Hostname: page-component-6d856f89d9-4thr5 Total loading time: 0 Render date: 2024-07-16T08:59:08.478Z Has data issue: false hasContentIssue false

Herbicide Rate, Glyphosate/Glufosinate Sequence and Corn/Soybean Rotation Effects on Weed Seed Banks

Published online by Cambridge University Press:  20 January 2017

Marie-Josée Simard*
Affiliation:
Agriculture and Agri-Food Canada (AAFC), Soils and Crops Research and Development Centre, Québec, QC, Canada G1V 2J3
Sébastien Rouane
Affiliation:
Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
Gilles D. Leroux
Affiliation:
Département de phytologie, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, QC, Canada G1V 0A6
*
Corresponding author's E-mail: marie-josee.simard@agr.gc.ca

Abstract

The effect of herbicide rates on weed control and crop yield is the subject of countless and ongoing research projects. Weed seed banks receive very little attention in comparison. The seed bank resulting from 3 yr (2006 to 2008) of single herbicide rates in a cropping system where glyphosate/glufosinate and corn/soybean were rotated or not was evaluated in a field located in St-Augustin-de-Desmaures, Québec, Canada. Field plots under conventional tillage were seeded in corn every year, or corn and soybean (1 yr). These plots received the same herbicide every year or various glyphosate/glufosinate 3-yr sequences. Subplots were sprayed with a single POST application of the recommended rate of glyphosate (900 g ae ha−1) or glufosinate (500 g ai ha−1) or lower rates. Subplots received the same full (1.0×, recommended) or reduced (0.5×, 0.75×) rate every year. After crop harvest in 2008, soil cores were extracted and the weed seed bank was evaluated. Including soybean in the cropping system resulted in lower seed banks compared to those under continuous corn cropping. Including glufosinate in a glyphosate herbicide sequence increased weed seed banks due to the lower efficacy of the glufosinate rates tested at reducing the seed bank of annual grasses. Higher herbicide rates translated into lower seed banks, up to a certain rate. After 3 yr, the lowest seed bank (full glyphosate rates every year) still had 4,339 ± 836 seeds m−2 and was higher than the initial seed bank (2,826 ± 724 seeds m−2).

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ball, D. 1992. Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci. 40:654659.Google Scholar
Bàrberi, P. and Lo Cascio, B. 2001. Long-term tillage and crop rotation effects on weed seedbank size and composition. Weed Res. 41:325340.Google Scholar
Beckie, H. J., Harker, K. N., Hall, L. M., Warwick, S. I., Légère, A., Sikkema, P. H., Clayton, G. W., Thomas, A. G., Leeson, J. Y., Séguin-Swartz, G., and Simard, M-J. 2006. A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 86:12431264.Google Scholar
Beckie, H. J. and Reboud, X. 2009. Selecting for weed resistance: herbicide rotation and mixture. Weed Technol. 23:363370.Google Scholar
Blackshaw, R. E., O'Donovan, J. T., Harker, K. N., Clayton, G. W., and Stougaard, R. N. 2006. Reduced herbicide doses in field crops: a review. Weed Biol. Manag. 6:1017.Google Scholar
Buhler, D. D., Hartzler, R. G., and Forcella, F. 1997. Implications of weed seedbank dynamics to weed management. Weed Sci. 45:329336.Google Scholar
Bussan, A. J., Boerboom, C. M., and Stoltenberg, D. E. 2000. Response of Setaria faberi demographic processes to herbicide rates. Weed Sci. 48:445453.Google Scholar
Cardina, J., Herms, C. P., and Doohan, D. J. 2002. Crop rotation and tillage effects on weed seedbanks. Weed Sci. 50:448460.Google Scholar
Chism, W. J., Birch, J. B., and Bingham, S. W. 1992. Nonlinear regressions for analyzing growth stage and quinclorac interactions. Weed Technol. 6:898903.Google Scholar
Cloutier, D. C. 1998. Mise au point bibliographique sur l'utilisation des doses réduites d'herbicide dans le monde. Rapport présenté à l'Association cultures sans herbicides. Stratégie phytosanitaire du Québec, Direction régionale de la Montérégie Est (MAPAQ). Saint-Anne-de-Bellevue, Québec, Canada Institut de Malherbologie. 46 p.Google Scholar
Devlin, D. L., Long, J. H., and Maddux, L. D. 1991. Using reduced rates of post emergence herbicides in soybeans (Glycine max). Weed Technol. 5:834840.Google Scholar
Doyle, P. and Stypa, M. 2004. Reduced herbicide rates—a Canadian perspective. Weed Technol. 18:11571165.Google Scholar
Duke, S. O. 2005. Taking stock of herbicide-resistant crops 10 yr after introduction. Pest Manag. Sci. 61:211218.Google Scholar
Forcella, F., Eradat-Oskoui, K., and Wagner, S. W. 1993. Application of weed seedbank ecology to low input crop management. Ecol. Appl. 3:7483.Google Scholar
Gressel, J. and Segel, L. A. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technol. 4:186198.Google Scholar
Hamill, A. S., Knezevic, S. Z., Chandler, K., Sikkema, P. H., Tardif, F. J., Shrestha, A., and Swanton, C. J. 2000. Weed control in glufosinate-resistant corn (Zea mays). Weed Technol. 14:578585.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.Google Scholar
Leroux, G. D., Simard, M-J., Buhler, S., and Rouane, S. 2007. Détermination des doses minimales efficaces d'herbicides pour le désherbage dans la rotation maïs-soya. Rapport PPR06-380, Agriculture et Agroalimentaire Canada, Centre pour la lutte anti-parasitaire, Stratégies de réduction des risques liés aux pesticides. Ottawa, Ontario, Canada Agriculture et Agroalimentaire Canada. 72 p.Google Scholar
Mallory-Smith, C. A. and Retzinger, E. J. Jr. 2003. Revised classification of herbicides by site of action for weed resistance management strategies. Weed Technol. 17:605619.Google Scholar
Maxwell, B. D., Roush, M. L., and Radosevich, S. R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technol. 4:213.Google Scholar
Mulder, T. A. and Doll, J. D. 1993. Integrating reduced herbicide use with mechanical weeding in corn (Zea mays). Weed Technol. 7:382389.Google Scholar
Mulugeta, D. and Stoltenberg, D. E. 1997. Seed bank characterization and emergence of a weed community in a moldboard plow system. Weed Sci. 45:5460.Google Scholar
Nurse, R. E., Bosveld, K. E., and Weaver, S. E. 2008. Velvetleaf (Abutilon theophrasti) response to glyphosate on the field edge. Weed Sci. 56:646648.Google Scholar
Rahman, A., James, T. K., and Grbavac, N. 2006. Correlation between the soil seed bank and weed populations in maize fields. Weed Biol. Manag. 6:228234.Google Scholar
Roggenkamp, G. J., Mason, S. C., and Martin, A. R. 2000. Velvetleaf (Abutilon theophrasti) and green foxtail (Setaria viridis) response to corn (Zea mays) hybrid. Weed Technol. 14:304311.Google Scholar
Rouane, S. 2009. Doses minimales biologiquement efficaces pour le désherbage dans la rotation maïs-soya tolérants au glyphosate et au glufosinate. Mémoire de maîtrise. Département de Phytologie. Faculté des sciences de l'agriculture et de l'alimentation. Québec, Québec, Canada Université Laval. 147 p.Google Scholar
Schreiber, M. M. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci. 40:645653.Google Scholar
Sikkema, P. H., Nurse, R. E., Welacky, T., and Hamill, A. S. 2008. Reduced herbicide rates provide acceptable weed control regardless of corn planting strategy in Ontario field corn. Can. J. Plant Sci. 88:373378.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2004. Response of common lambsquarters (Chenopodium album) to glyphosate application timing and rate in glyphosate-resistant corn. Weed Technol. 18:908916.Google Scholar
Sikkema, P. H., Shropshire, C., Hamill, A. S., Weaver, S. E., and Cavers, P. B. 2005. Response of barnyardgrass (Echinochloa crus-galli) to glyphosate application timing and rate in glyphosate-resistant corn (Zea mays). Weed Technol. 19:830837.Google Scholar
Sikkema, P. H., Van Eerd, L. L., Vyn, R. J., and Weaver, S. 2007. A comparison of reduced rate and economic threshold approaches to weed management in a corn–soybean rotation. Weed Technol. 21:647655.Google Scholar
Simard, M-J., Panneton, B., Longchamps, L., Lemieux, C., Légère, A., and Leroux, G. D. 2009. Validation of a management program based on a weed cover threshold model: effect on herbicide use and weed populations. Weed Sci. 57:187193.Google Scholar
Sosnoskie, L. M., Herms, C. P., and Cardina, J. 2006. Weed seedbank community composition in a 35-yr-old tillage and rotation experiment. Weed Sci. 54:263273.Google Scholar
Steckel, G. J., Wax, L. M., Simmons, F. W., and Phillips, W. H. II. 1997. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol. 11:484488.Google Scholar
Ter Heerdt, G. N. J., Verweij, G. L., Bekker, R. M., and Bakker, J. P. 1996. An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct. Ecol. 10:144151.Google Scholar
Tharp, B. E., Schabenberger, O., and Kells, J. J. 1999. Response of annual weed species to glufosinate and glyphosate. Weed Technol. 13:542547.Google Scholar
Walker, S. R., Robinson, G. R., and Medd, R. W. 2001. Management of Avena ludoviciana and Phalaris paradoxa with barley and less herbicide in subtropical Australia. Aust. J. Exp. Agric. 41:11791185.Google Scholar
Zhang, J., Weaver, S. E., and Hamill, A. S. 2000. Risks and reliability of using herbicides at below-labeled rates. Weed Technol. 14:106115.Google Scholar