Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-12T15:34:31.886Z Has data issue: false hasContentIssue false

Tank Mixing Pendimethalin with Pyroxasulfone and Chloroacetamide Herbicides Enhances In-Season Residual Weed Control in Corn

Published online by Cambridge University Press:  20 January 2017

Prashant Jha*
Affiliation:
Montana State University, Southern Agricultural Research Center, Huntley, MT 59037
Vipan Kumar
Affiliation:
Montana State University, Southern Agricultural Research Center, Huntley, MT 59037
Josefina Garcia
Affiliation:
Montana State University, Southern Agricultural Research Center, Huntley, MT 59037
Nicholas Reichard
Affiliation:
Montana State University, Southern Agricultural Research Center, Huntley, MT 59037
*
Corresponding author's E-mail: pjha@montana.edu.

Abstract

Kochia, common lambsquarters, and wild buckwheat are major problem weeds in glyphosate-resistant corn production in the northern Great Plains of the United States. Field research was conducted in 2011 and 2012 near Huntley, MT to investigate effective PRE herbicides applied alone or in premixes with or without tank-mixed pendimethalin for extended in-season residual control of the selected broadleaf weeds in glyphosate-resistant corn. Control of kochia, common lambsquarters, and wild buckwheat with recently registered herbicide premixes, including saflufenacil + dimethenamid-P and S-metolachlor + mesotrione, was as high as 95 and 90% at 21 and 63 d after treatment (DAT), and mostly similar to the standard atrazine treatment. Residual control of common lambsquarters and wild buckwheat from pyroxasulfone was higher at 298 compared with 149 g ai ha−1 rate. Pyroxasulfone and other chloroacetamide herbicides (acetochlor or dimethenamid-P) applied alone failed to provide greater than 79, 70, and 54% residual control at 21, 35, and 63 DAT, respectively, of the weed species investigated. Residual weed control throughout the growing season was significantly improved with the addition of pendimethalin to pyroxasulfone (149 g ha−1), acetochlor, or dimethenamid-P when compared with any of the three herbicides applied alone. Kochia control by pyroxasulfone, acetochlor, or dimethenamid-P tank mixed with pendimethalin was as high as 94, 92, and 81% at 21, 35, and 63 DAT, respectively. Control of common lambsquarters with the addition of pendimethalin to pyroxasulfone or acetochlor was improved to 94, 89, and 81% at 21, 35, and 63 DAT, respectively. Similarly, wild buckwheat control with acetochlor plus pendimethalin was improved to 87, 85, and 82% at 21, 35, and 63 DAT, respectively. Consistent with the extended in-season (up to 9 wk) residual weed control, pyroxasulfone, acetochlor, or dimethenamid-P treatments when tank mixed with pendimethalin had higher corn yields compared with the herbicides applied alone. The investigation on residual herbicides that provide extended in-season weed control should be continued as an important aspect of glyphosate stewardship and to mitigate the occurrence of glyphosate-resistant weed populations in grower fields.

Kochia scoparia, Chenopodium album, y Polygonum convolvulus son malezas problemáticas en la producción de maíz resistente a glyphosate en las Grandes Planicies del Norte de Estados Unidos. En 2011 y 2012, se realizó una investigación de campo en Huntley, Montana, para investigar herbicidas efectivos PRE aplicados solos o en premezclas con o sin pendimethalin mezclada en tanque para el control residual de malezas de hoja ancha extendido durante la temporada de crecimiento en maíz resistente a glyphosate. El control de K. scoparia, C. album, y P. convolvulus con premezclas de herbicidas recientemente registradas, incluyendo saflufenacil + dimethenamid-P y S-metolachlor + mesotrione, alcanzó 95 y 90% a 21 y 63 d después del tratamiento, y fue similar al tratamiento estándar con atrazine. El control residual de C. album y de P. convolvulus con pyroxasulfone fue mayor con la dosis de 278 que con la de 149 g ai ha−1. Pyroxasulfone y otros herbicidas de tipo chloroacetamide (acetochlor o dimethenamid-P) aplicados solos, fallaron en brindar un control residual de las especies investigadas superior a 79, 70, y 54% a 21, 35, y 63 DAT, respectivamente. El control residual durante la temporada de crecimiento mejoró significativamente con la adición de pendimethalin a pyroxasulfone (149 g ha−1), acetochlor, o dimethenamid-P, cuando se comparó con cualquiera de los tres herbicidas aplicados solos. El control de K. scoparia con pyroxasulfone, acetochlor, o dimethenamid-P mezclados en tanque con pendimethalin alcanzó 94, 92, y 81% a 21, 35, y 63 DAT, respectivamente. La adición de pendimethalin a pyroxasulfone o acetochlor incrementó el control de C. album a 94, 89, y 81% a 21, 35, y 63 DAT, respectivamente. En forma similar, el control de P. convolvulus con acetochlor más pendimethalin mejoró a 87, 85, y 82%, a 21, 35, y 63 DAT, respectivamente. Consistentemente con el control residual extendido de malezas durante la temporada (hasta 9 semanas), los tratamientos de pyroxasulfone, acetochlor, o dimethenamid-P, mezclados en tanque con pendimethalin tuvieron mayores rendimientos de maíz al compararse con los herbicidas aplicados solos. La investigación de herbicidas residuales que brinden un control residual extendido durante la temporada de crecimiento debería continuar como un aspecto importante del buen uso y mantenimiento de glyphosate y para mitigar la aparición de poblaciones de malezas resistente a glyphosate en los campos de los productores.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2005) Outlook® herbicide product label. Research Triangle Park, NC: BASF Corporation. 18 pGoogle Scholar
Armel, GR, Wilson, HP, Richardson, RJ, Hines, TE (2003) Mesotrione, acetochlor, and atrazine for weed management in corn (Zea mays). Weed Technol 17:284290 Google Scholar
Chomas, AJ, Kells, JJ (2004) Triazine-resistant common lambsquarters (Chenopodium album) control in corn with preemergence herbicides. Weed Technol 18:551554 Google Scholar
Culpepper, AS (2006) Glyphosate-induced weed shifts. Weed Technol 20:277281 Google Scholar
Geier, PW, Stahlman, PW, Frihauf, JC (2006) KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol 20:622626 Google Scholar
Grossmann, K, Niggeweg, R, Christiansen, N, Looser, R, Ehrhardt, T (2010) The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci 58:19 Google Scholar
Hall, MR, Swanton, CJ, Anderson, GW (1992) The critical period of weed control in grain corn. Weed Sci 40:441447 Google Scholar
Heap, I (2014) International survey of herbicide resistant weeds. http://www.weedscience.com Accessed July 10, 2014Google Scholar
Hutchinson, P (2012) Common lambsquarters and hairy nightshade control in potato with dimethenamid-P alone and in tank mixtures and comparison of control by dimethenamid-P with S-metolachlor and metolachlor. Weed Technol 26:279283 Google Scholar
King, SR, Garcia, JO (2008) Annual broadleaf control with KIH-485 in glyphosate-resistant furrow-irrigated corn. Weed Technol 22:420424 Google Scholar
Knezevic, SZ, Datta, A, Scott, J, Porpiglia, PJ (2009) Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439 Google Scholar
Kumar, V, Jha, P, Reichard, N (2014) Occurrence and characterization of kochia (Kochia scoparia) accessions with resistance to glyphosate in Montana. Weed Technol 28:122130 Google Scholar
Moran, M, Sikkema, PH, Swanton, CJ (2011) Efficacy of saflufenacil plus dimethenamid-P for weed control in corn. Weed Technol 25:330334 Google Scholar
Moyer, JR, Blackshaw, RE (1993) Effect of soil moisture on atrazine and cyanazine persistence and injury to subsequent cereal crops in southern Alberta. Weed Technol 7:988994 Google Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Nurse, RE, Sikkema, PH, Robinson, DE (2011) Weed control and sweet maize (Zea mays L.) yield as affected by pyroxasulfone dose. Crop Prot 30:789793 Google Scholar
Odero, DC, Wright, AL, Fernandez, JV (2014) Sweet corn response and weed control to saflufenacil plus dimethenamid-P in organic soils. Weed Technol 28:281285 Google Scholar
Parker, RG, York, AC, Jordan, DL (2006) Weed control in glyphosate-resistant corn as affected by preemergence herbicide and timing of postemergence herbicide application. Weed Technol 20:564570 Google Scholar
Radosevich, SR (1977) Mechanism of atrazine resistance in lambsquarters and pigweed. Weed Sci 25:316318 Google Scholar
Rajcan, I, Chandler, KJ, Swanton, CJ (2004) Red–far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Sci 52:774778 Google Scholar
Shaner, DL (2000) The impact of glyphosate tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320326 Google Scholar
Steele, GL, Porpiglia, PJ, Chandler, JM (2005) Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol 19:866869 Google Scholar
Swanton, CJ, Shrestha, A, Clements, DR, Booth, BD, Chandler, K (2002) Evaluation of alternative weed management systems in a modified no-tillage corn–soybean–winter wheat rotation: weed densities, crop yield, and economics. Weed Sci 50:504511 Google Scholar
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shiminizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755 Google Scholar
[USDA-ERS] U.S. Department of Agriculture Economic Research Service (2014) Adoption of Genetically Engineered Crops in the U.S. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx. Accessed July, 20, 2014Google Scholar
Whaley, CM, Armel, GR, Wilson, HP, Hines, TE (2009) Evaluation of s-metolachlor and s-metolachlor plus atrazine mixtures with mesotrione for broadleaf weed control in corn. Weed Technol 23:193196 Google Scholar
Wicks, GA, Martin, AR, Mahnken, GW (1993) Control of triazine resistant kochia (Kochia scoparia) in conservation tillage corn (Zea mays). Weed Sci 41:225231 Google Scholar
Wilson, RG, Miller, SD, Westra, P, Kniss, AR, Stahlman, PW, Wicks, GW, Kachman, SD (2007) Glyphosate-induced weed shifts in glyphosate-resistant corn or a rotation of glyphosate-resistant corn, sugarbeet, and spring wheat. Weed Technol 21:900909 Google Scholar