Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T05:07:14.827Z Has data issue: false hasContentIssue false

Numerical relationship between neurons in the lateral geniculate nucleus and primary visual cortex in macaque monkeys

Published online by Cambridge University Press:  02 June 2009

Ivan Suner
Affiliation:
Section of Neurobiology, Yale University School of Medicine, New Haven
Pasko Rakic
Affiliation:
Section of Neurobiology, Yale University School of Medicine, New Haven

Abstract

We examined the numerical correlation between total populations of neurons in the lateral geniculate nucleus (LGN) and the primary visual cortex (area 17 of Brodmann) in ten cerebral hemispheres of five normal rhesus monkeys using an unbiased three-dimensional counting method. There were 1.4 ± 0.2 million and 341 ±54 million neurons in the LGN and area 17, respectively. In each animal, a larger LGN on one side was in register with a larger area 17 of the cortex on the same side. Furthermore, asymmetry in the number of neurons in both the LGN and area 17 favored the right side. However, because of small variations across subjects, correlation between the total neuron number in LGN and area 17 was weak (r = 0.29). These results suggest that the final numbers of neurons in these visual centers may be established independently or by multiple factors controlling elimination of initially overproduced neurons.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, M. (1946). Estimation of nuclear populations from microtome sections. Anatomical Record 94, 239247.CrossRefGoogle ScholarPubMed
Ahmad, A. & Spear, P.O. (1993). Effects of aging on the size, density, and number of Rhesus Monkey lateral geniculate neurons. Journal of Comparative Neurology 334, 631643.CrossRefGoogle ScholarPubMed
Algan, O. & Rakic, P. (1996). Radiation-induced lamina specific deletion of neurons in the primate visual cortex. Journal of Comparative Neurology (submitted).Google Scholar
Bourgeois, J.-P. & Rakic, P. (1995). Synaptoarchitecture of the occipital cortex in macaque monkey devoid of retinal input from early embryonic stages. European Journal of Neuroscience (submitted).Google Scholar
Broca, P. (1861). Remarques sur le siège de la faculté du language articulé, suives d'une observation d'aphemie. Bulletin de la Socielé Anatomie du Paris 6, 398407.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshir-ninde. Leipzig: Brath.Google Scholar
Burington, R.S. (1948). Handbook of Mathematical Tables and Formulas, 3rd ed.Sandusky, Ohio: Handbook Publishers Inc.Google Scholar
Creutzfeldt, O.D. (1977). Generality of the functional structure of the neocortex. Naturwissenschaften 64, 507517.CrossRefGoogle ScholarPubMed
Eidelberg, D. & Galaburda, A.M. (1982). Symmetry and asymmetry in the human posterior thalamus: I. Cytoarchitectonic analysis in normal persons. Archives of Neurology 39, 325332.CrossRefGoogle ScholarPubMed
Galaburda, A.M., Rosen, G.D. & Sherman, G.F. (1991). Cerebro-cortical asymmetry. In Cerebral Cortex, Volume 9: Normal and Altered States of Function, ed. Peters, A. & Jones, E.G., pp. 263277. New York: Plenum.CrossRefGoogle Scholar
Click, S.D. (1985). Cerebral Lateralization in Nonhuman Species. New York: Academic Press.Google Scholar
Kennedy, H. & Dehay, C. (1993). Cortical specification of mice and men. Cerebral Cortex 3, 171186.CrossRefGoogle ScholarPubMed
Kostovic, I. & Rakic, P. (1990). Developmental history of the iran-sient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. Journal of Comparative Neurology 297, 441470.CrossRefGoogle ScholarPubMed
La Vail, M.M., Rapaport, D.H. & Rakic, P. (1991). Cytogenesis in the monkey retina. Journal of Comparative Neurology 309, 86114.CrossRefGoogle ScholarPubMed
Ling, E.A., Paterson, J.A., Privat, A., Mori, S. & Lebland, C.P. (1973). Investigation of glial cells in semithin sections. I Identification of glial cells in brains of young rats. Journal of Comparative Neurology 149, 4372.CrossRefGoogle ScholarPubMed
Lund, J. (1988). Anatomical organization of macaque monkey visual cortex. Annual Review of Neuroscience 11, 253288.CrossRefGoogle Scholar
Norden, J.J. & Kaas, J.H. (1978). The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. Journal of Comparative Neurology 182, 707725.CrossRefGoogle ScholarPubMed
Pasik, P., Pasik, T., Hamori, J. & Holstein, G.R. (1986). GABA immu-noreactivity in monkey lateral geniculate nucleus in the macaque monkey. Society for Neuroscience Abstracts 11, 317.Google Scholar
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 11011123.CrossRefGoogle Scholar
Peters, A., Payne, B.R. & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex 4, 215229.CrossRefGoogle ScholarPubMed
Polyak, S. (1957). The Vertebrate Visual System. Chicago, Illinois: University of Chicago Press.Google Scholar
Purves, D.R (1988). Body and Brain. A Trophic Theory of Neural Connections. Cambridge, Massachusetts: Harvard University Press.Google Scholar
Rajkowska, G. & Goldman-Rakic, P.S. (1995). Cytoarchitectonic definition of prefrontal areas in normal human cortex: I. Remapping areas 9 and 45 using quantitative criteria. Cerebral Cortex 5, 307322.CrossRefGoogle ScholarPubMed
Rakic, P. (1974). Neurons in the rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science 183, 425427.CrossRefGoogle ScholarPubMed
Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467471.CrossRefGoogle ScholarPubMed
Rakic, P. (1977 a). Prenatal development of the visual system in rhesus monkey. Philosophical Transactions of the Royal Society (London) 278, 245260.Google ScholarPubMed
Rakic, P. (1977 b). Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: Site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. Journal of Comparative Neurology 176, 2352.CrossRefGoogle ScholarPubMed
Rakic, P. (1988 a). Specification of cerebral cortical areas. Science 241, 170176.CrossRefGoogle ScholarPubMed
Rakic, P. (1988 b). Intrinsic and extrinsic determinants of neocortical parcellation: A radial unit model. In Neurobiology of Neocortex, ed. Rakic, P. & Singer, W., pp. 527. New York: Wiley.Google Scholar
Rakic, P. (1995). A small step for the cell, a giant step for mankind: Radial unit hypothesis of neocortical expansion during evolution. Trends in Neurosdence 18, 383388.CrossRefGoogle ScholarPubMed
Rakic, P. & Lidow, M.S. (1995). Distribution and density of neuro-transmitter receptors in the absence of retinal input from early embryonic stages. Journal of Neurosdence 15, 25612574.Google Scholar
Rakic, P. & Suner, I. (1996). Effects of prenatal reduction of genic-ulocortical input on the size of the primary visual cortex in adult macaque monkey. Journal of Comparative Neurology (submitted).Google Scholar
Rakic, P., Su˜er, I.J. & Williams, R.W. (1991). A novel cytoarchi-lectonic area induced experimentally within the primate visual cortex. Proceedings of the National Academy of Science of the U.S.A. 88, 20832087.CrossRefGoogle ScholarPubMed
Shatz, C.J., Chun, J.J.M. & Luskin, M.B. (1988). The role of the sub-plate in the development of the mammalian telencephalon. In Cerebral Cortex, ed. Peters, & Jones, pp. 3538. New York: Plenum.CrossRefGoogle Scholar
Shkol'nik-Yarros, E.G. (1971). Neurons and Interneuronal Connections of the Central Visual System. New York: Plenum Press.CrossRefGoogle Scholar
Spear, D., Kim, C.B.Y., Ahmad, A. & Tom, B.W. (1995). Relationship between numbers of retinal ganglion cells and lateral geniculate nucleus in the rhesus monkey. Visual Neurosdence 13, 199203.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H.R. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variabilities. Vision Research 24, 429448.CrossRefGoogle Scholar
Williams, R.W. & Herrup, K. (1988). The control of neuron number. Annual Review of Neurosdence 11, 423453.CrossRefGoogle ScholarPubMed
Williams, R.W. & Rakic, P. (1988 a). Elimination of neurons from the rhesus monkey's lateral geniculate nucleus during development. Journal of Comparative Neurology 272, 424436.CrossRefGoogle ScholarPubMed
Williams, R.W. & Rakic, P. (1988 b). Three-dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material. Journal of Comparative Neurology 278, 344352.CrossRefGoogle ScholarPubMed
Williams, R.W., Ryder, K. & Rakic, P. (1987). Emergence of cyto-architectonic differences between areas 17 and 18 in the developing rhesus monkey. Society for Neurosdence Abstracts 13, 1044.Google Scholar