Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-09T11:37:48.796Z Has data issue: false hasContentIssue false

Genetic diversity of biennial wormwood

Published online by Cambridge University Press:  20 January 2017

Michael J. Christoffers
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105
George O. Kegode
Affiliation:
Department of Plant Sciences, North Dakota State University, Fargo, ND 58105

Abstract

Biennial wormwood is native to North America and has become an important weed problem in soybean and dry bean fields of North Dakota, South Dakota, and Minnesota in the United States and in the prairie provinces of Canada. Intersimple sequence repeat (ISSR) markers were used to study the genetic diversity among six biennial wormwood and one annual wormwood populations. Deoxyribonucleic acid (DNA) sequences from internal transcribed spacer (ITS1 and ITS2) regions of ribosomal DNA and morphological diversity among the biennial and annual wormwood populations were also studied. High levels of genetic diversity were evident with Nei's gene diversity statistic (h) = 0.40 for biennial wormwood and h = 0.36 for annual wormwood. Total diversity of six biennial wormwood populations was HT = 0.40, and 22% of this diversity was among populations (GST = 0.22). Estimated gene flow among biennial wormwood populations was low (Nm = 0.9), and high levels of differentiation may be due in part to low levels of genetic exchange among biennial wormwood populations. Although biennial wormwood behaves more like an annual than a biennial, the ISSR, ITS, and morphological studies show that the two species are dissimilar.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bassam, B. J., Gustavo, C. A., and Gresshoff, P. M. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem 196:8083.Google Scholar
Bayer, D. E., Soltis, D. E., and Soltis, P. S. 1996. Phylogenetic inferences in Antennaria (Asteraceae: Gnaphalieae: Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed spacers (ITS). Am. J. Bot 83:516527.Google Scholar
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., and Wheeler, D. L. 2000. GenBank. Nucleic Acids Res 28:1518.Google Scholar
Camacho, F. J. and Liston, A. 2001. Population structure and genetic diversity of Botrychium pumicola (Ophiglossaceae) based on inter-simple sequence repeats (ISSR). Am. J. Bot 88:10651070.Google Scholar
Felsenstein, J. 1995. PHYLIP (Phylogeny Inference Package). Version 3.57c. Seattle, WA: Department of Genetics, University of Washington.Google Scholar
Ferreira, J. F. S., Simon, J. E., and Janick, J. 1997. Artemisia annua: botany, horticulture, pharmacology. Hortic. Rev 19:319371.Google Scholar
Goodwin, I. D., Aitken, E. A. B., and Smith, L. W. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:15241528.Google Scholar
Gupta, M., Chyi, Y. S., Romero-Severson, J., and Owen, J. L. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet 89:9981006.Google Scholar
Hall, H. M. and Clements, F. E. 1923. The Phylogenetic Method in Taxonomy. The North American Species of Artemisia, Chrysothamnus, and Atriplex . Washington, DC: The Carnegie Institution of Washington. Publication No. 326. Pp. 101103.Google Scholar
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41:9598.Google Scholar
Hamrick, J. L. and Godt, M. J. W. 1989. Allozyme diversity in plants species. Pages 4363 in Brown, A.H.D., Clegg, M. T., Kahler, A. L., and Weir, B. S. eds. Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA: Sinauer.Google Scholar
Jehlik, V. 1984. Artemisia biennis in Czechoslovakia. Praha 56:319328.Google Scholar
Kornkven, A. B., Watson, L. E., and Estes, J. R. 1998. Phylogenetic analysis of Artemisia section Tridentatae (Asteraceae) based on sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Am. J. Bot 85:17871795.Google Scholar
Lande, R. and Shannon, S. 1996. The role of genetic variability in adaptation and population persistence in a changing environment. Evolution 50:434437.CrossRefGoogle Scholar
Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol 6:381398.Google Scholar
Mahoney, K. J. 2001. Biology of Biennial Wormwood (Artemisia biennis Willd.). . North Dakota State University, Fargo, ND. 63 p.Google Scholar
Mengistu, L. W. and Messersmith, C. G. 2002. Genetic diversity of kochia. Weed Sci 50:498503.Google Scholar
Merilä, J. and Crnokrak, P. 2001. Comparison of genetic differentiation at marker loci and quantitative traits. Mini review. J. Evol. Biol 14:892903.Google Scholar
Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70:33213323.Google Scholar
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583590.Google Scholar
Nelson, E. A. 2001. Interference of Biennial Wormwood (Artemisia biennis Willd.) with Soybean. . North Dakota State University, Fargo, ND. 53 p.Google Scholar
Oberprieler, C. and Vogt, R. 2000. The position of Castrilanthemum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. Plant Syst. Evol 225:145170.Google Scholar
Persson, K. 1974. Biosystematic studies in the Artemisia maritima complex in Europe. Opera Bot 35:1188.Google Scholar
Podlech, D. 1986. Artemisia . Pages 159223 in Rechinger, K. ed. Flora Iranica, Part 158. Graz, Austria: Academische Druck v. Verlagsanstalt.Google Scholar
Polyakov, P. P. 1995. Artemisia L. Pages 488723 in Shishkin, B. K. and Bobrov, E. G. eds. Flora of the U.S.S.R. Volume XXVI. Dehra Dun, India: Bishen Singh Mahendra Pal Singh.Google Scholar
Reed, D. H. and Frankham, R. 2001. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:10951103.Google Scholar
Rohlf, F. J. 1998. NTSYSpc. Numerical Taxonomy and Multivariate Analysis System. Version 2.0. New York: Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
Rydberg, P. A. 1916. Tribe 12. Anthemideae. N. Am. Flora 34:217288.Google Scholar
Schoen, D. J. and Brown, A. H. D. 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. Natl. Acad. Sci. USA 88:44944497.Google Scholar
Slatkin, M. 1987. Gene flow and geographic structure of natural populations. Science 236:787792.Google Scholar
Slatkin, M. and Barton, N. H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:13491368.Google Scholar
Stevens, O. A. 1932. The number and weight of seeds produced by weeds. Am. J. Bot 19:784794.Google Scholar
Stevens, O. A. 1963. Handbook of North Dakota Plants. 3rd ed. Fargo, ND: North Dakota Institute for Regional Studies. 290 p.Google Scholar
Stiener, J. J., Poklemba, C. J., Fjellstrom, R. G., and Elliott, L. F. 1995. A rapid one-tube genomic DNA extraction process for PCR and RAPD analysis. Nucleic Acids Res 23:25692570.Google Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:48764882.Google Scholar
Torrell, M., Garcia-Jacas, N., Susanna, A., and Valles, J. 1999. Phylogeny in Artemisia (Asteraceae, Anthemideae) inferred from nuclear ribosomal DNA (ITS) sequences. Taxon 48:721736.Google Scholar
Torrell, M., Valles, J., Garcia-Jacas, N., Mozaffarian, V., and Gabrielian, E. 2001. New or rare chromosome counts in the genus Artemisia L. (Asteraceae, Anthemideae) from Armenia and Iran. Bot. J. Linn. Soc 135:5160.Google Scholar
White, T. J., Bruns, Y., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal RNA genes for phylogenetics. Pages 315322 in Innis, M., Gelfand, D., Sninsky, J., and White, T. eds. PCR Protocols: A Guide to Methods and Applications. San Diego, CA: Academic.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97159.Google Scholar
Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., and Mao, J. X. 1997. POPGENE, the User-Friendly Shareware for Population Genetic Analysis. Edmonton, Canada: University of Alberta, Molecular Biology and Biotechnology Center.Google Scholar
Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176183.Google Scholar