Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-15T21:27:04.101Z Has data issue: false hasContentIssue false

Adjuvants, Formulations, and Spraying Systems for Improvement of Mycoherbicides

Published online by Cambridge University Press:  12 June 2017

C. Douglas Boyette
Affiliation:
USDA-ARS, South. Weed Sci. Lab., Stoneville, MS
P. C. Quimby Jr.
Affiliation:
Rangeland Weeds Lab., Bozeman, MT
A. J. Caesar
Affiliation:
Rangeland Weeds Lab., Bozeman, MT
J. L. Birdsall
Affiliation:
Rangeland Weeds Lab., Bozeman, MT
W. J. Connick Jr.
Affiliation:
USDA-ARS, South. Reg. Res. Cent.
D. J. Daigle
Affiliation:
New Orleans, LA
M. A. Jackson
Affiliation:
USDA-ARS, North. Cent. Agric. Utiliz., Peoria, IL
G. H. Egley
Affiliation:
USDA-ARS, South. Weed Sci. Lab., Stoneville, MS
H. K. Abbas
Affiliation:
USDA-ARS, South. Weed Sci. Lab., Stoneville, MS

Abstract

Herbicides are used in the production of almost 100% of agronomic crops in the United States and in most horticultural row crops. By volume, herbicides represent nearly two-thirds of all pesticides used in crop production. However, public pressure is mounting to force industry to develop safer, more environmentally responsible approaches for controlling weeds. Biological weed control with plant pathogenic fungi used as mycoherbicides offers such an approach. But there are several biological and environmental limitations which are inherent to nearly all mycoherbicides which must be overcome before they will be widely acceptable for practical use. Recent advances in adjuvant formulation and delivery systems have been used to overcome some of these limitations, such as lengthy dew requirements, inconsistent efficacy, and limited host ranges. Examples of current research to overcome these limitations will be presented in this review.

Type
Symposium
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Amsellen, Z., Sharon, A., and Gressel, J. 1991. Abolition of selectivity of two mycoherbicidal organisms and enhanced virulence of avirulent fungi by an invert emulsion. Phytopathology 81:925929.Google Scholar
2. Andersen, R. N. and Walker, H. L. 1985. Colletotrichum coccodes: A pathogen of eastern black nightshade (Solanum ptycanthum). Weed Sci. 33:902905.CrossRefGoogle Scholar
3. Auld, B. A. 1993. Vegetable oil suspension emulsions reduce dew dependence of a mycoherbicide. Crop. Prot. 12:477479.CrossRefGoogle Scholar
4. Bassi, A. and Quimby, P. C. Jr. 1985. Infection of cocklebur by Alternaria helianthi . Proc. South. Weed Sci. Soc. 38:373.Google Scholar
5. Bowers, R. C. 1986. Commercialization of Collego®R—an industrialists view. Weed Sci. 34(Suppl. 1): 2429.Google Scholar
6. Boyette, C. D. 1986. Evaluation of Alternaria crassa for biological control of Datura stramonium: host range and virulence. Plant Sci. Lett. 45:223228.Google Scholar
7. Boyette, C. D. 1994. Unrefined corn oil improves the mycoherbicidal activity of Colletotrichum truncatum for hemp sesbania (Sesbania exaltata) control. Weed Technol. 8:526529.Google Scholar
8. Boyette, C. D. and Abbas, H. K. 1994. Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci. 42:487491.Google Scholar
9. Boyette, C. D. and Quimby, P. C. Jr. 1988. Interaction of Fusarium lateritium and 2,4 DB for control of velvetleaf (Abutilon theophrasti). Weed Sci. Soc. Am. Abstr. 28:232.Google Scholar
10. Boyette, C. D., Templeton, G. E., and Smith, R. J. Jr. 1979. Control of winged waterprimrose (Jussiaea decurrens) and northern jointvetch (Aeschynomene virginica) with fungal pathogens. Weed Sci. 27:497501.CrossRefGoogle Scholar
11. Boyette, C. D., Templeton, G. E., and Oliver, L. R. 1985. Texas gourd (Cucurbita texana) control with Fusarium solani f.sp. cucurbitae . Weed Sci. 32:649654.Google Scholar
12. Boyette, C. D., Abbas, H. K., and Connick, W. J. Jr. 1993. Evaluation of Fusarium oxysporum as a potential bioherbicide for sicklepod (Cassia obtusifolia), coffee senna (C. occidentalis), and hemp sesbania (Sesbania exaltata). Weed Sci. 41:678681.Google Scholar
13. Boyette, C. D., Quimby, P. C. Jr., Bryson, C. T., Egley, G. H., and Fulgham, F. E. 1993. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichum truncation formulated in an invert emulsion. Weed Sci. 41:497500.CrossRefGoogle Scholar
14. Boyette, C. D., Abbas, H. K., and Smith, R. J. Jr. 1991. Invert emulsions alter host-specificity of biocontrol fungi. Phytopathology 71:126.Google Scholar
15. Boyette, C. D., Smith, R. J. Jr., Abbas, H. K., and McAlpine, J. R. 1992. Bioherbicidal control of hemp sesbania (Sesbania exaltata) and northern jointvetch (Aeschynomene virginica) with anthracnose pathogen-invert formulations. Proc. South. Weed Sci. Soc. 45:293.Google Scholar
16. Brumley, J. M. and TeBeest, D. O. 1979. Environmental factors affecting germination, infection, and development of anthracnose on winged waterprimrose. Phytopathology 69:525530.Google Scholar
17. Callaway, M. B., Phatak, S. C., and Wells, H. D. 1985. Effect of rust and rust herbicide combinations on yellow nutsedge. Proc. South. Weed Sci. Soc. 38:31.Google Scholar
18. Callaway, M. B., Phatak, S. C., and Wells, H. D. 1987. Interactions of Puccinia canaliculata (Schw.) Lagerh. with herbicides on tuber production and growth of Cyperus esculentus (L.) Trop. Pest Manage. 33:2226.Google Scholar
19. Cardina, J., Littrell, R. H., and Hanlin, R. 1988. Anthracnose of Florida beggarweed (Desmodium tortuosum) caused by Colletotrichum truncatum . Weed Sci. 36:329334.Google Scholar
20. Charudattan, R. 1986. Integrated control of waterhyacinth (Eichhornia crassipes) with a pathogen, insects, and herbicides. Weed Sci. 34(Suppl. 1): 2630.Google Scholar
21. Connick, W. J. Jr., Boyette, C. D., and McAlpine, J. R. 1991. Formulation of mycoherbicides using a pasta-like process. Biol. Control 1:281287.Google Scholar
22. Connick, W. J. Jr., Nickle, W. R., and Boyette, C. D. 1993. Wheat Hour granules containing mycoherbicides and entomogenous nematodes. p. 238240 in Lumsden, R. D. and Vaughn, J. L., eds. Pest Management: Biologically Based Technologies. Am. Chem. Soc., Washington, D.C. Google Scholar
23. Connick, W. J. Jr. 1982. Controlled release of the herbicides 2,4-D and dichlobenil from alginate gels. J. Appl. Polymer. Sci. 27:33413348.Google Scholar
24. Conway, K. E. 1976. Evaluation of Cercospora rodmanii as a biological control of waterhyacinth. Phytopathology 66:914917.Google Scholar
25. Daigle, D. J., Connick, W. J. Jr., Quimby, P. C. Jr., Evans, J. P., Trask-Merrell, B., and Fulgham, F. E. 1989. Invert emulsions: Delivery system and water source for the mycoherbicide, Alternaria cassiae . Weed Technol. 3:442444.Google Scholar
26. Daniel, J. T., Templeton, G. E., Smith, R. J. Jr., and Fox, W. T. 1973. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Sci. 21:303307.Google Scholar
27. Egley, G. H. and Boyette, C. D. 1994. Water-corn oil emulsion enhances conidia germination and mycoherbicidal activity of Colletotrichum truncatum . Weed Sci. 43.312317.CrossRefGoogle Scholar
28. Freeman, T. E. and Charudattan, R. 1984. Cercospora rodmanii Conway—a biocontrol agent for waterhyacinth. Tech. Bull. 843, Agric. Exp. Stn., Inst. Food and Agric. Sci., Univ. of Florida, Gainesville, FL.Google Scholar
29. Hildebrand, D. C., and McCain, A. H. 1978. The use of various substrates for large-scale production of Fusarium oxysporum f.sp. cannabis inoculum. Phytopathology 68:10991101.Google Scholar
30. Katan, J. and Eshel, Y. 1973. Interactions between herbicides and plant pathogens. Residue Rev. 45:145177.Google Scholar
31. Kenney, D. S. 1986. DeVine®—the way it was developed—an industralists's view. Weed Sci. 34(Suppl. 1): 1516.Google Scholar
32. Khodayari, K. and Smith, R. J. Jr. 1988. A mycoherbicide integrated with fungicides in rice, Oryza sativa . Weed Sci. 36:282285.Google Scholar
33. Khodayari, K., Smith, R. J. Jr., Walker, J. T., and TeBeest, D. O. 1987. Applicators for a weed pathogen plus acifluorfen in soybeans. Weed Technol. 1:3740.Google Scholar
34. Kirkpatrick, T. L., Templeton, G. E., TeBeest, D. O., and Smith, R. J. Jr. 1982. Potential of Colletotrichum malvarum for biological control of prickly sida. Plant Dis. 66:323325.Google Scholar
35. Klerk, R. A., Smith, R. J. Jr., and TeBeest, D. O. 1985. Integration of a microbial herbicide into weed and pest control programs in rice (Oryza sativa). Weed Sci. 33:9599.Google Scholar
36. McRae, C. F. and Auld, B. A. 1988. The influence of environmental factors on anthracnose of Xanthium spinosum . Phytopathology 78:11821186.CrossRefGoogle Scholar
37. McWhorter, C. G. and Chandler, J. M. 1982. Conventional weed control technology. p. 527 in Charudattan, R. and Walker, H. L., eds. Biological control of weeds with plant pathogens. John Wiley & Sons, New York.Google Scholar
38. McWhorter, C. G., Fulgham, F. E., and Barrentine, W. L. 1988. An air-assist spray nozzle for applying herbicides in ultra low volume. Weed Sci. 36:118121.CrossRefGoogle Scholar
39. Mitchell, J. K. 1986. Dichotomophthora portulacae causing black stem rot on common purslane in Texas. Plant Dis. 70:603.CrossRefGoogle Scholar
40. Mitchell, J. K. 1988. Gibbago trianthemae, a recently described hyphomycete with bioherbicide potential for control of horse purslane (Trianthema portulacastrum). Plant Dis. 72:354355.CrossRefGoogle Scholar
41. Mortensen, K. 1988. The potential of an endemic fungus, Colletotrichum gloeosporioides f.sp. malvae, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophrasti). Weed Sci. 36:473478.CrossRefGoogle Scholar
42. Mortensen, K. and Makowski, R.M.D. 1989. Field efficacy at different levels of Colletotrichum gloeosporioides f.sp. malvae as a bioherbicide for round leaved mallow (Malva pusilla). Proc. VII Int. Symp. Biol. Contr. Weeds, 6–11 March, 1988, Rome, Italy. 1st Sper. Pathol. Veg. (MAF) p. 523530.Google Scholar
43. Ormeno-Nunez, J., Reeleder, R. D., and Watson, A. K. 1988. A foliar disease of field bindweed (Convolvulus arvensis) caused by Phomopsis convolvulus . Plant Dis. 72:338342.CrossRefGoogle Scholar
44. Phatak, S. C. 1984. Knock out nutsedge. Am. Veg. Grower 32:4446.Google Scholar
45. Quimby, P. C. Jr. and Boyette, C. D. 1987. Production and application of biocontrol agents. p. 265280 in McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides, Weed Sci. Soc., Champaign, IL.Google Scholar
46. Quimby, P. C. Jr. 1985. Pathogenic control of prickly sida and velvetleaf: an alternate technique for producing and testing Fusarium lateritium . Proc. South. Weed Sci. Soc. 38:365371.Google Scholar
47. Quimby, P. C. Jr. 1989. Response of common cocklebur (Xanthium strumarium) to Alternaria helianthi . Weed Technol. 3:177181.CrossRefGoogle Scholar
48. Quimby, P. C. Jr. and Boyette, C. D. 1986. Alternaria cassiae can be integrated with selected herbicides. Proc. South. Weed Sci. Soc. 38:389.Google Scholar
49. Quimby, P. C. Jr., Fulgham, F. E., Boyette, C. D., and Connick, W. J. Jr. 1988. An invert emulsion replaces dew in biocontrol of sicklepod—A preliminary study. p. 264270 in Hovede, D. A. and Beestman, G. B., eds. Pesticide Formulations and Application Systems: 8th Vol. ASTM-STP 980. Am. Soc. for Test. and Mater. Philadelphia, PA.Google Scholar
50. Quimby, P. C. Jr., Birdsall, J. L., Caesar, A. J., Hertoghe, C., Connick, W. J. Jr., Boyette, C. D., Caesar, T. C., and Sands, D. C. 1993. Formulation process for stabilizing living microbial biocontrol agents for extended storage. Weed Sci. Soc. Am. Abstr. 33:172.Google Scholar
51. Ridings, W. H. 1986. Biological control of stranglervine in citrus-a researcher's view. Weed Sci. 34(Suppl. 1): 3132.Google Scholar
52. Ridings, W. H., Mitchell, D. J., Schoulties, C. L., and El-Gholl, N. E. 1976. Biological control of milkweed vine in Florida citrus groves with a pathotype of Phytophthora citropthora . p. 224240 in Freeman, T. E., ed. Proc. 4th Int. Symp. Biol. Control Weeds. Univ. of Florida, Gainesville, FL.Google Scholar
53. Smith, R. J. Jr. 1982. Biological control of northern jointvetch (Aeschynomene virginica) in rice (Oryza sativa) and soybeans (Glycine max)—a researcher's view. Weed Sci. 34(Suppl. 1): 1723.Google Scholar
54. TeBeest, D. O., Templeton, G. E., and Smith, R. J. Jr. 1978. Temperature and moisture requirements for development of anthracnose of northern jointvetch. Phytopathology 68:389393.Google Scholar
55. TeBeest, D. O. and Templeton, G. E. 1985. Mycoherbicides: progress in the biological control of weeds. Plant Dis. 69:610.Google Scholar
56. Templeton, G. E. and Smith, R. J. Jr. 1977. Managing weeds with pathogens. p. 167176 in Horsfall, J. G. and Cowling, E. G., eds. Plant Disease: An Advanced Treatise. Academic Press, New York.Google Scholar
57. Templeton, G. E., TeBeest, D. O., and Smith, R. J. Jr. 1979. Biological weed control with mycoherbicides. Ann. Rev. Phytopathol. 17:301310.Google Scholar
58. Van Dyke, C. G., and Winder, R. S. 1985. Bipolaris sorghicola: a potential mycoherbicide for johnsongrass. Proc. South. Weed Sci. Soc. 38:373.Google Scholar
59. Walker, H. L. 1980. Alternaria macrospora as a potential biocontrol agent for spurred anoda: production of spores for field studies. U.S. Dep. Agric. Adv. Agric. Technol. South. Ser. (ISSN 0193–3728) No. 12. p. 5.Google Scholar
60. Walker, H. L. 1981. Fusarium lateritium: a pathogen of spurred anoda (Anoda cristata), prickly sida (Sida spinosa), and velvetleaf (Abutilon theophrasti). Weed Sci. 29:629631.Google Scholar
61. Walker, H. L. 1981. Granular formulations of Alternaria macrospora for control of spurred anoda (Anoda cristata). Weed Sci. 29:342345.Google Scholar
62. Walker, H. L. and Boyette, C. D. 1985. Biological control of sicklepod (Cassia obtusifolia) in soybeans (Glycine max) with Alternaria cassiae . Weed Sci. 33:212215.Google Scholar
63. Walker, H. L. and Connick, W. J. Jr. 1983. Sodium alginate for production and formulation of mycoherbicides. Weed Sci. 33:333338.Google Scholar
64. Walker, H. L. and Riley, J. A. 1982. Evaluation of Alternaria cassiae for the biocontrol of sicklepod (Cassia obtusifolia). Weed Sci. 30:651654.Google Scholar
65. Weidemann, G. J. 1988. Effects of nutritional amendments to conidial production of Fusarium solani f.sp. cucurbitae on sodium alginate granules and control of Texas gourd. Plant Dis. 72:757–59.Google Scholar
66. Weidemann, G. J. and Templeton, G. E. 1988. Efficacy and soil persistance of Fusarium solani f.sp. cucurbitae for control of Texas gourd (Cucurbita texana). Plant Dis. 72:3638.Google Scholar
67. Weidemann, G. J., Boyette, C. D., and Templeton, G. E. 1995. Utilization criteria for mycoherbicides. p. 238251 in Hall, F. R. and Barry, J. W., eds. Biorational Pest Control Agents: Formulation and Delivery. Am. Chem. Soc. Washington, D.C. Google Scholar
68. Winder, R. S. and Van Dyke, C. G. 1990. The pathogenecity, virulence, and biocontrol potential of two Bipolaris species of johnsongrass (Sorghum halepense) Weed Sci. 38:8994.Google Scholar
69. Wymore, L. A., Poirier, C., Watson, A. K., and Gotlieb, A. R. 1988. Colletotrichum coccodes, a potential bioherbicide for control of velvetleaf (Abutilon theophrasti). Plant Dis. 72:534538.Google Scholar
70. Wymore, L. A., and Watson, A. K. 1986. An adjuvant increases survival and efficacy of Colletotrichum coccodes, a mycoherbicide for velvetleaf (Abutilon theophrasti). Phytopathology 76:11151116.Google Scholar
71. Yang, W. W., Johnson, D. R., Dowler, W. M., and Connick, W. J. Jr. 1993. Infection of leafy spurge by Alternaria alternata and A. angustivoidea in the absence of dew. Phytopathology 83:953958.Google Scholar