Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-13T08:52:04.220Z Has data issue: false hasContentIssue false

Weed Control in Cotton (Gossypium hirsutum) with Postemergence Applications of Trifloxysulfuron-sodium

Published online by Cambridge University Press:  20 January 2017

Barry J. Brecke
Affiliation:
West Florida Research and Education Center, Agronomy Dept. Institute of Food and Agricultural Science, University of Florida, 5988 Highway 90, Building 4900, Milton, FL 32583
Daniel O. Stephenson IV*
Affiliation:
West Florida Research and Education Center, Agronomy Dept. Institute of Food and Agricultural Science, University of Florida, 5988 Highway 90, Building 4900, Milton, FL 32583
*
Corresponding author's E-mail: dstephenson@uaex.edu

Abstract

Experiments were conducted in Florida from 1998 through 2000 to evaluate trifloxysulfuron-sodium applied POST for weed control in cotton. The addition of 0.25% (v/v) nonionic surfactant (NIS) to trifloxysulfuron-sodium, regardless of rate, increased sicklepod control 10 to 50% 6 and 19 wk after planting (WAP). All trifloxysulfuron-sodium treatments controlled Florida beggarweed and redweed 70 to 100% 6 and 19 WAP. Pitted morningglory was controlled 68 to 100% by trifloxysulfuron-sodium treatments; however, control was higher for treatments that contained 0.25% v/v NIS. Trifloxysulfuron-sodium provided poor control of smallflower morningglory. A sequential application of fluometuron PRE followed by trifloxysulfuron-sodium POST provided better control of smallflower morningglory than trifloxysulfuron-sodium alone 19 WAP. Cotton treated with trifloxysulfuron-sodium yielded higher than the nontreated check and early POST treatments that included 0.25% v/v NIS yielded approximately 20% higher than non-NIS treatments. Trifloxysulfuron-sodium applied POST provided season-long control of Florida beggarweed, pitted morningglory, redweed, and sicklepod with the addition of 0.25% v/v NIS but did not control smallflower morningglory in cotton.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Cropping Systems Agronomist, Northeast Research and Extension Center, University of Arkansas, P.O. Box 48, Keiser, AR 72351.

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 2002. Absorption, translocation, and metabolism of foliar-applied CGA-362622 in cotton, peanut, and selected weeds. Weed Sci. 50:293298.CrossRefGoogle Scholar
Ateh, C. M. and Harvey, R. G. 1999. Annual weed control by glyphosate in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:394398.CrossRefGoogle Scholar
Bloodworth, K. M., Reynolds, D. B., Holloway, J. C., and Cobill, R. M. 2000. Cotton weed control in Mississippi with CGA-362622. Proc. South. Weed Sci. Soc. 53:28.Google Scholar
Brecke, B. J., Bridges, D. C., and Grey, T. L. 2001. Postemergence weed control in cotton with CGA 362622. Proc. South. Weed Sci. 54:1.Google Scholar
Bridges, D. C., Grey, T. L., and Brecke, B. J. 2002. Pyrithiobac and bromoxynil combinations with MSMA for improved weed control in bromoxynil-resistant cotton. J. Cotton Sci. 6:9196.Google Scholar
Buchanan, G. A. 1992. Trends in weed control methods. in McWhorter, C. G. and Abernathy, J. R., eds. Weeds of Cotton: Characterization and Control. Memphis, TN: The National Cotton Foundation.Google Scholar
Burke, I. C. and Wilcut, J. W. 2004. Weed management in cotton with CGA-362622, fluometuron, and pyrithiobac. Weed Technol. 18:268276.CrossRefGoogle Scholar
Burke, I. C., Wilcut, J. W., and Porterfield, D. 2002. CGA-362622 antagonizes annual grass control with clethodim. Weed Technol. 16:749754.CrossRefGoogle Scholar
Crooks, H. L., York, A. C., Culpepper, A. S., and Brownie, C. 2003. CGA 362622 antagonizes annual grass control by graminicides in cotton (Gossypium hirsutum). Weed Technol. 17:373380.CrossRefGoogle Scholar
Culpepper, A. C. and York, A. C. 1997. Weed management in no-tillage bromoxynil-tolerant cotton (Gossypium hirsutum). Weed Technol. 11:335345.CrossRefGoogle Scholar
Dotray, P. A., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and devil's-claw (Proboscidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.CrossRefGoogle Scholar
Faircloth, W. H., Patterson, M. G., Monks, C. D., and Goodman, W. R. 2001. Weed management programs for glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technol. 544551.CrossRefGoogle Scholar
Holloway, J. C. Jr., Wells, J. W., and Hudetz, M. et al. 2000. CGA-362622 application timing, rates, and weed spectrum in cotton. Proc. South. Weed Sci. Soc. 53:240.Google Scholar
Hudetz, M., Foery, W., Wells, J., and Soares, J. E. 2000. GCA-362622, a new low rate Novartis post-emergent herbicide for cotton and sugarcane. Proc. South. Weed Sci. Soc. 53:163166.Google Scholar
Jennings, M. K., Culpepper, A. S., and York, A. C. 1999. Cotton response to temperature and pyrithiobac. J. Cotton Sci. 3:132138.Google Scholar
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol. 14:5765.CrossRefGoogle Scholar
Jordan, D. L., Frans, R. E., and McClelland, M. R. 1993. Influence of application rate and timing on efficacy of DPX-PE350 applied postemergence. Weed Technol. 7:216219.CrossRefGoogle Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.CrossRefGoogle Scholar
Paulsgrove, M. D. and Wilcut, J. W. 2001. Weed management with pyrithiobac preemergence in bromoxynil-resistant cotton. Weed Sci. 49:567570.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., and Askew, S. D. 2002. Weed control with CGA-362622, fluometuron, and prometryn. Weed Sci. 50:642647.CrossRefGoogle Scholar
Porterfield, D., Wilcut, J. W., Wells, J. W., and Clewis, S. B. 2003. Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci. 51:10021009.CrossRefGoogle Scholar
Reddy, K. N. 2001. Broadleaf weed control in ultra narrow row bromoxynil-resistant cotton (Gossypium hirsutum). Weed Technol. 15:497504.CrossRefGoogle Scholar
Richardson, R. J., Hatzios, K. K., and Wilson, H. P. 2003. Absorption, translocation, and metabolism of CGA 362622 in cotton and two weeds. Weed Sci. 51:157162.CrossRefGoogle Scholar
[SAS] Statistical Analysis Systems. 2004. SAS/STAT User's Guide Release 9.0. Cary, NC: Statistical Analysis Institute.Google Scholar
Shaw, D. R. and Arnold, J. C. 2002. Weed control from herbicide combination with glyphosate. Weed Technol. 16:16.CrossRefGoogle Scholar
Snipes, C. E. and Mueller, T. C. 1992. Influence of fluometuron and MSMA on cotton yield and fruiting characteristics. Weed Sci. 42:210215.CrossRefGoogle Scholar
Sunderland, S. L., Burton, J. D., Coble, H. D., and Maness, E. P. 1995. Physiological mechanism for tall morningglory resistance to DPX-EP350. Weed Sci. 43:2127.CrossRefGoogle Scholar
Troxler, S. C., Burke, I. C., Wilcut, J. W., and Smith, W. D. 2003. Absorption, translocation, and metabolism of foliar applied GCA-362622 in purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Sci. 51:1318.CrossRefGoogle Scholar
Wells, J. W., Holloway, J. C. Jr., Rawls, E. K., Forster, P., Dunne, C., Porterfield, D., and Allard, J. 2001. CGA 362622 use in cotton and sugarcane. Proc. South. Weed Sci. 54:141.Google Scholar
Wilcut, J. W., York, A. C., and Jordan, D. L. 1995. Weed management systems from oil seed crops. in Smith, A. E., ed. Handbook of Weed Management Systems. New York: Marcel Dekker. Pp. 343400.Google Scholar
Wright, D., Marois, J., and Rich, J. 2003. Cotton Cultural Practices and Fertility Management. Gainesville, FL: University of Florida: Web page: http://edis.ifas.ufl.edu/AG200. Accessed April 20, 2005.Google Scholar