Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T22:16:38.615Z Has data issue: false hasContentIssue false

A Common Ragweed (Ambrosia artemisiifolia) Biotype in Southwestern Québec Resistant to Linuron

Published online by Cambridge University Press:  20 January 2017

Sophie Saint-Louis
Affiliation:
Department of Plant Science, McGill University, Montréal, QC H9X 3V9, Canada
Antonio DiTommaso*
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853
Alan K. Watson
Affiliation:
Department of Plant Science, McGill University, Montréal, QC H9X 3V9, Canada
*
Corresponding author's E-mail: ad97@cornell.edu

Abstract

The degree of resistance to linuron of a common ragweed biotype was investigated. Suspected linuron-resistant plants collected from a carrot field near Sherrington, Québec, were subjected to increasing rates of linuron under glasshouse conditions. Resistance to linuron of the common ragweed biotype was suspected because 33% of plants survived to reproduction after they were sprayed at a rate of 4.5 kg ai/ha, two times the dose rate recommended for linuron in carrots, and also because 3% of plants survived to reproduction after they were sprayed at a rate of 22.5 kg ai/ ha, 10 times the recommended dose. Susceptible plants collected from a field with no prior history of linuron use were all killed when sprayed at the lowest dose rate recommended, 1.125 kg ai/ha. The herbicide-resistance ratio was 29.0 for linuron, and for cross-resistance to atrazine, the ratio was 1.3, indicating that these plants exhibit greater resistance to linuron than to atrazine.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bachand, S. and Christin, C. 1996. Herbe à Poux: Guide de Gestion et Nouvelles Méthodes de Contrôle. Québec, Canada: Régie régionale de la santé et des services sociaux de Montréal-Centre, Montréal.Google Scholar
Ballard, T. O., Foley, M. E., and Bauman, T. T. 1996. Response of common ragweed (Ambrosia artemisiifolia) and giant ragweed (Ambrosia trifida) to postemergence imazethapyr. Weed Sci. 44:248251.CrossRefGoogle Scholar
Basset, I. J. and Crompton, C. W. 1975. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55:463476.CrossRefGoogle Scholar
Bell, C. E., Boutwell, B. E., Ogbuchiekwe, E. J., and McGiffen, M. E. Jr. 2000. Weed control in carrots: the efficacy and economic value of linuron. Hortscience 35:10891091.CrossRefGoogle Scholar
Bellinder, R. R. and Ellerbrock, L. A. 2004. Weed management in carrots. in Reiners, S. and Petzholdt, C. H., eds. Cornell University Integrated Crop and Pest Management Guidelines for Commercial Vegetable Production 2004: Web page: http://www.nysaes.cornell.edu./recommends/. Accessed: August 30, 2004.Google Scholar
Bellinder, R. R., Kirkwyland, J. J., and Wallace, R. W. 1997. Carrot (Daucus carota) and weed response to linuron and metribuzin applied at different crop stages. Weed Technol. 11:235240.CrossRefGoogle Scholar
Beuret, E. 1988. Cas particulier de résistance à l'atrazine et au linuron chez Amaranthus lividus L. et Erigeron canadensis L. VIIIème Colloque International sur la Biologie, l'Écologie et la Systématique des Mauvaises Herbes. Dijon, France: ANPP-COLUMA. Pp. 277286.Google Scholar
Beuret, E. 1989. Un nouveau problème de résistance aux herbicides: Senecio vulgaris L. dans les cultures de carottes traitées au linuron. Rev. Suisse Viticulture d'Arboriculture d'Horticulture 21:349352.Google Scholar
Cisneros, J. J. and Zandstra, B. H. 2002. Alternative herbicides in carrot production. Proceedings of the 29th International Carrot conference, Bakersfield, CA. p. 27.Google Scholar
Coupland, D. 1991. The role of compartmentation of herbicides and their metabolites. in Caseley, J. C., Cussans, G. W., and Atkins, R. K., eds. Herbicide Resistance in Weeds and Crops. Oxford, UK: Butterworth-Heinemann. Pp. 263278.CrossRefGoogle Scholar
Dickerson, C. T. and Rahn, E. M. 1963. Evaluation of several new herbicides for pre- and post-emergence weed control in carrots. Proc. NE Weed Contr. Conf. 17:6366.Google Scholar
Fuerst, E. P., Arntzen, C. J., Pfister, K., and Penner, D. 1986. Herbicide cross-resistance in atrazine-resistant biotypes of four species. Weed Sci. 34:344353.CrossRefGoogle Scholar
Gronwald, M. 1994. Resistance to photosystem II inhibiting herbicides. in Powles, S. B. and Holtum, J.A.M., eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: Lewis. Pp. 2760.Google Scholar
Heap, I. 2004. The International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.org/in.asp. Accessed: August 24, 2004.Google Scholar
Hogue, E. J. 1972. Action de trois herbicides sur des cultures de carottes en sol organique. Phytoprotection 53:5361.Google Scholar
Holt, J. S. and LeBaron, H. M. 1990. Significance and distribution of herbicide resistance. Weed Technol. 4:141149.CrossRefGoogle Scholar
Kuratle, H. and Rahn, E. M. 1968. Weed control in carrots with linuron and prometryne. Am. Soc. Hort. Sci. 92:465472.Google Scholar
Kuratle, H., Rahn, E. M., and Woodmansee, C. W. 1969. Basis for selectivity of linuron on carrot and common ragweed. Weed Sci. 17:216219.CrossRefGoogle Scholar
Masabni, J. G. and Zandstra, B. H. 1999a. Discovery of a common purslane (Portulaca oleracea) biotype resistant to linuron. Weed Technol. 13:599605.CrossRefGoogle Scholar
Masabni, J. G. and Zandstra, B. H. 1999b. A serine-to-threonine mutation in linuron-resistant Portulaca oleracea . Weed Sci. 47:393400.CrossRefGoogle Scholar
Moss, S. R. and Rubin, B. 1993. Herbicide-resistant weeds: a worldwide perspective. J. Agric. Sci. 120:141148.CrossRefGoogle Scholar
[NRC] National Research Council. 2004. Vegetables of Canada. Ottawa, ON: National Research Council of Canada Research Press. Web page: http://pubs.nrc-cnrc.gc.ca. Accessed: August 30, 2004.Google Scholar
Oettmeier, W., Mason, K., Fedtke, C., Konze, J., and Schmidt, R. R. 1982. Effect of photosystem II inhibitors on chloroplasts isolated from species either susceptible or resistant towards s-triazine herbicides. Pestic. Biochem. Physiol. 18:257267.CrossRefGoogle Scholar
[OMAF] Ontario Ministry of Agriculture and Food. 2004. Guide to Weed Control 2004–2005. Publication 75. Queen's Printer of Ontario. Toronto, ON: Ontario Ministry of Agriculture and Food. 348 p.Google Scholar
Patzoldt, W. L., Tranel, P. J., Alexander, A. L., and Schmitzer, P. R. 2001. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49:485490.CrossRefGoogle Scholar
Smeda, R. J., Hasegawa, P. M., Goldsbrough, P. B., Singh, N. K., and Weller, S. C. 1993. A serine-to-threonine substitution in the triazine herbicide-binding protein in potato cells results in atrazine resistance without impairing productivity. Plant Physiol. 103:911917.CrossRefGoogle ScholarPubMed
Trevett, M. F. and Gardner, W. 1963. Preemergence weed control in carrots. Proc. NE Weed Contr. Conf. 17:3233.Google Scholar
Vincent, G. and Ahmim, M. 1985. Note sur le comportement de l'Ambrosia artemisiifolia après le fauchage. Phytoprotection 66:165168.Google Scholar
[WSSA] Weed Science Society of America. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 493 p.Google Scholar