Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T22:18:56.990Z Has data issue: false hasContentIssue false

Method for predicting selective uprooting by mechanical weeders from plant anchorage forces

Published online by Cambridge University Press:  20 January 2017

Martin J. Kropff
Affiliation:
Wageningen University, Crop and Weed Ecology Group, Haarweg 333, 6709 RZ Wageningen, The Netherlands
Udo D. Perdok
Affiliation:
Wageningen University, Soil Technology Group, P.O. Box 43, 6700 AA Wageningen, The Netherlands

Abstract

Reliable mechanical weed control requires knowledge of the achievable levels of weed control and crop damage when using certain implements in specific conditions. Quantitative methods that use weed, crop, soil, and cultivator characteristics to predict weed control and crop damage need to be developed. To that end, the relative susceptibility of weeds and crop plants to mechanical weeding and the selective ability of cultivators need to be quantified separately. The method presented in this study uses measured plant anchorage forces to quantify crop and weed sensitivity to being uprooted by a weed harrow and predicts the relationship between weed and crop uprooting by mechanical weeding. Uprooting and anchorage force of young perennial ryegrass and garden cress plants were measured in laboratory harrowing experiments on sandy soil. A nonlinear equation was introduced to describe the relationship between weed uprooting and crop uprooting. The parameters representing the selective potential of the actual crop–weed condition (Kpot) and the implement selective ability (Kcult) did not depend on crop uprooting. The relationship between potential weed and crop uprooting that could theoretically be obtained by a perfectly selective implement (i.e., pulling each plant with equal force) was calculated from plant anchorage force distributions measured before harrowing. The observed uprooting percentages achieved by harrowing were lower than the potential uprooting percentages. With Kcult accounting for imperfect weeder selective ability, prediction accuracy was satisfactory. Field validation is required to confirm whether this method improves comparison and prediction of weeding performance of different weeding implements in different crop–weed situations.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ascard, J. and Bellinder, R. R. B. 1996. Mechanical in-row cultivation in row crops. Pages 11211126 in Proceedings of the 2nd International Weed Control Congress. Flakkebjerg, Denmark: Department of Weed Control and Pesticide Ecology.Google Scholar
Baumann, D. T. 1992. Mechanical weed control with spring tine harrows (weed harrows) in row crops. Pages 123128 in Proceedings IXe Colloque International sur la Biologie des Mauvaises Herbes. Paris, France: Association Nationale pour la Protection des Plantes.Google Scholar
Bleeker, P. O., van der Weide, R. Y., and Kurstjens, D. A. G. 2000. Mechanische onkruidbestrijding in de rij heeft toekomst. PAV Bulletin Vollegrondsgroenteteelt 4:2931.Google Scholar
Böhrnsen, A. and Bräutigam, V. 1990. Mechanische Unkrautbekämpfung mit Striegel und Netzegge in Winterweizen. Z. Pflanzenkr. Pflanzenschutz Sonderheft 12:463472.Google Scholar
Buhler, D. D., Doll, J. D., Troost, R. T., and Visocky, M. R. 1995. Integrating mechanical weeding with reduced herbicide use in conservation tillage corn production systems. Agron. J 87:507512.CrossRefGoogle Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J 84:973978.CrossRefGoogle Scholar
Cavers, P. B. and Kane, M. 1990. Responses of proso millet (Panicum miliaceum) seedlings to mechanical damage and/or drought treatments. Weed Technol 4:425432.CrossRefGoogle Scholar
Cochran, W. G. and Cox, G. M. 1957. Experimental Designs. 2nd ed. New York: J. Wiley. Pp. 342352.Google Scholar
De Buck, A. J., Schoorlemmer, H. B., Wossink, G. A. A., and Janssens, S. R. M. 1999. Risks of post-emergence weed control strategies in sugar beet: development and application of a bio-economic model. Agric. Sys 59:283299.CrossRefGoogle Scholar
Easson, D. L., Pickles, S. J., and White, E. M. 1995. A study of the tensile force required to pull wheat roots from soil. Ann. Appl. Biol 127:363373.CrossRefGoogle Scholar
Ennos, A. R. 1989. The mechanics of anchorage in seedlings of sunflower (Helianthus annuus L). New Phytol 113:185192.CrossRefGoogle Scholar
Ennos, A. R. 1990. The anchorage of leek seedlings: the effect of root length and soil strength. Ann. Bot 65:409416.CrossRefGoogle Scholar
Fernholz, C. 1990. How I control weeds without herbicides. The New Farm 12:1720.Google Scholar
Fogelberg, F. and Dock Gustavsson, A. M. 1998. Resistance against uprooting in carrots (Daucus carota) and annual weeds—a basis for selective mechanical weed control. Weed Res 38:183190.CrossRefGoogle Scholar
Fogelberg, F. and Dock Gustavsson, A. M. 1999. Mechanical damage to annual weeds and carrots by in-row brush weeding. Weed Res 39:469479.CrossRefGoogle Scholar
Forcella, F. 2000. Rotary hoeing substitutes for two-thirds of soil-applied herbicide. Weed Technol 14:298303.CrossRefGoogle Scholar
Genstat 5 Committee. 1993. Genstat 5 Reference Manual. Version 3. Oxford, UK: Clarendon.Google Scholar
Genstat 5 Committee. 1997. Genstat 5 Reference Manual Supplement. Version 4.1. Oxford, UK: Numerical Algorithms Group.Google Scholar
Godwin, R. J. and Spoor, G. 1977. Soil failure with narrow tines. J. Agric. Eng. Res 22:213228.CrossRefGoogle Scholar
Gunsolus, J. L. 1990. Mechanical and cultural weed control in corn and soybeans. Am. J. Altern. Agric 5:114119.CrossRefGoogle Scholar
Habel, W. 1954. Über die Wirkungsweise der Eggen gegen Samenunkräuter sowie die Empfindlichkeit der Unkrautarten und ihrer Altersstadien gegen den Eggvorgang. . Landwirtschaftlichen Hochschule Hohenheim, Hohenheim, Germany. 57 p.Google Scholar
Hallefält, F., Ascard, J., and Olsson, R. 1998. Mechanical weed control by torsion weeders—a new method to reduce herbicide use in sugar beets. In: Protection and Production of Sugarbeet and Potatoes. Cambridge, UK: Churchill College. Asp. Appl. Biol 52:127130.Google Scholar
Jensen, R. K., Melander, B., and Callesen, N. H. 1999. Mekanisk ukrudtsbekæmpelse i lupiner. 16. Danske Planteværnskonference. Tjele, Denmark: DJF rapport 10, Pp. 97106.Google Scholar
Kees, H. 1962. Untersuchungen zur Unkrautbekämpfung durch Netzegge und Stoppelbearbeitungsmassnahmen unter besonderer Berücksichtigung des leichten Bodens. . Landwirtschaftlichen Hochschule Hohenheim, Hohenheim, Germany.Google Scholar
Kirkland, K. J. 1994. Frequency of post-emergence harrowing effects wild oat control and spring wheat yield. Can. J. Plant Sci 75:163165.CrossRefGoogle Scholar
Koch, W. 1964a. Unkrautbekämpfung durch Eggen, Hacken und Meisseln in Getreide I. Wirkungsweise und Einsatzzeitpunkt von Egge, Hacke und Bodenmeissel. Z. Acker- Pflanzenb 120:369382.Google Scholar
Koch, W. 1964b. Unkrautbekämpfung durch Eggen, Hacken und Meisseln in Getreide II. Das verhalten der einzelnen Unkrautarten gegenüber Egge, Hacke und Meissel. Z. Acker- Pflanzenb 121:8496.Google Scholar
Koolen, A. J. and Kuipers, H. 1983. Agricultural Soil Mechanics. Berlin, Germany: Springer Verlag. Pp. 184195.CrossRefGoogle Scholar
Kouwenhoven, J. K. 1997. Intra-row weed control: possibilities and problems. Soil Till. Res 41:87104.CrossRefGoogle Scholar
Kurstjens, D. A. G. and Perdok, U. D. 2000. The selective soil covering mechanism of weed harrows on sandy soil. Soil Till. Res 55:193206.CrossRefGoogle Scholar
Kurstjens, D. A. G., Perdok, U. D., and Goense, D. 2000. Selective uprooting by weed harrowing on sandy soils. Weed Res 40:431447.CrossRefGoogle Scholar
Kurstjens, D. A. G., Vermeulen, G. D., and Bleeker, P. O. 2002. Effect of plant dry mass on uprooting by intra-row weeders. Pages 246266 in Proceedings of 5th Workshop EWRS Physical and Cultural Weed Control. Pisa, Italy.Google Scholar
Lafond, G. P. and Kattler, K. H. 1992. The tolerance of spring wheat and barley to post-emergence harrowing. Can. J. Plant Sci 72:13311336.CrossRefGoogle Scholar
Leblanc, M. L. and Cloutier, D. C. 2001. Susceptibility of dry edible bean (Phaseolus vulgaris, cranberry bean) to the rotary hoe. Weed Technol 15:224228.CrossRefGoogle Scholar
Looman, B. H. M., Lutterveld, G. J., and Kouwenhoven, J. K. 1999. Intra-row mechanical weed control in nursery stock. Page 123 in Proceedings of the 11th EWRS Symposium. Basel, Switzerland: European Weed Research Society.Google Scholar
Lovely, W. G., Weber, C. R., and Staniforth, D. W. 1958. Effectiveness of the rotary hoe for weed control in soybeans. Agron. J 50:621625.CrossRefGoogle Scholar
Lütkemeyer, L. 2000. Hydropneumatische Unkrautbekämpfung in Reihenkulturen. Z. Pflanzenkr. Pflanzenschutz Sonderheft 17:661666.Google Scholar
Mattsson, B., Nylander, C., and Ascard, J. 1990. Comparison of seven inter-row weeders. Veröffentlichungen Bundesanstalt für Agrarbiologie Linz/Donau 20:91107.Google Scholar
Melander, B. 1997. Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J. Agric. Eng. Res 68:3950.CrossRefGoogle Scholar
Meyler, J. F. and Rühling, W. 1966. Mechanische Unkrautbekämpfung bei höheren Geschwindigkeiten. Landtech. Forsch 16:7985.Google Scholar
Mulder, T. A. and Doll, J. D. 1993. Integrating reduced herbicide use with mechanical weeding in corn (Zea mays). Weed Technol 7:382389.CrossRefGoogle Scholar
Neururer, H. 1977. Mechanische Unkrautbekämpfung mit modernen Hackeggen. Pages 6568 in Hanf, M. ed. Proceedings of the EWRS Symposium on the Different Methods of Weed Control and their Integration. Uppsala, Sweden: European Weed Research Society.Google Scholar
Ogden, J. 1970. Plant population structure and productivity. Proc. N. Z. Ecol. Soc 17:19.Google Scholar
Payne, P. C. J. 1956. The relationship between the mechanical properties of soil and the performance of simple cultivation implements. J. Agric. Eng. Res 1:2350.Google Scholar
Peters, E. J., Klingman, D. L., and Larson, R. E. 1959. Rotary hoeing in combination with herbicides and other cultivations for weed control in soybeans. Weeds 7:449458.CrossRefGoogle Scholar
Pullen, D. W. M. and Cowell, P. A. 1997. An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. J. Agric. Eng. Res 67:2734.CrossRefGoogle Scholar
Rajaram, G. and Erbach, D. C. 1996. Soil failure by shear versus modification by tillage: a review. J. Terramech 33:265272.CrossRefGoogle Scholar
Rajaram, G. and Gee-Clough, D. 1988. Force-distance behaviour of tine implements. J. Agric. Eng. Res 41:8198.CrossRefGoogle Scholar
Rajaram, G. and Oida, A. 1992. Deformation of sand caused by tine implements. J. Terramech 29:149159.CrossRefGoogle Scholar
Rasmussen, J. 1990. Selectivity—an important parameter on establishing the optimum harrowing technique for weed control in growing cereals. Pages 197204 in Proceedings of the 7th European Weed Research Symposium, Integrated Weed Management in Cereals. Helsinki, Finland: European Weed Research Society.Google Scholar
Rasmussen, J. 1991a. Optimising the intensity of harrowing for mechanical weed control in winter wheat. Pages 177184 in Proceeding of the Brighton Crop Protection Conference—Weeds. London: British Crop Protection Council.Google Scholar
Rasmussen, J. 1991b. A model for prediction of yield response in weed harrowing. Weed Res 31:401408.CrossRefGoogle Scholar
Rasmussen, J. 1992. Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res 32:267274.CrossRefGoogle Scholar
Rasmussen, J. 1993. Yield response models for mechanical weed control by harrowing at early crop growth stages in peas (Pisum sativum L). Weed Res 33:231240.CrossRefGoogle Scholar
Rasmussen, J. and Svenningsen, T. 1995. Selective weed harrowing in cereals. Biol. Agric. Hortic 12:2946.CrossRefGoogle Scholar
Real, B., Chabanel, Y., Lasserre, D., and Bonnefoy, M. 1993. Essais de désherbage mécaniques des céréales à paille. du maïs et du pois protéagineux. (Mechanical weed control of cereals. maize and peas.) Pages 235241 in Communications of the Fourth International Conference I.F.O.A.M. Theley, France: International Federation of Organic Agricultural Movements.Google Scholar
Rydberg, T. 1993. Weed harrowing—driving speed at different stages of development. Swed. J. Agric. Res 34:107113.Google Scholar
Rydberg, T. 1995. Weed Harrowing in Growing Cereals—Significance of Time of Treatment, Driving Speed, Harrowing Direction and Harrowing Depth. Ph.D. thesis. Uppsala, Sweden: Swedish University of Agricultural Sciences. 78p.Google Scholar
Schweizer, E. E., Westra, P., and Lybecker, D. W. 1992. Controlling weeds in corn (Zea mays) rows with an in-row cultivator versus decisions made by a computer model. Weed Sci 42:593600.CrossRefGoogle Scholar
Stafford, J. V. and Young, S. C. 1986. Sensing soil failure mode for dynamic implement control. American Society of Agricultural Engineers. Paper 86. P. 1045.Google Scholar
Terpstra, R. and Kouwenhoven, J. K. 1981. Inter-row and intra-row weed control with a hoe-ridger. J. Agric. Eng. Res 26:127134.CrossRefGoogle Scholar
Van de Zande, J. C. and Kouwenhoven, J. K. 1994. Snel rijden kan. Effect onkruideggen afhankelijk van instellingen. Landbouwmechanisatie 45:5153.Google Scholar
Vangessel, M. J., Schweizer, E. E., Wilson, R. G., Wiles, L. J., and Westra, P. 1998. Impact of timing and frequency of in-row cultivation for weed control in dry bean (Phaseolus vulgaris). Weed Technol 12:548553.CrossRefGoogle Scholar
Weber, H. 1997. Geräte- und Verfahrenstechnische Optimierung der mechanischen Unkrautregulierung in Beetkulturen. VDI-MEG Rapport 315. . Technische Universität München, Weihenstephan, Germany. 201 p.Google Scholar
Wossink, G. A. A., de Buck, A. J., van Niejenhuis, J. H., and Haverkamp, H. C. M. 1997. Farmer perceptions of weed control techniques in sugarbeet. Agric. Sys 55:409423.CrossRefGoogle Scholar