Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-22T22:24:05.295Z Has data issue: false hasContentIssue false

Weed Control and Yield Comparisons of Twin- and Single-Row Glyphosate-Resistant Cotton Production Systems

Published online by Cambridge University Press:  20 January 2017

Krishna N. Reddy*
Affiliation:
Crop Production Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 350, Stoneville, MS 38776
J. Clif Boykin
Affiliation:
Cotton Ginning Research Unit, Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 36, Stoneville, MS 38776
*
Corresponding author's E-mail: krishna.reddy@ars.usda.gov.

Abstract

A 2-yr field study was conducted during 2007 and 2008 at Stoneville, MS, to determine the effect of twin-row (two rows 38 cm apart on 102-cm beds) and single-row (on 102-cm beds) patterns and glyphosate POST applications with and without fluometuron + S-metolachlor PRE on cotton canopy closure, weed control, and lint yield in two cultivars (‘DP117B2RF’, early maturity, hairy leaf; ‘DP164B2RF’, mid to full maturity, smooth leaf) under an irrigated environment. The experiment was conducted in a split–split plot arrangement of treatments in a randomized complete block design with row pattern as the main plot, cultivars as the subplot, and herbicide programs as the subsubplot. Cotton canopy closed 2 wk earlier in the twin-row pattern compared to the single-row pattern. Canopy closure was unaffected by cultivars and herbicide programs. Control of nine predominant weeds was sufficient (≥ 95%) to support cotton production. Total weed dry biomass was reduced by 35% in twin rows compared to the single-row pattern, 15% in DP117B2RF compared to DP164B2RF cultivar, and ≥ 97% with glyphosate early POST (EPOST), EPOST followed by (fb) mid-season POST (MPOST), EPOST fb MPOST fb late POST (LPOST) following PRE herbicides or three applications of glyphosate POST only without PRE herbicides compared to no herbicide. Cotton grown in twin-row pattern produced 6% higher lint yield than single-row cotton. Cultivar DP117B2RF produced 23% higher lint yield than cultivar DP164B2RF. Lint yields were higher with glyphosate EPOST fb MPOST, EPOST fb MPOST fb LPOST following PRE herbicides or three applications of glyphosate POST only without PRE herbicides (1,210 to 1,230 kg/ha) compared to glyphosate EPOST following PRE herbicides (1,130 kg/ha). These results demonstrated that cotton grown in twin-rows closed canopy early and produced higher lint yields than cotton grown in single-rows.

En Stonville, MS, durante los años 2007 y 2008 se realizó un estudio de campo con el objetivo de determinar el efecto de sistemas de hilera sencilla y doble, y de aplicaciones POST de glifosato con y sin fluometuron + S-metachlor PRE, en variables tales como el control de maleza, el cierre de dosel en algodón, y el rendimiento de fibra de dos cultivares. Los cultivares fueron el DP117B2RF (de maduración precoz y hojas pubescentes) y el DP164B2RF (de madurez intermedia y hoja lisa); ambos se establecieron en condiciones de riego y en dos hileras con una separación de 38 cm entre sí sobre una cama de 102 cm de ancho, y en surcos de una sola hilera en camas de 102 cm. El experimento se condujo en un arreglo de tratamientos en parcelas sub-subdivididas en un diseño en bloques completos al azar, con el patrón de hileras como la parcela principal, los cultivares como la subparcela y los programas de los herbicidas como la sub-subparcela. El cierre del dosel ocurrió dos semanas más temprano en el patrón de doble hilera comparado con el de una sola hilera. El cierre del dosel no fue afectado por el tipo de cultivar o el programa de herbicidas. El control de nueve especies de maleza predominante fue suficiente (≥ 95%) para mantener la producción de algodón. El total de biomasa de maleza seca en las hileras dobles, se redujo 35% comparada con el de la hilera simple. La biomasa de maleza se redujo 15% en el cultivar “DP117B2RF” comparado con el cultivar “DP164B2RF”. Contrastado con un testigo sin herbicida, glifosato aplicado de forma POSTT (postemergente temprano), POSTT seguido por (sp) POSTI (postemergente intermedio), POSTT sp POSTI sp POSTO (postemergente tardío) subsiguientes a herbicidas PRE, o tres aplicaciones POST de glifosato sin herbicidas PRE, disminuyeron ≥ 97% la biomasa de maleza. El algodón sembrado en surcos de doble hilera produjo un 6% más de rendimiento de fibra que el sembrado en surcos de una sola hilera. El cultivar DP117B2RF resultó con 23% de mayor rendimiento de fibra que el cultivar DP164B2RF. Los rendimientos de fibra de algodón fueron mayores con glifosato POSTT sp POSTI, POSTT sp POSTI sp POSTO subsiguientes a herbicidas PRE, o con tres aplicaciones POST de glifosato sin herbicidas PRE (1210 a 1230 kg/ha) comparado con glifosato POSTT en secuencia a herbicidas PRE (1130 kg/ha). Estos resultados demostraron que el algodón sembrado en doble hilera cerró su dosel más temprano y produjo mayor rendimiento de fibra que el sembrado en una sola hilera.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous 2008a. Roundup WeatherMax label. Monsanto, St. Louis, Missouri. http://www.monsanto.com/monsanto/ag_products/pdf/labels_msds/roundup_weathermax_label.pdf. Accessed June 20, 2008.Google Scholar
Anonymous 2008b. Crops: Cotton. Mississippi State University Extension Service, Mississippi State, Mississippi. http://msucares.com/crops/cotton/index.html. Accessed June 20, 2008.Google Scholar
Boykin, D. L., Carle, R. R., Ranney, C. D., and Shanklin, R. 1995. Weather data summary for 1964–1993, Stoneville, MS. Tech. Bull. 201. Mississippi State, Mississippi: Mississippi Agricultural and Forestry Experiment Station, Mississippi State University. 49.Google Scholar
Buehring, N. W., Willcutt, M. H., Columbus, E. P., Phelps, J. B., and Ruscoe, A. F. 2006. Yield and plant characteristics as influenced by spindle picker narrow and wide row patterns: three years progress report. Pages 18641870. in. Proceedings of the Beltwide Cotton Conference, San Antonio, TX, January 3–6, 2006. Memphis, TN National Cotton Council of America.Google Scholar
Harrison, M. P., Buehring, N. W., Dobbs, R. R., and Willcutt, M. H. 2006. Narrow row spindle picker cotton response to bed systems and seeding rates. Pages 16651667. in. Proceedings of the Beltwide Cotton Conference, San Antonio, TX, January 3–6, 2006. Memphis, TN National Cotton Council of America.Google Scholar
Jordan, D. L., Beam, J. B., Johnson, P. D., and Spears, J. F. 2001. Peanut response to prohexadione calcium in three seeding rate-row pattern planting systems. Agron. J. 93:232236.Google Scholar
Jost, P. H. and Cothren, J. T. 2000. Growth and yield comparisons of cotton planted in conventional and ultra narrow row spacings. Crop Sci 40:430435.Google Scholar
Karlen, D. L. and Camp, C. R. 1985. Row spacing, plant population, and water management effects on corn in the Atlantic coastal plain. Agron. J. 77:393398.Google Scholar
Karnei, J. R. 2005. The agronomics and economics of 15-inch cotton. Pages 601. in. Proceedings of the Beltwide Cotton Conference, New Orleans, LA, January 4–7, 2005. Memphis, TN National Cotton Council of America.Google Scholar
Koger, C. 2007. Effect of soybean row spacing on yield: twin-row vs. narrow- and wide-rows. Pages 61. in. Proceedings of the 10th Annual National Conservation Systems Cotton and Rice Conference, Houston, TX. January 29–30, 2007. Perryville, MO MidAmerica Farm Publications.Google Scholar
Lanier, J. E., Jordan, D. L., Spears, J. F., Wells, R., Johnson, P. D., Barnes, J. S., Hurt, C. A., Brandenburg, R. L., and Bailey, J. E. 2004. Peanut response to planting pattern, row spacing, and irrigation. Agron. J. 96:10661072.Google Scholar
Nelson, K. A. 2007. Glyphosate application timings in twin- and single-row corn and soybean spacings. Weed Technol 21:186190.Google Scholar
Nichols, S. P., Snipes, C. E., and Jones, M. A. 2004. Cotton growth, lint yield, and fiber quality as affected by row spacing and cultivar. J. Cotton Sci 8:112. http://www.cotton.org/journal/2004-08/1/. Accessed June 17, 2008.Google Scholar
Reddy, K. N. 2004. Weed control and species shift in bromoxynil- and glyphosate-resistant cotton (Gossypium hirsutum) rotation systems. Weed Technol 18:131139.Google Scholar
Reddy, K. N., Burke, I. C., Boykin, J. C., and Williford, J. R. 2009. Narrow-row cotton production under irrigated and non-irrigated environment: plant population and lint yield. J. Cotton. Sci 13:4855.Google Scholar
Sorensen, R. B., Lamb, M. C., and Butts, C. L. 2006. Row pattern, plant density, and nitrogen rate effects on corn yield in the southeastern US. Crop Manag. http://www.plantmanagementnetwork.org/sub/cm/research/2006/corn/sorensen.pdf. Accessed June 20, 2008.Google Scholar
Willcutt, M. H., Columbus, E. P., Buehring, N. W., Dobbs, R. R., and Harrison, M. P. 2006. Evaluation of a 15-inch spindle harvester in various row patterns; three years progress. Pages 531547. in. Proceedings of the Beltwide Cotton Conference, San Antonio, TX, January 3–6, 2006. Memphis, TN National Cotton Council of America.Google Scholar
Wilson, D. G. Jr. 2006. Evaluation of weed management and the agronomic utility of cotton grown on a 15-inch row configuration. Ph.D Dissertation. Raleigh, NC: North Carolina State University. 144.Google Scholar
Wilson, D. G. Jr., York, A. C., and Edmisten, K. L. 2007. Narrow-row cotton response to mepiquat chloride. J. Cotton Sci 11:177185. http://www.cotton.org/journal/2007-11/4/. Accessed June 17, 2008.Google Scholar