Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T05:00:05.088Z Has data issue: false hasContentIssue false

Effect of Herbicide Incorporation Methods on Shattercane (Sorghum bicolor) Control in Corn (Zea mays)

Published online by Cambridge University Press:  12 June 2017

Thomas A. Hayden
Affiliation:
Dep. Agron. Univ. Nebraska, Lincoln, NE 68583
Orvin C. Burnside
Affiliation:
Dep. Agron. Univ. Nebraska, Lincoln, NE 68583

Abstract

Field experiments were conducted at Lincoln, NE, in 1983 and 1984 to determine the effectiveness of subsurface jet injection of herbicides on a simulated shattercane [Sorghum bicolor (L.) Moench # SORVU] infestation in corn (Zea mays L.). Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] and EPTC (S-ethyl dipropyl carbamothioate) plus dichlormid (2,2-dichloro-N,N-di-2-propenylacetamide), incorporated with a disc or applied from the subsurface and surface with a jet injector attached to a sweep plow, generally produced higher corn yields and shattercane control than herbicides applied with the sweep to the subsurface only. EPTC plus dichlormid controlled shattercane better than alachlor. Cultivation improved shattercane control by at least 10% in conjunction with most jet injection and disc-incorporated alachlor treatments. Cultivation increased corn yields by about 10 to 20% when averaged over all herbicides and application patterns. A subsurface plus surface herbicide injection system supplemented with cultivation would be a possible method of incorporating herbicides in reduced tillage to selectively control shattercane in corn.

Type
Weed Control and Herbicide Technology
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Barrentine, W. L., Wooten, O. B., and Williford, J. R. 1979. Effect of incorporation methods and time of application on the performance of trifluralin plus metribuzin. Weed Sci. 27:6468.Google Scholar
2. Beste, C. E. (Chairman). 1983. Herbicide Handbook. 5th ed. Weed Sci. Soc. Am., Champaign, IL. 356 pp.Google Scholar
3. Burnside, O. C. 1965. Seed and phenological studies with shattercane. Nebraska Agric. Exp. Stn. Res. Bull. 220. Lincoln, NE. 37 pp.Google Scholar
4. Burnside, O. C. 1968. Control of wild cane in soybeans. Weed Sci. 16:1822.Google Scholar
5. Burnside, O. C. 1970. Control of wild cane in corn. Weed Sci. 18:272275.Google Scholar
6. Burnside, O. C. 1980. Shattercane control in narrow row soybeans. Agron. J. 72:753757.CrossRefGoogle Scholar
7. Burnside, O. C., Solie, J. B., and Wittmuss, H. D. 1982. Herbicide placement by subsurface injection. Proc. North Cent. Weed Control Conf. 37:136137.Google Scholar
8. Burnside, O. C., Wicks, G. A., and Fenster, C. R. 1977. Longevity of shattercane seed in soil across Nebraska. Weed Res. 17:139143.Google Scholar
9. Evans, S. D. and Warnes, D. D. 1984. Dual injection of EPTC+ and butylate+ with anhydrous ammonia. Proc. North Cent. Weed Control Conf. 41:390392.Google Scholar
10. Fenster, C. R., Hanway, D. G., and Burnside, O. C. 1962. Equipment for subsurface application of herbicides in fallow land. Weeds. 10:329330.Google Scholar
11. Hauser, E. W., Samples, L. E., and Parham, S. A. 1969. Incorporated versus subsurface vernolate for weed control in peanuts. Weed Res. 9:173184.Google Scholar
12. Helling, C. S. 1971. Pesticide mobility in soils. II. Application of thin layer chromatography. Soil Sci. Soc. Am. Proc. 35:737743.Google Scholar
13. Khalifa, M. A., Wittmuss, H. D., and Burnside, O. C. 1983. Subsurface placement methods for metribuzin and trifluralin. Weed Sci. 31:840844.Google Scholar
14. Knake, E. L., Appleby, A. P., and Furtick, W. R. 1967. Soil incorporation and site of uptake of preemergence herbicides. Weeds. 15:228232.Google Scholar
15. Knake, E. L. and Wax, L. M. 1968. The importance of the shoot of giant foxtail. Weed Sci. 16:393395.Google Scholar
16. Morrison, J. E., Merkle, M. G., Gerik, T. J., and Weaver, D. N. 1980. Sweep incorporation of herbicides under crop residues for conservation tillage. Pages 143152 in Crop Production with Conservation in the 80's. ASAE Pub. No. 7-81. ASAE, St. Joseph, MI.Google Scholar
17. Nishimoto, R. K., Appleby, A. P., and Furtick, W. R. 1969. Plant response to herbicide placement in soil. Weed Sci. 17:475478.Google Scholar
18. Parker, C. 1966. The importance of shoot entry in the action of herbicides applied to the soil. Weeds 14:117121.Google Scholar
19. Prendeville, G. N., Eshel, Y., Schreiber, M. M., and Warren, G. F. 1967. Site of uptake of soil-applied herbicides. Weed Res. 7:316322.Google Scholar
20. Solie, J. B., Wittmuss, H. D., and Burnside, O. C. 1981. Subsurface injection of herbicide for weed control. ASAE Paper No. 81-1011. ASAE, St. Joseph, MI. 21 pp.Google Scholar
21. Solie, J. B. 1982. Development of a subsurface jet injector for herbicides. Diss. Abstr. Int. 43:3666-B.Google Scholar
22. Solie, J. B., Wittmuss, H. D., and Burnside, O. C. 1983. Improving weed control with a subsurface jet injector system for herbicides. Trans. ASAE 26:10221029.Google Scholar
23. Vesecky, J. F., Feltner, K. C., and Vanderlip, R. L. 1973. Wild cane and forage sorghum competition in grain sorghum. Weed Sci. 21:2830.Google Scholar
24. Wooten, O. B. and McWhorter, C. G. 1961. A device for the subsurface application of herbicides. Weeds 9:3641.Google Scholar
25. Wooten, O. B., Holstun, J. T. Jr., and Baker, R. S. 1966. Knife injection for the application of EPTC. Weeds 14:9293.Google Scholar