Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T07:31:52.007Z Has data issue: false hasContentIssue false

Organic Weed Management in Field Crops with a Propane Flamer and Rotary Hoe

Published online by Cambridge University Press:  20 January 2017

Erin C. Taylor*
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, A285 Plant and Soil Sciences Building, East Lansing, MI 48824-1325
Karen A. Renner
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, A285 Plant and Soil Sciences Building, East Lansing, MI 48824-1325
Christy L. Sprague
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, A285 Plant and Soil Sciences Building, East Lansing, MI 48824-1325
*
Corresponding author's E-mail: hiller12@msu.edu

Abstract

The weed management needs of organic producers are unique because they rely primarily on cultural and physical management strategies. Recommendations regarding commonly used tools for weed management could benefit this sector of agriculture. The objectives of this research were to (1) determine the optimum time of day for propane flaming to achieve maximum weed reductions while minimizing corn damage; (2) assess whether flaming, rotary hoeing, or a combination of the two tools best manages early-season weeds without injuring dry beans; and (3) evaluate the use of growing degree days (GDD) to optimize rotary hoe timing. Experiments were carried out between 2006 and 2009 in Hickory Corners and East Lansing, MI. Flaming reduced broadleaf weed densities by at least 82% when done in the morning to midafternoon but only reduced densities by 58% when weeds were flamed in the evening. Common lambsquarters, redroot pigweed, and velvetleaf were easier to control by flaming than common ragweed and common purslane. Flaming did not reduce grass weed densities. When comparing flaming and rotary hoeing, the two treatments that achieved the highest level of weed control and highest dry bean yields were flaming prior to bean emergence followed by two rotary hoeings and rotary hoeing three times (no flaming). However, the added cost of the flamer may only be justified when wet conditions make rotary hoeing ineffective. Flaming dry beans POST resulted in significant injury and yield reductions of 60%; therefore this practice is not recommended. Timing rotary hoe passes every 300 GDD (base 3.3 C) from the time of soybean or dry bean planting resulted in fewer passes compared with the 7-d or 150 GDD treatments, while maintaining similar levels of weed control and yields similar to the weed-free treatment in 1 of 2 yr for each crop.

Las necesidades de manejo de malezas de los productores orgánicos son únicas porque ellos dependen primordialmente de estrategias culturales y físicas. Las recomendaciones que consideren herramientas comúnmente utilizadas para el manejo de malezas podrían beneficiar a este sector de la agricultura. Los objetivos de esta investigación fueron: (1) determinar el momento óptimo del día para quemar con llamas de propano y alcanzar reducciones máximas en las poblaciones de malezas al tiempo que se minimiza el daño al maíz; (2) evaluar si las llamas, el cultivador rotativo, o la combinación de estas dos herramientas brinda el mejor manejo de malezas en la etapa temprana del cultivo sin dañar al frijol común; y (3) evaluar el uso de grados días de crecimiento (GDD) para optimizar el momento de uso del cultivador rotativo. Entre 2006 y 2009, se realizaron experimentos en Hickory Corners y East Lansing, MI. La quema con llamas realizada entre la mañana y media tarde redujo las densidades de malezas de hoja ancha en al menos 82%, pero solamente redujo las densidad en 58% cuando las malezas fueron quemadas en la noche. El control con llamas de Chenopodium album, Amaranthus retroflexus y Abutilon theophrasti fue más sencillo que el control de Ambrosia artemisiifolia y Portulaca oleracea. La quema con llamas no redujo las densidades de malezas gramíneas. Al comparar la quema con llamas con el cultivador rotativo, los dos tratamientos que alcanzaron el mayor nivel de control de malezas y el mayor rendimiento del frijol común fueron: quema con llamas antes de la emergencia del frijol seguida por dos pases del cultivador rotativo y tres pases del cultivador rotativo (sin quema). Sin embargo, el costo extra del quemador de llamas se justificaría solamente cuando condiciones húmedas limitan la efectividad del cultivador rotativo. El exponer el frijol común a las llamas POST resultó en daños significativos y reducciones en el rendimiento de 60%; por esta razón esta práctica no es recomendada. El realizar los pases del cultivador rotativo cada 300 GDD (base 3.3 C) desde el momento de la siembra de la soya o el frijol común resultó en menos pases en comparaciín con los tratamientos de 7 días o 150 GDD, al mismo tiempo que se mantuvieron niveles de control de malezas y de rendimiento similares al tratamiento libre de malezas en 1 de los 2 años de cada cultivo.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amador-Ramirez, M. D., Wilson, R. G., and Martin, A. R. 2002. Effect of in-row cultivation, herbicides, and dry bean canopy on weed seedling emergence. Weed Sci. 50 :370377.Google Scholar
Andersen, R. N. and Koukkari, W. L. 1979. Rhythmic leaf movements of some common weeds. Weed Sci. 27 :401415.CrossRefGoogle Scholar
Ascard, J. 1994. Dose-response models for flame weeding in relation to plant size and density. Weed Res. 34 :377385.Google Scholar
Ascard, J. 1995. Effects of flame weeding on weed species at different developmental stages. Weed Res. 35 :397411.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41 :383405.Google Scholar
Buhler, D. D., Gunsolus, J. L., and Ralston, D. F. 1992. Integrated weed management techniques to reduce herbicide inputs in soybean. Agron. J. 84 :973978.Google Scholar
Burnside, O. C., Ahrens, W. H., Holder, B. J., Wiens, M. J., Johnson, M. M., and Ristau, E. A. 1994. Efficacy and economics of various mechanical plus chemical weed control systems in dry beans (Phaseolus vulgaris). Weed Technol. 8 :238244.CrossRefGoogle Scholar
Burnside, O. C., Krause, N. H., Wiens, J. J., Johnson, M. M., and Ristau, E. A. 1993. Alternative weed management systems for the production of kidney beans (Phaseolus vulgaris). Weed Technol. 7 :940945.Google Scholar
Cisneros, J. J. and Zandstra, B. H. 2008. Flame weeding effects on several weed species. Weed Technol. 22 :290295.Google Scholar
Corp, M. K., Machado, S., Pritchard, L., and Luttrell, C. 2010. Weed Control in Organic Small Grains Production. Oregon State University Extension Service: Organic Dry Land Small Grains Fact Sheet 1002. http://extension.oregonstate.edu/umatilla/sites/default/files/100726_organic_small_grains_weed_control_0.pdf. Accessed: May 2, 2012.Google Scholar
Cramer, C. 1990. Turbocharge your cultivator: flame weeding is cheap, effective—and safe. The New Farm by The Rodale Institute. 12 :2735.Google Scholar
Dale, T. M. and Renner, K. A. 2005. Timing of postemergence micro-rate applications based on growing degree days in sugar beet. J. Sugar Beet Res. 42 :87100.CrossRefGoogle Scholar
Diver, S. 2002. Flame Weeding for Vegetable Crops. ATTRA-National Sustainable Agriculture Information Service. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=110. Accessed: May 1, 2012.Google Scholar
Frye, D. L. 2011. Management Challenges of Running Parallel Organic and Conventional Systems. http://www.soils.wisc.edu/extension/wcmc/proc/2011_wcmc_proc.pdf#page=193. Accessed on: May 2, 2012.Google Scholar
Heiniger, R. W. 1998. Controlling weeds in organic crops through the use of flame weeders. Organic Farming Research Foundation Final Project Report. http://ofrf.org/funded/reports/heiniger_94-43.pdf. Accessed: October 21, 2011.Google Scholar
Hock, S. M., Knezevic, S. Z., and Martin, A. R. 2006. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci. 54 :3846.Google Scholar
Johnson, W. C. III, and Mullinix, B. G. Jr. 2008. Potential weed management systems for organic peanut production. Peanut Sci. 35 :6772.Google Scholar
Kluchinski, D. and Singer, J. W. 2005. Evaluation of Weed Control Strategies in Organic Soybean Production. Plant Management Network. http://www.plantmanagementnetwork.org/pub/cm/research/2005/organic/. Accessed: May 1, 2012.Google Scholar
Knezevic, S. Z. and Ulloa, S. M. 2007. Flaming: potential new tool for weed control in organically grown agronomic crops. J. Agr. Sci. 52 :95104.Google Scholar
Leblanc, M. L. and Cloutier, D. C. 2001a. Susceptibility of dry edible bean (Phaseolus vulgaris, cranberry bean) to the rotary hoe. Weed Technol. 15 :224228.Google Scholar
Leblanc, M. L. and Cloutier, D. C. 2001b. Susceptibility of row-planted soybean (Glycine max) to the rotary hoe. J. Sustain. Agr. 18 :5361.Google Scholar
Lovely, W. G., Weber, C. R., and Staniforth, D. W. 1958. Effectiveness of the rotary hoe for weed control in soybeans. Agron. J. 50 :621625.Google Scholar
Mohler, C. L., Frisch, J. C., and Mt. Pleasant, J. 1997. Evaluation of mechanical weed management programs for corn (Zea mays). Weed Technol. 11 :123131.Google Scholar
Mohr, K., Sellers, B. A., and Smeda, R. J. 2007. Application time of day influences glyphosate efficacy. Weed Technol. 21 :713.Google Scholar
Parish, R. L., Porter, W. C., and Vidrine, P. R. 1997. Flame cultivation as a complement to mechanical and herbicidal control of weeds. J. Veg. Crop Prod. 3 :6583.Google Scholar
Peters, E. J., Klingman, D. L., and Larson, R. E. 1959. Rotary hoeing in combination with herbicides and other cultivations for weed control in soybeans. Weeds 7 :449458.CrossRefGoogle Scholar
Pullen, D.W.M. and Cowell, P. A. 1997. An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. J. Agr. Eng. Res. 67 :2734.Google Scholar
Renner, K. A. and Woods, J. J. 1999. Influence of cultural practices on weed management in soybean. J. Prod. Agric. 12 :4853.Google Scholar
Sprague, C. L., Kells, J. J., and Schirmacher, K. 2006. WeedSOFT® 2006. Weed Management Support System. Michigan Version 11.0.Google Scholar
Steinmaus, S. J., Prather, T. S., and Holt, J. S. 2000. Estimation of base temperatures for nine weed species. J. Exp. Bot. 51 :275286.Google Scholar
Stewart, C. L., Nurse, R. E., and Sikkema, P. H. 2009. Time of day impacts postemergence weed control in corn. Weed Technol. 23 :346355.Google Scholar
Taylor, E., Renner, K., and Sprague, C. 2008. Integrated Weed Management: Fine Tuning the System. East Lansing, MI.: Michigan State University Extension Bulletin E-3065. 132p.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010a. Tolerance of selected weed species to broadcast flaming at different growth stages. Crop Prot. 29 :13811388.Google Scholar
Ulloa, S. M., Datta, A., Malidza, G., Leskovsek, R., and Knezevic, S. 2010b. Yield and yield components of soybean [Glycine max (L.) Merr.] are influenced by the timing of broadcast flaming. Field Crop. Res. 119 :348354.Google Scholar
Ulloa, S. M., Datta, A., and Knezevic, S. Z. 2010c. Growth stage-influenced differential response of foxtail and pigweed species to broadcast flaming. Weed Technol. 24 :319325.Google Scholar
Ulloa, S. M., Datta, A., Bruening, C., Gogos, G., Arkebauer, T. J., and Knezevic, S. Z. 2012. Weed control and crop tolerance to propane flaming as influenced by the time of day. Crop Prot. 31 :17.Google Scholar
[USDA-ERS] U.S. Department of Agriculture–Economic Research Service. 2009. Organic Agriculture: Organic Market Overview. http://www.ers.usda.gov/briefing/organic/demand.htm. Accessed: October 21, 2011.Google Scholar
VanGessel, M. J., Wiles, L. J., Schweizer, E. E., and Westra, P. 1995. Weed control efficacy and pinto bean (Phaseolus vulgaris) tolerance to early season mechanical weeding. Weed Technol. 9 :531534.Google Scholar
VanGessel, J. J., Schweizer, E. E., Wilson, R. G., Wiles, L. J., and Westra, P. 1998. Impact of timing and frequency of in-row cultivation for weed control in dry bean (Phaseolus vulgaris). Weed Technol. 12 :548553.Google Scholar
Wilkerson, G. G., Modena, S. A., and Coble, H. D. 1991. HERB: decision model for postemergence weed control in soybean. Agron. J. 83 :413417.Google Scholar
Willer, H. and Kilcher, L., eds. 2011. The Work of Organic Agriculture—Statistics and Emerging Trends 2011. Bonn, Germany, and Frick, Switzerland : International Federation of Organic Agriculture Movements and Research Institute of Organic Agriculture. 286 p.Google Scholar
Wszelaki, A. L., Doohan, D. J., and Alexandrou, A. 2007. Weed control and crop quality in cabbage (Brassica oleracea (capitata group)) and tomato (Lycopersican lycopersicum) using a propane flamer. Crop Prot. 26 :134144.Google Scholar