we found no deficits in discriminating opposite directions of motion: the cats discriminated grating directions at threshold contrasts. All three cats, however, showed permanent deficits in discriminating differences in speed and in flicker rate. The deficits were most pronounced at higher temporal and spatial frequencies and at lower contrasts. This result suggests that LS plays an important role in the analysis of stimulus speed. It appears that information needed for discriminating opposite directions of motion may be signalled by visual areas outside LS.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. and Bergen, J.R. (1985). Spatiotemporal models for the perception of motion. Journal of the Optical Society of America, A2, 284299.CrossRefGoogle Scholar
Allman, J.M., Miezin, F. & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience 8, 407430.CrossRefGoogle ScholarPubMed
Berson, D.M. & Graybiel, A.M. (1980). Some cortical and subcortical fiber projections to the accessory optic nuclei in the cat. Neuroscience 5, 22032217.CrossRefGoogle Scholar
Bisti, S., Carmignotto, G., Galli, L. & Maffei, L. (1985). Spatial-frequency characteristics of neurons of area 18 in the cat: dependence on the velocity of the visual stimulus. Journal of Physiology (London) 359, 259268.CrossRefGoogle ScholarPubMed
Dreher, B. (1986). Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 290314. Cambridge: Cambridge University Press.Google Scholar
Emerson, R.C., Bergen, J.R. & Adelson, E.H. (1987). Movement models and directionally selective cells in the cat's visual cortex. Society for Neuroscience Abstracts 13, 1623.Google Scholar
Fernald, R. & Chase, R. (1971). An improved method for plotting retinal landmarks and focussing the eyes. Vision Research 11, 9596.CrossRefGoogle Scholar
Grant, S., Shipp, S.D. & Wilson, R.I. (1984). Differences in connectivity of two visual areas within the lateral suprasylvian (LS) complex of cat visual cortex. Journal of Physiology 353, 21 p.Google Scholar
Hardy, S.C. & Stein, B.E. (1988). Small lateral suprasylvian cortex lesions produce visual neglect and decreased visual activity in the superior colliculus. Journal of Comparative Neurology 273, 527542.CrossRefGoogle Scholar
Herdman, S.J., Tusa, R.J. & Smith, C.B. (1989). Cortical areas involved in horizontal OKN in cats: metabolic activity. Journal of Neuroscience 9, 11501163.CrossRefGoogle ScholarPubMed
Hess, R.F., Baker, C.L. Jr, & Zihl, J. (1989). The “Motion-blind” patient: low-level spatial and temporal filters. Journal of Neuroscience 9, 16281640.CrossRefGoogle Scholar
Hoffmann, K.P. (1983). Control of the optikinetic reflex by the nucleus of the optic tract in the cat. In Spatially Oriented Behaviour, ed. Hein, A. & Jeannerod, M., pp. 135153. New York: Springer.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1969). Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. Journal of Physiology (London) 202, 251260.CrossRefGoogle ScholarPubMed
Marcotte, R.R. & Updyke, B.V. (1982). Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Research 242, 205217.CrossRefGoogle ScholarPubMed
McKee, S., Nakayama, K. & Silverman, G.H. (1986). Presize velocity discrimination despite variations in temporal frequency and contrast. Vision Research 26, 609619.CrossRefGoogle Scholar
Miezin, F.M., Fox, P.T., Raichle, M.E. & Allman, J.M. (1988). An extrastriate region in human visual cortex sensitive to low-contrast moving dots and high temporal frequencies. Investigative Ophthalmology and Visual Science (Suppl.) 29, 326.Google Scholar
Mizobe, K., Itoi, M., Kaihara, T. & Toyama, K. (1988). Neuronal responsiveness in area 21a of the cat. Brain Research 438, 307310.CrossRefGoogle ScholarPubMed
Morrone, M.C., Di Stefano, M. & Burr, D.C. (1986). Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat. Journal of Neurophysiology 56, 969986.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Receptive-field organization of complex cells in the cat's striate cortex. Journal of Physiology (London) 283, 79100.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H., Dursteler, M.R. & Midami, A. (1985). Deficits in visual-motion processing following ibotenic-acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle Scholar
Palmer, L.A., Rosenquist, A.C. & Tusa, R.J. (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. Journal of Comparative Neurology 177, 237256.CrossRefGoogle ScholarPubMed
Pasternak, T. (1987). Discrimination of differences in speed and flicker rate depends on directionally selective mechanisms. Vision Research 27, 18811890.CrossRefGoogle ScholarPubMed
Pasternak, T. & Leinen, L. (1986). Pattern and motion vision in cats with selective loss of cortical directional selectivity. Journal of Neuroscience 6, 938945.CrossRefGoogle Scholar
Pasternak, T., Schumer, R.A., Gizzi, M.S. & Movshon, J.A. (1985). Abolition of cortical directional selectivity affects visual behavior in cats. Experimental Brain Research 61, 214217.CrossRefGoogle ScholarPubMed
Rauschecker, J.P., von Grunau, M.W. & Poulin, C. (1987). Centrifugal organization of direction preference in the cat's lateral suprasylvian visual cortex and its relation to flowfield processing. Journal of Neuroscience 7, 943958.CrossRefGoogle Scholar
Sherk, H. (1986). Location and connections of visual cortical areas in the cat's suprasylvian sulcus. Journal of Comparative Neurology 247, 131.CrossRefGoogle ScholarPubMed
Spear, P.D. (1989). Functions of extrastriate visual cortex in nonprimate species. In The Neural Basis of Visual Function, ed. Leventhal, A., Basingstoke, England: Macmillan Press.Google Scholar
Spear, P.D., Miller, S. & Ohman, L. (1983). Effects of lateral suprasylvian visual cortex lesions on visual localization, discrimination, and attention in cats. Behavioral Brain Research 10, 339359.CrossRefGoogle ScholarPubMed
Spear, P.D. & Baumann, T.P. (1975). Receptive-field characteristics of single neurons in lateral suprasylvian visual area of the cat. Journal of Neurophysiology 38, 14031420.CrossRefGoogle ScholarPubMed
Spear, P.D. & Baumann, T.P. (1979). Effects of visual cortex removal on receptive-field properties of neurons in lateral suprasylvian visual area of the cat. Journal of Neurophysiology 42, 3156.CrossRefGoogle ScholarPubMed
Sprague, J.M., Levy, J., DiBerardino, H. & Berlucchi, G. (1977). Visual cortical areas mediating form discrimination in the cat. Journal of Comparative Neurology 172, 441488.CrossRefGoogle ScholarPubMed
Symonds, L.L. & Rosenquist, A.C. (1984). Corticocortical connections among visual areas in the cat. Journal of Comparative Neurology 229, 138.CrossRefGoogle ScholarPubMed
Tusa, R.J., Demer, J.L. & Herdman, S.J. (1989). Cortical areas involved in OKN and VOR in cats: cortical lesions. Journal of Neuroscience 9, 11631178.CrossRefGoogle ScholarPubMed
Tusa, R.J., Rosenquist, A.C. & Palmer, L.A. (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657678.CrossRefGoogle Scholar
Vaina, L.M. (1989). Selective impairment of visual-motion interpretation following lesions of the right occipito-parietal area in humans. Biological Cybernetics (in press).CrossRefGoogle ScholarPubMed
Van Essen, D.C. & Maunsell, J.H.R. (1980). Two-dimensional maps of the cerebral cortex. Journal of Comparative Neurology 191, 255281.CrossRefGoogle ScholarPubMed
Van Santen, J.P.H. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America 2, 300322.CrossRefGoogle Scholar
Ventre, J. (1985). Cortical control of oculomotor functions, I: Opto-kinetic nystagmus. Behavioral Brain Research 15, 211226.CrossRefGoogle Scholar
Von Grunau, M. & Frost, B.J. (1983). Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area. Experimental Brain Research 49, 8492.CrossRefGoogle ScholarPubMed
Von Grunau, M.W., Zumbroich, T.J. & Poulin, C. (1987). Visual receptive-field properties in the posterior subrasylvian cortex of the cat: a comparison between the areas PMLS and PLLS. Vision Research 27, 343356.CrossRefGoogle Scholar
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome-oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed
Wood, C.C., Spear, P.D. & Braun, J.J. (1973). Direction-specific deficits in horizontal nystagmus following removal of visual cortex in the cat. Brain Research 60, 231237.CrossRefGoogle ScholarPubMed
Zumbroich, T.J., & Blakemore, C. (1987). Spatial and temporal selectivity in the suprasylvian visual cortex of the cat. Journal of Neuroscience 7, 482500.CrossRefGoogle ScholarPubMed
Zumbroich, T.J., Von Grunau, M., Poulin, C. & Blakemore, C. (1986). Differences of visual-field representation in the medial and lateral banks of the suprasylvian cortex (PMLS/PLLS) of the cat. Experimental Brain Research 64, 7793.CrossRefGoogle ScholarPubMed