Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-06T14:27:56.913Z Has data issue: false hasContentIssue false

Small field motion detection in goldfish is red-green color blind and mediated by the M-cone type

Published online by Cambridge University Press:  06 September 2007

MARTIN GEHRES
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany
CHRISTA NEUMEYER
Affiliation:
Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-Universität, Mainz, Germany

Abstract

Large field motion detection in goldfish, measured in the optomotor response, is based on the L-cone type, and is therefore color-blind (Schaerer & Neumeyer, 1996). In experiments using a two-choice training procedure, we investigated now whether the same holds for the detection of a small moving object (size: 8 mm diameter; velocity: 7 cm/s). In initial experiments, we found that goldfish did not discriminate between a moving and a stationary stimulus, obviously not taking attention to the cue “moving.” Therefore, random dot patterns were used in which the stimulus was visible only when moving. Using black and white random dot patterns with variable contrast between 0.2 and 1, we found that the fish could see motion only with high (0.8) contrast. In the decisive experiment, a red-green random dot pattern was used. By keeping the intensity of the red dots constant and reducing the intensity of the green dots, a narrow intensity range was found in which goldfish could no longer discriminate between the moving random dot stimulus in random dot surround and the stationary random dot pattern. The same was the case when a red moving disk was presented in green surround. This is the evidence that object motion is red-green color blind, i.e., color information cannot be used to detect the moving object. Calculations of the cone excitation values revealed that the M-cone type is decisive, as this cone type (and not the L-cone type) is not modulated by that particular red-green pattern in which the moving stimulus was invisible.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Behrend, K., Benkner, B. & Mora-Ferrer, C. (2007). Temporal resolution and temporal transfer properties: Gabaergic and cholingeric effects investigated in behavioural and electrophysiological experiments. Visual Neuroscience 24 (in press).Google Scholar
Bilotta, J. & Abramov, I. (1989a). Orientation and direction tuning of goldfish ganglion cells. Visual Neuroscience 2, 213.Google Scholar
Bilotta, J. & Abramov, I. (1989b). Spatiospectral properties of goldfish retinal ganglion cells. Journal of Neurophysiology 62, 11401148.Google Scholar
Cronly-Dillon, J. & Sharma, S.C. (1968). Effect of season and sex on the photopic spectral sensitivity of the three-spined stickleback. Journal of Experimental Biology 49, 679687.Google Scholar
Cronly-Dillon, J.R. & Muntz, W.R.A. (1965). The spectral sensitivity of the goldfish and the clawed toad tadpole under photopic conditions. Journal of Experimental Biology 42, 481493.Google Scholar
Gegenfurtner, K.R. & Hawken, M.J. (1995). Temporal and chromatic properties of motion mechanisms. Vision Research 35, 15471563.Google Scholar
Hassenstein, B. & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Zeitschrift für Naturforschung 11b, 513524.Google Scholar
Kaiser, W. & Liske, E. (1972). Die optomotorische Reaktion von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. Journal of Comparative Physiology 89, 391408.Google Scholar
Klar, M. & Hoffmann, K.-P. (2002). Visual direction-selective neurons in the pretectum of the rainbow trout. Brain Research Bulletin 57, 431433.Google Scholar
Krauss, A. & Neumeyer, C. (2003). Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vision Research 43, 12731282.Google Scholar
Maximov, V., Maximova, E. & Maximov, P. (2005). Direction selectivity in the goldfish tectum revisited. Annals of the New York Academy of Sciences 1048, 198205.Google Scholar
Maximova, E., Vabishchevich, A., Denisenko, A., Maximov, P.V., Orlov, O. & Maximov, V.V. (2003). Directionally selective units in the goldfish retina: A colour-blind mechnism driven by two spectral classes of cones. In The Neurosciences from Basic research to therapy. Proceedings of the 29th Göttingen Neurobiology Conference, ed. Elsner, N. & Zimmermann, H., pp. 586587. Stuttgart: Thieme.
Mora-Ferrer, C. & Gangluff, V. (2000). D2-dopamine receptor blockade impairs motion detection in goldfish. Visual Neuroscience 17, 177186.Google Scholar
Mora-Ferrer, C. & Gangluff, V. (2002). D2-dopamine receptor blockade modulates temporal resolution in goldfish. Visual Neuroscience 19, 807815.Google Scholar
Mora-Ferrer, C. & Neumeyer, C. (1996). Reduction of red-green discrimination by dopamine D1 receptor antagonists and retinal dopamine depletion. Vision Research 36, 40354044.Google Scholar
Mora-Ferrer, C., Hausselt, S., Schmidt Hoffmann, R., Ebisch, B., Schick, S., Wollenberg, K., Schneider, C., Teege, P. & Jürgens, K. (2005). Pharmacological properties of motion vision in goldfish measured with the optomotor response. Brain Research 1058, 1729.Google Scholar
Mora-Ferrer, C., Schmidt-Hoffmann, R.B. & Weirich, B. (2006). Glycinergic mechanisms for chromatic and achromatic retinal coding investigated in behavioral experiments. Investigative Ophthalmology & Visual Science 47, E-Abstract 5383.Google Scholar
Neumeyer, C. (1984). On spectral sensitivity in the goldfish: Evidence for neural interactions between different “cone mechanisms.” Vision Research 24, 11231131.Google Scholar
Neumeyer, C. (1998). Color vision in lower vertebrates. In Color Vision, ed. Backhaus, W.G.K., Kliegl, R. & Werner, J.S., pp. 149162. Berlin: Walter de Gruyter.
Neumeyer, C. (2003). Wavelength dependence of visual acuity in goldfish. Journal of Comparative Physiology A 189, 811821.Google Scholar
Neumeyer, C. & Arnold, K. (1989). Tetrachromatic color vision in the goldfish becomes trichromatic under white adaptation light of moderate intensity. Vision Research 29, 17191727.Google Scholar
Neumeyer, C., Wietsma, J.J. & Spekreijse, H. (1991). Separate processing of “color” and “brightness” in goldfish. Vision Research 31, 537549.Google Scholar
Palacios, A.G., Varela F.J., Srivastava R. & Goldsmith, T.H. (1998). Spectral sensitivity of cones in goldfish, Carassius auratus. Vision Research 38, 21352146.Google Scholar
Patterson II, W.F., McDowell, A.L., Highes, A. & Bilotta, J. (2002). Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry. Journal of Comparative Physiology A 188, 283293.Google Scholar
Przyrembel, C., Keller, B. & Neumeyer, C. (1995). Trichromatic color vision in the salamander (Salamandra salamandra). Journal of Comparative Physiology A 176, 575586.Google Scholar
Schaerer, S. (1993). Die Wellenlängenabhängigkeit des Bewegungssehens bei Goldfischen (Carassius auratus) und Schildkröten (Pseudemys scripta elegans) gemessen mit der optomotorischen Reaktion. Thesis, Mainz.
Schaerer, S. & Neumeyer, C. (1996). Motion detection in goldfish investigated with the optomotor response is “color blind.” Vision Research 36, 40254034.Google Scholar
Schlieper, C. (1927). Farbensinn der Tiere und optomotorische Reaktion. Zeitschrift für vergleichende Physiologie 6, 453472.Google Scholar
Spekreijse, H., Wietsma, J.J. & Neumeyer, C. (1991). Induced color blindness in goldfish: A behavioral and electrophysiological study. Vision Research 31, 551562.Google Scholar
Srinivasan, M.V. (1985). Should'nt directional movement detection necessarily be “colour-blind”? Vision Research 25, 9971000.Google Scholar
Vitten, C. (2004). Bestimmung der spektralen Empfindlichkeit eines Bewegungsdetektors auf der Basis der Zapfenerregungen beim Menschen. Dissertation, Mainz.
Wietsma, J.J. & Spekreijse, H. (1991). Bicuculline produces reversible red-green color blindness in goldfish, as revealed by monocular behavioral testing. Vision Research 31, 21012107.Google Scholar
Zeki, S. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. The Journal of Physiology 277, 273290.Google Scholar