Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T12:08:24.277Z Has data issue: false hasContentIssue false

Biochar Decreases Atrazine and Pendimethalin Preemergence Herbicidal Activity

Published online by Cambridge University Press:  20 January 2017

Neeta Soni
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Ramon G. Leon*
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
John E. Erickson
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Jason A. Ferrell
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Maria L. Silveira
Affiliation:
Range Cattle Research and Education Center, University of Florida, Ona, FL 33865
*
Corresponding author's E-mail: rglg@ufl.edu.

Abstract

Biochar and vinasse are by-products of biofuel production that can be used as soil amendments. However, their addition to the soil might affect PRE herbicide activity. Although studies have shown that biochar has a high herbicide adsorption capacity, there is little information available about biochar effect on weed control especially under field conditions. Therefore, the objective of this study was to determine the influence of biochar and vinasse application on atrazine and pendimethalin availability and herbicide activity under in vitro and field conditions. In vitro atrazine and pendimethalin herbicidal activities were not influenced by vinasse addition, but biochar application reduced atrazine and pendimethalin injury for all evaluated species. A sorption experiment confirmed high affinity of biochar for atrazine and pendimethalin. Linear regression analysis showed that the slope for atrazine and pendimethalin adsorption was 16 and 4 times higher in soil with biochar than in soil alone. Under field conditions, biochar at 0.5 kg m−2 reduced atrazine and pendimethalin weed control 75% and 60%, respectively. These results suggested that the use of biochar as a soil amendment in cropping system could decrease PRE herbicide efficacy. Therefore, mitigating practices such as the use of higher rates or reliance on POST herbicides and cultivation might be necessary to ensure proper weed control.

El biochar y la vinaza son subproductos de la producción de biocombustibles que pueden ser usados como enmiendas de suelo. Sin embargo, su adición al suelo podría afectar la actividad de herbicidas PRE. Aunque estudios han mostrado que el biochar tiene una alta capacidad de adsorción de herbicidas, hay poca información disponible acerca del efecto del biochar sobre el control de malezas, especialmente bajo condiciones de campo. Por esta razón, el objetivo de este estudio fue determinar la influencia de la aplicación de biochar y de vinaza sobre la disponibilidad y actividad herbicida de atrazine y pendimethalin in vitro y en condiciones de campo. In vitro, la actividad herbicida de atrazine y pendimethalin no fue influenciada por la adición de vinaza, pero la aplicación de biochar redujo el daño causado por atrazine y pendimethalin en todas las especies evaluadas. Un experimento de sorción confirmó la alta afinidad del biochar por atrazine y pendimethalin. Análisis de regresión lineal mostraron que las pendientes de las curvas de adsorción de atrazine y pendimethalin fueron 16 y 4 veces mayores en suelo con biochar que en suelo solo. Bajo condiciones de campo, el biochar a 0.5 kg m−2 redujo el control de malezas de atrazine y pendimethalin en 75% y 60%, respectivamente. Estos resultados sugirieron que el uso de biochar como enmienda de suelo en sistemas de cultivos podría disminuir la eficacia de herbicidas PRE. Por esto, prácticas de mitigación tales como el uso de mayores dosis o una mayor dependencia en herbicidas POST y labranza podrían ser necesarios para asegurar un control adecuado de malezas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2012) Prowl H2O® herbicide product label. BASF, Corp. BASF Publication No. NVA 2011-04-195-0235. Davis Drive, NC: BASF Corp. 37 pGoogle Scholar
Anonymous (2013) AAtrex® 4L herbicide product label. Syngenta Crop Protection, Inc. Syngenta Publication No. SCP 497A-L38TT 1112. Greensboro, NC: Syngenta. 24 pGoogle Scholar
Christofoletti, CA, Escher, JP, Correia, JE, Marinho, JFU, Fontanetti, CS (2013) Sugarcane vinasse: Environmental implications of its use. Waste Manag 33:27522761 CrossRefGoogle ScholarPubMed
Clay, S, Malo, D (2012) The influence of biochar production on herbicide sorption characteristics. Pages 315340 in Hasaneen, MN, ed. Herbicide Properties, Synthesis and Control of Weeds. New York: InTech Google Scholar
Coffey, DL, Warren, G (1969) Inactivation of herbicides by activated carbon and other adsorbents. Weed Sci 17:1619 Google Scholar
Erickson, JE, Helsel, ZR, Woodard, KR, Vendramini, JMB, Wang, Y, Sollenberger, LE, Gilbert, RA (2011) Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agron J 103:18271833 Google Scholar
Fernandez-Conejo, J, Nehring, R, Osteen, C, Wechsler, S, Martin, A, Vialou, A (2014) Pesticide in U.S. agriculture: 21 selected crops, 1960–2008. EIB-124. Washington, DC: U.S. Department of Agriculture Economic Research Service. 20 pGoogle Scholar
Graber, E, Tsechansky, L, Gerstl, Z, Lew, B (2012) High surface area biochar negatively impacts herbicide efficacy. Plant Soil 353:95106 Google Scholar
Hao, F, Zhao, X, Ouyang, W, Lin, C, Chen, S, Shan, Y, Lai, X (2013) Molecular structure of corncob-derived biochars and the mechanism of atrazine sorption. Agron J 105:773782 CrossRefGoogle Scholar
Jones, D, Edwards-Jones, G, Murphy, D (2011) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43:804813 CrossRefGoogle Scholar
Kearns, J, Wellborn, L, Summers, R, Knappe, D (2014) 2, 4-D adsorption to biochars: Effect of preparation conditions on equilibrium adsorption capacity and comparison with commercial activated carbon literature data. Water Res 62:2028 Google Scholar
Kookana, RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: A review. Soil Res 48:627637 Google Scholar
Kookana, RS, Sarmah, A, Van Zwieten, L, Krull, E, Singh, B (2011) Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Pages 103143 in Sparks, DL, ed. Advances in agronomy, volume 112. New York: Elsevier Inc CrossRefGoogle Scholar
Lehmann, J (2007) Bio-energy in the black. Front Ecol Env 5:381387 Google Scholar
Loganathan, VA, Feng, Y, Sheng, GD, Clement, TP (2009) Crop-residue-derived char influences sorption, desorption and bioavailability of atrazine in soils. Soil Sci Soc Am J 73:967974 Google Scholar
Lourencetti, C, De Marchi, MR, Ribeiro, ML (2012) Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions. J Environ Sci Health, part B 47:949958 Google Scholar
Martin, SM, Kookana, RS, Van Zwieten, L, Krull, E (2012) Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J Hazard Mater 231:7078 Google Scholar
McKendry, P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:4754 Google Scholar
Mesa, AC, Spokas, KA (2011) Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. Pages 315340 in Kortekamp, A, ed. Herbicides and the Environment. Croatia InTech Google Scholar
Miyamoto, T, Kameyama, K, Nakajima, T (2013) Reduction in saturated and unsaturated hydraulic conductivities of an andisol by vinasse application. Soil Sci Soc Am J 77:17 Google Scholar
Mohan, D, Pittman, CU, Steele, PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuels 20:848889 Google Scholar
Monks, CD, Banks, PA (1993) Effect of straw, ash, and tillage on dissipation of imazaquin and imazethapyr. Weed Sci 41:133137 Google Scholar
Nag, SK, Kookana, RS, Smith, L, Krull, E, Macdonald, LM, Gill, G (2011) Poor efficacy of herbicides in biochar-amended soils as affected by their chemistry and mode of action. Chemosphere 84:15721577 Google Scholar
Prata, F, Lavorenti, A, Regitano, JB, Tornisielo, VL (2001) Degradation and sorption of ametryne in two soils with vinasse application. Pesq Agropec Bras 36:975981 Google Scholar
Runia, W (2000) Steaming methods for soils and substrates. Act Hortic 532:115124 CrossRefGoogle Scholar
Shaner, DL, ed (2014) Herbicide Handbook. 10th edn. Lawrence, KS: Weed Science Society of America. Pp. 129130 and 283–284Google Scholar
Sheehan, G, Greenfield, P (1980) Utilisation, treatment and disposal of distillery wastewater. Water Res 14:257277 Google Scholar
Soni, N, Leon, RG, Erickson, JE, Ferrell, JA, Silveira, ML, Giurcanu, ML (2014) Vinasse and biochar effects on germination and growth of Palmer amaranth (Amaranthus palmeri), sicklepod (Senna obtusifolia) and southern crabgrass (Digitaria ciliaris). Weed Technol 28:694702 Google Scholar
Tejada, M, Garcia, C, Gonzalez, J, Hernandez, M (2006) Organic amendment based on fresh and composted beet vinasse. Soil Sci Soc Am J 70:900908 Google Scholar
Wilkie, AC, Riedesel, KJ, Owens, JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63102 Google Scholar
Yang, Y, Sheng, G (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37:36353639 CrossRefGoogle ScholarPubMed
Yang, Y, Sheng, G, Huang, M (2006) Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354:170178 Google Scholar
Yu, X, Ying, G, Kookana, RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665671 CrossRefGoogle ScholarPubMed