Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T15:34:23.813Z Has data issue: false hasContentIssue false

Confirmation and Control of a Paraquat-Tolerant Goosegrass (Eleusine indica) Biotype

Published online by Cambridge University Press:  20 January 2017

Richard S. Buker III
Affiliation:
Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
Shawn T. Steed
Affiliation:
Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
William M. Stall*
Affiliation:
Horticultural Sciences Department, University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: wms@mail.ifas.ufl.edu.

Abstract

Diminished control of goosegrass was observed in tomato fields located in Manatee County, FL, after years of repeated paraquat use. Tolerance of the Manatee biotype to paraquat was confirmed by its comparison in greenhouse studies with a susceptible biotype from the Alachua County, FL. A 30-fold increase in paraquat rate was required to reach the 50% growth reduction level of the resistant biotype over the susceptible biotype. The Manatee biotype was not tolerant to clethodim, metribuzin, or sethoxydim. These herbicides provided adequate control of all the goosegrass biotypes tested.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aerts, M. J. and Nesheim, O. N. 2000. Florida Crop/Pest Management Profiles. CIR1238. p. 17.Google Scholar
Chase, C. A., Bewick, T. A., and Shilling, D. G. 1998a. Characterization of paraquat resistance in Solanum americanum Mill. I. Paraquat uptake, translocation, and compartmentalization. Pestic. Biochem. Physiol. 60: 1322.Google Scholar
Chase, C. A., Bewick, T. A., and Shilling, D. G. 1998b. Characterization of paraquat resistance in Solanum americanum Mill. II. Evidence for a chloroplast mechanism. Pestic. Biochem. Physiol. 60: 2330.Google Scholar
Chase, C. A., Bewick, T. A., and Shilling, D. G. 1998c. Differential photosynthetic electron transport and oxidative stress in paraquat-resistant and sensitive biotypes of Solanum americanum . Pestic. Biochem. Physiol. 60: 8390.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15: 2022.CrossRefGoogle Scholar
[FASS] Florida Agricultural and Statistics Service. 1999. Web page: http://www.fass.com.Google Scholar
Fuerst, E. P. and Vaughn, K. C. 1990. Mechanism of paraquat tolerance. Weed Technol. 4: 150156.Google Scholar
Hall, L. M., Stromme, K. M., and Horsman, G. P. 1998. Resistance to acetolactate inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 46: 390396.CrossRefGoogle Scholar
Holshouser, D. L. and Coble, H. D. 1990. Compatibility of sethoxydim with five postemergence broadleaf herbicides. Weed Technol. 4: 128133.Google Scholar
Kranz, J., Schmutterer, H., and Koch, W. 1977. Diseases, Pests, and Weeds in Tropical Crops. New York: J. Wiley. 585 p.Google Scholar
Lehockzi, E., Laskay, G., Gaal, I., and Szigeti, Z. 1992. Mode of action of paraquat in leaves of paraquat-resistant Conyza canadensis L. Cronq. Plant Cell Environ. 15: 531539.CrossRefGoogle Scholar
Nishimoto, R. K. and McCarty, L. B. 1997. Fluctuating temperature and light influence seed germination of goosegrass (Eleusine indica). Weed Sci. 45: 426429.CrossRefGoogle Scholar
Polos, E., Mikulas, J., Szigeti, Z., Matkovics, B., Hai, D. Q., Parducz, A., and Lehoczki, E. 1988. Paraquat and atrazine tolerance in Conyza canadensis . Pestic. Biochem. Physiol. 30: 142154.Google Scholar
Powels, S. B., Tucker, E. S., and Morgan, T. R. 1992. Eradication of paraquat resistant Hordeum glancom Steud. by prevention of seed production. Weed Research. 32: 207211.Google Scholar
Rhodes, G. N. and Coble, H. D. 1984. Influence of bentazon on absorption and translocation of sethoxydim in goosegrass (Eleusine indica). Weed Sci. 32: 595597.CrossRefGoogle Scholar
Shaaltiel, Y., Glazer, A., Bocion, P. F., and Gressel, J. 1988. Cross tolerance to herbicidal and environmental oxidants of plant biotypes tolerant to paraquat, sulfur dioxide, and ozone. Pestic. Biochem. Physiol. 31: 1323.Google Scholar
Shaaltiel, Y. and Gressel, J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis . Pestic. Biochem. Physiol. 26: 2228.CrossRefGoogle Scholar
Smisek, A., Doucet, C., Jones, M., and Weaver, S. 1998. Paraquat resistance in horseweed (Conzya canadensis) and Virginia pepperweed (Lepidium virginicum) from Essex county, Ontario. Weed Sci. 46: 200204.Google Scholar
Soar, C. J., Preston, C., Karotam, J., and Powles, S. B. 1999. Paraquat translocation in capeweed (Arctotheca calendula (L.) Levyns) resistant and susceptible to paraquat. Weed Sci. Soc. Am. Abstr. 39:51.Google Scholar
Stall, W. M. and Gilreath, J. P. 1999. Weed Management in Tomato. Facts Sheet HS-200. University of Florida, Gainesville, FL.Google Scholar
Stall, W. M., Kostewicz, S. R., and Brown, R. L. 1987. Reduction in the control of common nightshade Solanum americanum by paraquat due to copper fungicides. Proc. Florida State Hortic. Soc. 100: 222224.Google Scholar
Virdrine, P. R., Reynolds, D. B., and Blouin, D. C. 1995. Grass control in soybean (Glycine max) with graminicides applied alone or in mixtures. Weed Technol. 9: 6872.Google Scholar