Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T13:40:03.224Z Has data issue: false hasContentIssue false

Does context or color improve object recognition in patients with low vision?

Published online by Cambridge University Press:  01 September 2008

MURIEL BOUCART*
Affiliation:
Lab. Neurosciences Fonctionnelles & Pathologies, Université Lille, Nord de France, CHU Lille, CNRS
PASCAL DESPRETZ
Affiliation:
Lab. Neurosciences Fonctionnelles & Pathologies, Université Lille, Nord de France, CHU Lille, CNRS
KATRINE HLADIUK
Affiliation:
Centre d'Imagerie, de Laser et de Re-adaptation Basse Vision, Clinique d’ophtalmologie, Lambersart
THOMAS DESMETTRE
Affiliation:
Centre d'Imagerie, de Laser et de Re-adaptation Basse Vision, Clinique d’ophtalmologie, Lambersart
*
*Address correspondence and reprint requests to: Dr Muriel Boucart, CHRU Lille, Hôpital Roger Salengro, service EFV, Lab. Neurosciences Fonctionnelles & Pathologies, CNRS UMR 8160, 59037 Lille, France. E-mail: m-boucart@chru-lille.fr

Abstract

Most studies on people with age-related macular degeneration (AMD) have been focused on investigations of low-level processes with simple stimuli like gratings, letters, and in perception of isolated faces or objects. We investigated the ability of people with low vision to analyze more complex stimuli like photographs of natural scenes. Fifteen participants with AMD and low vision (acuity on the better eye <20/200) and 11 normally sighted age-matched controls took part in the study. They were presented with photographs of either colored or achromatic gray level scenes in one condition and with photographs of natural scenes versus isolated objects extracted from these scenes in another condition. The photographs were centrally displayed for 300 ms. In both conditions, observers were instructed to press a key when they saw a predefined target (a face or an animal). The target was present in half of the trials. Color facilitated performance in people with low vision, while equivalent performance was found for colored and achromatic pictures in normally sighted participants. Isolated objects were categorized more accurately than objects in scenes in people with low vision. No difference was found for normally sighted observers. The results suggest that spatial properties that facilitate image segmentation (e.g., color and reduced crowding) help object perception in people with low vision.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, G.B., & Wolf, J.E. (2004). Colour vision testing as an aid to diagnosis and management of age related maculopathy. Br J Ophthalmol 88(9):1180–5.CrossRefGoogle ScholarPubMed
Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience 5, 617–629.CrossRefGoogle ScholarPubMed
Biederman, I., Mezzanotte, R.J. & Rabinowitz, J.C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology 14, 143–177.CrossRefGoogle ScholarPubMed
Boucart, M., Dinon, J.F., Despretz, P., Desmettre, T., Hladiuk, K. & Oliva, A. (2008). Recognition of facial emotion in age related macular degeneration (AMD): A flexible usage of facial features. Visual Neuroscience 25, 1–7.CrossRefGoogle ScholarPubMed
Boyce, S.J. & Pollatsek, A. (1992). Identification of objects in scenes: The role of scene background in object naming. Journal of Experimental Psychology. Learning, Memory, and Cognition 18, 531–543.CrossRefGoogle ScholarPubMed
Brody, B.L., Gamst, A.C., Williams, R.A., Smith, A.R., Lau, P.W., Dolnak, D., Rapaport, M.H., Kaplan, R.M. & Brown, S.I. (2001). Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration. Ophthalmology 108, 1893–1901.CrossRefGoogle ScholarPubMed
Bullimore, M.A., Bailey, I.L. & Wacker, R.T. (1991). Face recognition in age-related maculopathy. Investigative Ophthalmology & Visual Science 32, 2020–2029.Google ScholarPubMed
Changzheng, C., Wu, L., Wu, D., Huang, S., Wen, F., Luo, G. & Long, S. (2004). The local cone and rod system function in early age-related macular degeneration. Documenta Ophthalmologica 109, 1–8.Google Scholar
Chee, M.W., Goh, J.O., Venkatraman, V., Tan, J.C., Gutchess, A., Sutton, B., Hebrank, A., Leshikar, E. & Park, D. (2006). Age-related changes in object processing and contextual binding revealed using fMR adaptation. Journal of Cognitive Neuroscience 18, 495–507.CrossRefGoogle ScholarPubMed
Cheung, S.H. & Legge, G.E. (2005). Functional and cortical adaptations to central vision loss. Visual Neuroscience 22, 187–201.Google Scholar
Curcio, C.A. (2001). Photoreceptor topography in ageing and age-related maculopathy. Eye 15, 376–383.CrossRefGoogle ScholarPubMed
Curcio, C.A., Owsley, C. & Jackson, G.R. (2000). Spare the rods, save the cones in ageing and age-related maculopathy. Investigative Ophthalmology & Visual Science 41, 2015–2018.Google Scholar
Davenport, J.L. & Potter, M.C. (2004). Scene consistency in object and background perception. Psychological Science 15, 559–564.Google Scholar
Delorme, A., Richard, M. & Fabre-Thorpe, M. (2005). Reorganization of visual processing in macular degeneration. Journal of Neuroscience 25, 614–618.Google Scholar
Desmettre, T., Devoisselle, J.M. & Mordon, S. (2000). Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of Ophthalmology 45, 15–27.CrossRefGoogle ScholarPubMed
Ebert, E.M., Fine, A.M., Markowitz, J., Maguire, M.G., Starr, J.S. & Fine, S.L. (1986). Functional vision in patients with neovascular maculopathy and poor visual acuity. Archives of Ophthalmology 104, 1009–1012.CrossRefGoogle ScholarPubMed
Eisner, A., Fleming, S.A., Klein, M.L., et al. (1987). Sensitivities in older eyes with good acuity: eyes whose fellow eye has exudative AMD. Invest Ophthalmol Vis Sci 28, 1832–7.Google ScholarPubMed
Faubert, J. & Overbury, O. (2000). Binocular vision in older people with adventitious visual impairment: Sometimes one eye is better than two. Journal of the American Geriatrics Society 48, 375–380.CrossRefGoogle ScholarPubMed
Fine, E.M. & Peli, E. (1995). Scrolled and rapid serial visual presentation texts are read at similar rates by the visually impaired. Journal of the Optical Society of America. A, Optics, Image, Science, and Vision 12, 2286–2292.CrossRefGoogle Scholar
Fine, E.M. & Rubin, G.S. (1999). Reading with central field loss: Number of letters masked is more important than the size of the mask in degrees. Vision Research 39, 747–756.Google Scholar
Fletcher, D.C., Schchard, R.A. & Watson, G. (1999). Relative locations of macular scotomas near the PRL: Effect on low vision reading. Journal of Rehabilitation Research and Development 36, 356–364.Google ScholarPubMed
Folstein, M.F., Folstein, S.E. & McHugh, P.R. (1975). “Mini-mental state”, a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12, 189–198.Google Scholar
Frennesson, J.C. & Nilsson, S.E. (1998). Prophylactic laser treatment in early age related maculopthy reduced the incidence of exudative complications. Br J Ophthalmol 82, 1169–74.Google Scholar
Gegenfurtner, K.R. & Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology 10, 805–808.Google Scholar
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Rossion, B. & Schyns, P.G. (2005). Diagnostic colors contribute to early stages of scene categorization: behavioral and neurophysiological evidences. Visual Cognition 12, 878–892.Google Scholar
Greene, M.R. & Oliva, A. (2006). Natural scene categorization from the conjunction of ecological global properties. Proceedings of the Twenty-Eighth Annual Conference of the Cognitive Science Society 291–296.Google Scholar
Grill-Spector, K. & Malach, R. (2004). The human visual cortex. Annu Rev Neurosci 27, 649–77.Google Scholar
Hanutsaha, P., Guyer, D.R., Yannuzzi, L.A., Naing, A., Slakter, J.S., Sorenson, J.S., Spaide, R.F., Freund, K.B., Feinsod, M. & Orlock, D.A. (1998). Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy. Ophthalmology 105, 1632–1636.CrossRefGoogle ScholarPubMed
Hariharan, S., Levi, D.M. & Klein, S.A. (2005). Crowding in normal and amblyopic vision assessed with Gaussian and gabor C's. Vision Research 45, 617–633.CrossRefGoogle ScholarPubMed
Hart, P.M., Chakravarthy, U., Stevenson, M.R. & Jamison, J.Q. (1999). A vision specific functional index for use in patients with age related macular degeneration. British Journal of Ophthalmology 83, 1115–1120.CrossRefGoogle ScholarPubMed
Hassan, S.E., Lovie-Kitchin, J.E. & Woods, R.L. (2002). Vision and mobility performance of subjects with age-related macular degeneration. Optometry and Vision Science 79, 697–707.CrossRefGoogle ScholarPubMed
Hess, R.F., Dakin, S.C., Tewfik, M. & Brown, B. (2001). Contour interaction in amblyopia: Scale selection. Vision Research 41, 2285–2296.Google Scholar
Higgins, K.E., Arditi, A. & Knoblauch, K. (1996). Detection and identification of mirror-image letter pairs in central and peripheral vision. Vision Research 36, 331–337.CrossRefGoogle ScholarPubMed
Holzschuch, C., Mourey, F. & Manière, D. (2002). Gériatrie et basse-vision: Pratiques interdisciplinaires. Paris, Edition Masson.Google Scholar
Joubert, O.R., Rousselet, G.A., Fize, D. & Fabre-Thorpe, M. (2007). Processing scene context: Fast categorization and object interference. Vision Research 47, 3286–3297.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J. & Chun, M.M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17, 4302–4311.CrossRefGoogle ScholarPubMed
Klein, R., Tunde, P., Bird, A. & Vannewkirk, M.R. (2004). The epidemiology of age-related macular degeneration. American Journal of Ophthalmology 137, 486–495.CrossRefGoogle ScholarPubMed
Kleiner, R.C., Enger, C., Alexander, M.E. & Fine, S.L. (1988). Contrast sensitivity in age-related macular degeneration. Archives of Ophthalmology 106, 55–57.CrossRefGoogle ScholarPubMed
Kooi, F.L., Toet, A., Tripathy, S.P. & Levi, D.M. (1994). The effect of similarity and duration on spatial interaction in peripheral vision. Spatial Vision 8, 255–279.Google ScholarPubMed
Lavie, N., Ro, T. & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science. 14(5):510–5.Google Scholar
Legge, G.E., Mansfield, J.S. & Chung, S.T.L. (2001). Psychophysics of reading. Linking letter recognition to reading speed in central and peripheral vision. Vision Research 41, 725–743.CrossRefGoogle ScholarPubMed
Legge, G.E., Ross, J.A., Isenberg, L.M. & LaMay, J.M. (1992). Psychophysics of reading. XII. Clinical predictors of low vision reading speed. Investigative Ophthalmology & Visual Science 33, 677–687.Google Scholar
Legge, G.E., Rubin, G.S., Pelli, D.G. & Schleske, M.M. (1985). Psychophysics of reading. XII. Low vision. Vision Research 25, 253–265.CrossRefGoogle Scholar
Leid, J. (2008). “Propos” laboratoires Biopharma: special vision des couleurs. Ophtalmologie 32, 71–81.Google Scholar
Levi, D.M. (2008). Crowding an essential bottleneck for object recognition: A mini review. Vision Research, 48(5), 635–54.CrossRefGoogle ScholarPubMed
Levi, D.M., Hariharan, S. & Sa, K. (2002). Suppressive and facilitatory interactions in amblyopic vision. Vision Research 42, 1379–1394.CrossRefGoogle ScholarPubMed
Macé, M.J., Thorpe, S.J. & Fabre-Thorpe, M. (2005). Rapid categorization of achromatic natural scenes: How robust at very low contrasts? European Journal of Neuroscience 21, 2007–2018.Google Scholar
Mangione, C.M., Gutierrez, P.R., Lowe, G., Orav, E.J. & Seddon, J.M. (1999). Influence of age-related maculopathy on visual functioning and health-related quality of life. American Journal of Ophthalmology 128, 45–53.Google Scholar
Midena, E., Degli Angeli, C., Blarzino, M.C., Valenti, M. & Segato, T. (1997) Macular function impairment in eyes with early age-related macular degeneration. Investigative Ophthalmology & Visual Science 38, 469–477.Google Scholar
McCarthy, G., Luby, M., Gore, J. & Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. J Neurophysiol. 77(3):1630–4.CrossRefGoogle ScholarPubMed
Naïli, F., Despretz, P. & Boucart, M. (2006). Colour recognition at large visual eccentricities in normal observers and patients with low vision. Neuroreport 17, 1571–1574.CrossRefGoogle ScholarPubMed
Nilsson, U.L., Frennesson, C. & Nilsson, S.E.G. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research 43, 1777–1787.Google Scholar
Oliva, A. & Schyns, P.G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology 41, 176–210.CrossRefGoogle ScholarPubMed
Oliva, A., Wolfe, J.M. & Arsenio, H. (2004). Panoramic search: The interaction of memory and vision in search through a familiar scene. Journal of Experimental Psychology: Human Perception and Performance 30, 1132–1146.Google Scholar
Owsley, C. & Sloane, M.E. (1987). Contrast sensitivity, acuity, and the perception of “real-world” targets. British Journal of Ophthalmology 71, 791–796.Google Scholar
Owsley, C., Jackson, G.R., Cideciyan, A.V., Huang, Y., Fine, S.L., Ho, A.C., Maguire, M.G., Lolley, V. & Jacobson, S.G. (2000). Psychophysical evidence for rod vulnerability in age-related macular degeneration. Investigative Ophthalmology & Visual Science 41, 267–273.Google ScholarPubMed
Peli, E., Goldstein, R.B., Young, G.M., Trempe, C.L. & Buzney, S.M. (1991). Image enhancement for the visually impaired. IOVS 32, 2337–2351.Google Scholar
Peterson, M.A. & Rhodes, G. (2003). Perception of faces, objects and scenes: Analytic and holistic processes. Advances in visual cognition. New York: Oxford University Press.Google Scholar
Puce, A., Allison, T., Asgari, M., Gore, J.C. & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. J Neurosci.;16(16): 5205–15.Google Scholar
Regillo, C.D., Blade, K.A., Custis, P.H. & O’Connel, S.R. (1998). Evaluating persistent and recurrent choroidal neovascularization: The role of indocyanine green angiography. Ophthalmology 105, 1821–1826.CrossRefGoogle ScholarPubMed
Righart, R. & de Gelder, B. (2006). Context influences early perceptual analysis of faces—An electrophysiological study. Cerebral Cortex 16, 1249–1257.Google Scholar
Rossion, B. & Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart's object pictorial set: The role of surface detail in basic-level object recognition. Perception 33, 217–236.Google Scholar
Sjostrand, J. & Friseu, L. (1977). Contrast sensitivity in macular report. A preliminary report. Acta Ophthalmologica (Copenh) 55, 507–514.Google Scholar
Tanaka, J.W. & Presnell, L.M. (1999). Color diagnosticity in object recognition. Perception & Psychophysics 61, 1140–1153.CrossRefGoogle ScholarPubMed
Tejeria, L., Harper, R.A., Artes, P.H. & Dickinson, C.M. (2002). Face recognition in age related macular degeneration: Perceived disability, measured disability, and performance with a bioptic device. British Journal of Ophthalmology 86, 1019–1026.Google Scholar
Thorpe, S.J., Gegenfurtner, K.R., Fabre-Thorpe, M. & Bulthoff, H.H. (2001). Detection of animals in natural images using far peripheral vision. European Journal of Neuroscience 14, 869–876.Google Scholar
Tsao, D.Y. & Livingstone, M.S. (2008). Mechanisms of face perception. Annu Rev Neurosc 31, 411–37.Google Scholar
Wurm, L.H., Legge, G.E., Isenberg, L.M. & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance 19, 899–911.Google ScholarPubMed