Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-16T23:45:05.628Z Has data issue: false hasContentIssue false

Embryonic cardiovascular variables during incubation

Published online by Cambridge University Press:  18 September 2007

H. Tazawa
Affiliation:
Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan, e-mail: tazawa@mmm.muroran-it.ac.jp
Get access

Abstract

Avian embryos develop within the confines of an eggshell independent of maternal physiological functions. The eggshell provides not only an airway for diffusive gas exchange of the embryo, but also a wide space available for measurements of physiological functions and makes it possible to regulate directly external nvironments for physiological study. Firstly, in materials and methods section are shown measurements of various cardiogenic and electrical signals while maintaining dequate gas exchange through the eggshell. Secondly, the report summarizes mainly our studies on embryonic gas exchange and measurements of circulatory variables with an emphasis on the embryonic heart rate which we measured taking advantage of the hard eggshell. Lastly, development of thermoregulatory competence in avian embryos is briefly summarized.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, R., Ono, H., Höchel, J., Pearson, J.T. and Tazawa, H. (1997) Non-invasive determination of instantaneous heart rate in developing avian embryos by means of acoustocardiogram. Medical and Biological Engineering and Computing 35: 323327.CrossRefGoogle ScholarPubMed
Akiyama, R., Matsuhisa, A., Pearson, J.T. and Tazawa, H. (1999a) Long-term measurement of heart rate in chicken eggs. Comparative Biochemistry and Physiology A 124: 483490.CrossRefGoogle ScholarPubMed
Akiyama, R., Mitsubayashi, H. and Tazawa, H. (1999b) Heart rate responses to altered ambient oxygen in early (days 3–9) chick embryos in the intact egg. Journal of Comparative Physiology B 169: 8592.CrossRefGoogle ScholarPubMed
Ar, A., Visschedijk, A.H.J., Rahn, H. and Piiper, J. (1980) Carbon dioxide in the chick embryo towards end of development: effects of He and SF6 in breathing mixture. Respiration Physiology 40: 293307.Google Scholar
Burggren, W.W., Tazawa, H. and Thompson, D. (1994) Genetic and maternal environmental influences on embryonic physiology: intraspecific variability in avian embryonic heart rates. Israel Journal of Zoology 40: 351362.Google Scholar
Burggren, W.W. (1999) Genetic, environmental and maternal influences on embryonic cardiac rhythms. Comparative Biochemistry and Physiology A 124: 423427.CrossRefGoogle ScholarPubMed
Chiba, Y., Khandoker, A.H., Nobuta, M., Moriya, K., Akiyama, R. and Tazawa, H. (2002) Development of respiratory rhythms in perinatal chick embryos. Comparative Biochemistry and Physiology A 131: 817824.CrossRefGoogle ScholarPubMed
Chiba, Y., Fukuoka, S., Niiya, A., Akiyama, R. and Tazawa, H. (2004) Development of cholinergic chronotropic control in chick (Gallus gallus domesticus) embryos. Comparative Biochemistry and Physiology A 137: 6573.CrossRefGoogle ScholarPubMed
Haque, M.A., Pearson, J.T., Hou, P.C.L. and Tazawa, H. (1996) Effects of pre-incubation egg storage on embryonic functions and growth. Respiration Physiology 103: 8998.CrossRefGoogle ScholarPubMed
Hashimoto, Y., Narita, T. and Tazawa, H. (1991) Cardiogenic ballistograms of chicken eggs: comparison of measurements. Medical and Biological Engineering and Computing 29: 393397.CrossRefGoogle ScholarPubMed
Höchel, J., Akiyama, R., Masuko, T., Pearson, J.T., Nichelmann, M. and Tazawa, H. (1998) Development of heart rate irregularities in chick embryos. American Journal of Physiology 275 (Heart Circ. Physiol.) 44: H527–H533.Google Scholar
Höchel, J., Mohr, E., Nichelmann, M., Pirow, R. and Tazawa, H. (1999) Development of heart rate rhythmicity in Muscovy duck embryos. Comparative Biochemistry and Physiology A 124: 501509.CrossRefGoogle ScholarPubMed
Kato, K., Moriya, K., Dzialowski, E.M., Burggren, W.W. and Tazawa, H. (2002) Cardiac rhythms in prenatal and perinatal emu embryos. Comparative Biochemistry and Physiology A 131: 775785.CrossRefGoogle ScholarPubMed
Khandoker, A.H., Dzialowski, E.M., Burggren, W.W. and Tazawa, H. (2003) Cardiac rhythms of late pre-pipped and pipped chick embryos exposed to altered oxygen environments. Comparative Biochemistry and Physiology A 136: 289299.CrossRefGoogle ScholarPubMed
Khandoker, A.H., Fukazawa, K., Dzialowski, E.M., Burggren, W.W. and Tazawa, H. (2004) Maturation of the homeothermic response of heart rate to altered ambient temperature in developing chick hatchlings (Gallus gallus domesticus). American Journal of Physiology: Regul. Integr. Comp. Physiol. 286: R129–R137.Google ScholarPubMed
Kuroda, O., Matsunaga, C., Whittow, G.C. and Tazawa, H. (1990) Comparative metabolic responses to prolonged cooling in precocial duck (Anas domestica) and altricial pigeon (Columba domestica) embryos. Comparative Biochemistry and Physiology 95A: 407410.CrossRefGoogle Scholar
Matsunaga, C., Mathiu, P.M., Whittow, G.C. and Tazawa, H. (1989) Oxygen consumption of brown noddy (Anous stolidus) embryos in a quasiequilibrium state at lowered ambient temperatures. Comparative Biochemistry and Physiology 93A: 707710.CrossRefGoogle Scholar
Metcalfe, J. and Stock, M.K. (1993) Current topic: oxygen exchange in the chorioallantoic membrane, avian homologue of the mammalian placenta. Placenta 14: 605613.CrossRefGoogle ScholarPubMed
Moriya, K., Höchel, J., Pearson, J.T. and Tazawa, H. (1999) Cardiac rhythms in developing chicks. Comparative Biochemistry and Physiology A 124: 461468.CrossRefGoogle ScholarPubMed
Moriya, K., Pearson, J.T., Burggren, W.W., Ar, A. and Tazawa, H. (2000) Continuous measurements of instantaneous heart rate and its fluctuations before and after hatching in chickens. Journal of Experimental Biology 203: 895903.CrossRefGoogle ScholarPubMed
Moriya, K., Kato, K., Matsumura, M., Dzialowski, E., Burggren, W.W. and Tazawa, H. (2002) Cardiac rhythms in developing emu hatchlings. Comparative Biochemistry and Physiology A 131: 787795.CrossRefGoogle ScholarPubMed
Nichelmann, M. and Tzschentke, B. (2002) Ontogeny of thermoregulation in precocial birds. Comparative Biochemistry and Physiology A 131: 751763.CrossRefGoogle ScholarPubMed
Okuda, A. and Tazawa, H. (1988) Gas exchange and development of chicken embryos with widely altered shell conductance from the beginning of incubation. Respiration Physiology 74: 187198.CrossRefGoogle ScholarPubMed
Ono, T. and Tazawa, H. (1975) Microphotometric method for measuring the oxygenation and deoxygenation rate in a single red blood cell. Japanese Journal of Physiology 25: 93107.Google Scholar
Ono, H., Hou, P.C.L. and Tazawa, H. (1994) Responses of developing chicken embryos to acute changes in ambient temperature: noninvasive study of heart rate. Israel Journal of Zoology 40: 467479.Google Scholar
Ono, H., Akiyama, R., Sakamoto, Y., Pearson, J.T. and Tazawa, H. (1997) Ballistocardiogram of avian eggs determined by an electromagnetic induction coil. Medical and Biological Engineering and Computing 35: 431435.CrossRefGoogle ScholarPubMed
Pearson, J.T., Haque, M.A., Hou, P.C.L. and Tazawa, H. (1996) Developmental patterns of O2 consumption, heart rate and O2 pulse in unturned eggs. Respiration Physiology 103: 8387.CrossRefGoogle ScholarPubMed
Pearson, J.T., Tsuzuki, M., Nakane, Y., Akiyama, R. and Tazawa, H. (1998) Development of heart rate in the precocial king quail, Coturnix chinensis. Journal of Experimental Biology 201: 931941.CrossRefGoogle ScholarPubMed
Pearson, J.T. and Tazawa, H. (1999a) Ontogeny of heart rate in embryonic and nestling crows (Corvus corone and Corvus macrorhynchos). Journal of Comparative Physiology B 169: 256262.CrossRefGoogle Scholar
Pearson, J.T. and Tazawa, H. (1999b) Development of cardiac rhythms in altricial avian embryos. Comparative Biochemistry and Physiology A 124: 475482.CrossRefGoogle ScholarPubMed
Pearson, J.T., Noma, Y. and Tazawa, H. (1999) Developmental patterns of heart rate in altricial avian embryos and hatchlings. Journal of Experimental Biology 202: 15451550.CrossRefGoogle ScholarPubMed
Piiper, J., Tazawa, H., Ar, A. and Rahn, H. (1980) Analysis of chorioallantoic gas exchange in the chick embryo. Respiration Physiology 39: 273284.CrossRefGoogle ScholarPubMed
Rahn, H. and Pagenelli, C. (1982) Role of diffusion in gas exchange of the avian egg. Federation Proceedings 41: 21342136.Google ScholarPubMed
Rahn, H., Matalon, S. and Sotherland, P.R. (1985) Circulatory changes and oxygen delivery in the chick embryos prior to hatching. In: Cardiovascular Shunts. Phylogenetic, Ontogenetic and Clinical Aspects. (Ed. Johansen, K. and Burggren, W.), Munksgaard, Copenhagen, pp.179198.Google Scholar
Rahn, H., Poturalski, S.A. and Paganelli, C.V. (1990) The acoustocardiogram: a noninvasive method for measuring heart rate of avian embryos in ovo. Journal of Applied Physiology 69: 15461548.CrossRefGoogle ScholarPubMed
Sakamoto, Y., Haque, M.A., Ono, H., Pearson, J. and Tazawa, H. (1995) Two-dimensional cardiogenic ballistic movements of avian eggs. Medical and Biological Engineering and Computing 33: 611614.CrossRefGoogle ScholarPubMed
Tamura, A., Akiyama, R., Chiba, Y., Moriya, K., Dzialowski, E.M., Burggren, W.W. and Tazawa, H. (2003) Heart rate responses to cooling in emu hatchlings. Comparative Biochemistry and Physiology A 134: 829838.CrossRefGoogle ScholarPubMed
Tazawa, H., Mikami, T. and Yoshimoto, C. (1971a) Respiratory properties of chicken embryonic blood during development. Respiration Physiology 13: 160170.CrossRefGoogle ScholarPubMed
Tazawa, H., Mikami, T. and Yoshimoto, C. (1971b) Effect of reducing the shell area on the respiratory properties of chicken embryonic blood. Respiration Physiology 13: 352360.CrossRefGoogle ScholarPubMed
Tazawa, H. and Ono, T. (1974) Microscopic observation of the chorioallantoic capillary bed of chicken embryos. Respiration Physiology 20: 8189.Google ScholarPubMed
Tazawa, H., Ono, T. and Mochizuki, M. (1974) Reaction velocity of carbon monoxide with blood cells in the chorioallantoic vascular plexus of chicken embryos. Respiration Physiology 20: 161170.Google ScholarPubMed
Tazawa, H. and Mochizuki, M. (1976a) Estimation of contact time and diffusing capacity for oxygen in the chorioallantoic vascular plexus. Respiration Physiology 28: 119128.CrossRefGoogle ScholarPubMed
Tazawa, H. and Mochizuki, M. (1976b) Rates of oxygenation and Bohr shift of capillary blood in chick embryos. Nature 261: 509511.CrossRefGoogle ScholarPubMed
Tazawa, H., Ono, T. and Mochizuki, M. (1976a) Oxygen dissociation curve for chorioallantoic capillary blood of chicken embryo. Journal of Applied Physiology 40: 393398.CrossRefGoogle ScholarPubMed
Tazawa, H., Ono, T. and Mochizuki, M. (1976b) Oxygenation and deoxygenation velocity factors of chorioallantoic capillary blood. Journal of Applied Physiology 40: 399403.CrossRefGoogle ScholarPubMed
Tazawa, H. (1980) Oxygen and CO2 exchange and acid-base regulation in the avian embryo. American Zoologist 20: 395404.CrossRefGoogle Scholar
Tazawa, H., Ar, A., Rahn, H. and Piiper, J. (1980) Repetitive and simultaneous sampling from the air cell and blood vessels in the chick embryo. Respiration Physiology 39: 265272.CrossRefGoogle ScholarPubMed
Tazawa, H. (1981a) Effect of O2 and CO2 in N2, He, and SF6 on chick embryo blood pressure and heart rate. Journal of Applied Physiology: Respirat. Environ. Exercise Physiol. 51: 10171022.CrossRefGoogle Scholar
Tazawa, H. (1981b) Measurement of blood pressure of chick embryo with an implanted needle catheter. Journal of Applied Physiology: Respirat. Environ. Exercise Physiol. 51: 10231026.CrossRefGoogle ScholarPubMed
Tazawa, H. (1981c) Compensation of diffusive respiratory disturbances of the acid-base balance in the chick embryo. Comparative Biochemistry and Physiology 69A: 333336Google Scholar
Tazawa, H., Piiper, J., Ar, A. and Rahn, H. (1981) Changes in acid-base balance of chick embryos exposed to He or SF6 atmosphere. Journal of Applied Physiology: Respirat. Environ. Exercise Physiol. 50: 819823.CrossRefGoogle ScholarPubMed
Tazawa, H. (1982) Regulatory processes of metabolic and respiratory acid-base disturbances in embryos. Journal of Applied Physiology: Respirat. Environ. Exercise Physiol. 53: 14491454.CrossRefGoogle ScholarPubMed
Tazawa, H., Visschedijk, A.H.J. and Piiper, J. (1983a) Blood gases and acid-base status in chicken embryos with naturally varying egg shell conductance. Respiration Physiology 54: 137144.CrossRefGoogle ScholarPubMed
Tazawa, H., Visschedijk, A.H.J., Wittmann, J. and Piiper, J. (1983b) Gas exchange, blood gases and acid-base status in the chick before, during and after hatching. Respiration Physiology 53: 173185.CrossRefGoogle ScholarPubMed
Tazawa, H. (1984) Carbon dioxide transport and acid-base balance in chickens before and after hatching. In: Respiration and Metabolism of Embryonic Vertebrates. (Ed. Seymour, R.S.) Dr. W. Junk Pub., Dordrecht pp. 333345.CrossRefGoogle Scholar
Tazawa, H. and Nakagawa, S. (1985) Response of egg temperature, heart rate and blood pressure in the chick embryo to hypothermal stress. Journal of Comparative Physiology B 155: 195200.CrossRefGoogle Scholar
Tazawa, H. and Takenaka, H. (1985) Cardiovascular shunt and model analysis in the chick embryo. In: Cardiovascular Shunts. Phylogenetic, Ontogenetic and Clinical Aspects. (Ed. Johansen, K. and Burggren, W.), Munksgaard, Copenhagen, pp.179198.Google Scholar
Tazawa, H. (1986) Acid-base equilibrium in birds and eggs. In: Acid-Base Regulation in Animals (Ed. Heisler, N.), Elsevier, Amsterdam, chapter 6.Google Scholar
Tazawa, H. and Rahn, H. (1986) Tolerance of chick embryos to low temperatures in reference to the heart rate. Comparative Biochemistry and Physiology 85A: 531534.Google Scholar
Tazawa, H. (1987) Embryonic respiration. In: Bird Respiration (Ed. Seller, T.J.), CRC Press, Boca Raton, chapter 6.Google Scholar
Tazawa, H. and Johansen, K. (1987) Comparative model analysis of central shunts in vertebrate cardiovascular systems. Comparative Biochemistry Physiology 86A: 595607.Google Scholar
Tazawa, H. and Rahn, H. (1987) Temperature and metabolism of chick embryos and hatchlings after prolonged cooling. Journal of Experimental Zoology Suppl.1: 105109.Google Scholar
Tazawa, H., Nakazawa, S., Okuda, A. and Whittow, G.C. (1988a) Short-term effects of altered shell conductance on oxygen uptake and hematological variables of late chicken embryos. Respiration Physiology 74: 199210.CrossRefGoogle ScholarPubMed
Tazawa, H., Wakayama, H., Turner, J.S. and Paganelli, C.V. (1988b) Metabolic compensation for gradual cooling in developing chick embryos. Comparative Biochemistry and Physiology 89A: 125129.CrossRefGoogle Scholar
Tazawa, H., Turner, J.S. and Paganelli, C.V. (1988c) Cooling rates of living and killed chicken and quail eggs in air and in helium-oxygen gas mixture. Comparative Biochemistry and Physiology 90A: 99102.Google Scholar
Tazawa, H., Hiraguchi, T., Asakura, T., Fujii, H. and Whittow, G.C. (1989a) Noncontact measurements of avian embryo heart rate by means of the laser speckle: comparison with contact measurements. Medical and Biological Engineering and Computing 27: 580586.CrossRefGoogle Scholar
Tazawa, H., Suzuki, Y. and Musashi, H. (1989b) Simultaneous acquisition of ECG, BCG, and blood pressure from chick embryos in the egg. Journal of Applied Physiology 67: 478483.CrossRefGoogle ScholarPubMed
Tazawa, H., Okuda, A., Nakagawa, S. and Whittow, G.C. (1989c) Metabolic responses of chicken embryos to graded, prolonged alterations in ambient temperature. Comparative Biochemistry and Physiology 92A: 613617.CrossRefGoogle Scholar
Tazawa, H., Whittow, G.C., Turner, J.S. and Paganelli, C.V. (1989d) Metabolic responses of gradual cooling in chicken eggs treated with thiourea and oxygen. Comparative Biochemistry and Physiology 92A: 619622.CrossRefGoogle Scholar
Tazawa, H., Kuroda, O. and Whittow, G.C. (1991a) Noninvasive determination of embryonic heart rate during hatching in the brown noddy (Anous stolidus). Auk 108: 594601.Google Scholar
Tazawa, H., Hiraguchi, T., Kuroda, O., Tullett, S.G. and Deeming, D.C. (1991b) Embryonic heart rate during development of domesticated birds. Physiological Zoology 64: 10021022.CrossRefGoogle Scholar
Tazawa, H., Hashimoto, Y. and Doi, K. (1992a) Blood pressure and heart rate of the chick embryo (Gallus domesticus) within the egg: responses to autonomic drugs. In: Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System (Ed. Hill, R.B., Kuwasawa, K., McMahon, B.R. and Kuramoto, T.), Karger, Basel, pp.8696.Google Scholar
Tazawa, H., Takami, M., Kobayashi, K., Hasegawa, J. and Ar, A. (1992b) Non-invasive determination of heart rate in newly hatched chicks. British Poultry Science 33: 11111118.CrossRefGoogle ScholarPubMed
Tazawa, H., Yamaguchi, S., Yamada, M. and Doi, K. (1992c) Embryonic heart rate of the domestic fowl (Gallus domesticus) in a quasiequilibrium state of altered ambient temperatures. Comparative Biochemistry and Physiology A 101: 103108.CrossRefGoogle Scholar
Tazawa, H., Hashimoto, Y., Takami, M., Yufu, Y. and Whittow, G.C. (1993) Simple, noninvasive system for measuring the heart rate of avian embryos and hatchlings by means of a piezoelectric film. Medical and Biological Engineering and Computing 31: 129134.CrossRefGoogle ScholarPubMed
Tazawa, H., Watanabe, W. and Burggren, W.W. (1994) Embryonic heart rate in altricial birds, the pigeon (Columba domestica) and the bank swallow (Riparia riparia). Physiological Zoology 67: 14481460.CrossRefGoogle Scholar
Tazawa, H. and Whittow, G.C. (1994) Embryonic heart rate and oxygen pulse in two procellariiform seabirds, Diomedea immutabilis and Puffinus pacificus. Journal of Comparative Physiology B 163: 642648.CrossRefGoogle Scholar
Tazawa, H. and Hou, P.C.L. (1997) Avian cardiovascular development. In: Development of Cardiovascular Systems (Ed. Burggren, W.W. and Keller, B.B.), Cambridge Univ. Press, Cambridge, chapter 15.Google Scholar
Tazawa, H., Ar, A., Pearson, J.T., Moriya, K. and Gefen, E. (1998a) Heart rate in developing ostrich embryos. British Poultry Science 39: 161166.CrossRefGoogle ScholarPubMed
Tazawa, H., Ar, A., Gefen, E., Moriya, K. and Pearson, J.T. (1998b) Effects of incubator humidity on embryonic heart rate in the ostrich. Proc. 10th European Poultry Conference pp: 843–847Google Scholar
Tazawa, H., Mitsubayashi, H., Hirata, M., Höchel, J. and Pearson, J.T. (1999) Cardiac rhythms in chick embryos during hatching. Comparative Biochemistry and Physiology A 124: 511521.CrossRefGoogle ScholarPubMed
Tazawa, H. and Whittow, G.C. (2000). Incubation Physiology. In: Sturkie's Avian Physiology 5th edition (Ed. Whittow, G.C.), Academic press, San Diego, chapter 24.Google Scholar
Tazawa, H., Ar, A., Moriya, K., Gefen, E. and Pearson, J.T. (2000) Embryonic heart rate measurements during artificial incubation of emu eggs. British Poultry Science 41: 8993.CrossRefGoogle ScholarPubMed
Tazawa, H., Moriya, K., Tamura, A., Komoro, T. and Akiyama, R. (2001a) Ontogenetic study of thermoregulation in birds. Journal of Thermal Biology 26: 281286.CrossRefGoogle Scholar
Tazawa, H., Pearson, J.T., Komoro, T. and Ar, A. (2001b) Allometric relationships between embryonic heart rate and fresh egg mass in birds. Journal of Experimental Biology 204: 165174.CrossRefGoogle ScholarPubMed
Tazawa, H., Akiyama, R. and Moriya, K. (2002a) Development of cardiac rhythms in birds. Comparative Biochemistry and Physiology A 132: 675689.CrossRefGoogle ScholarPubMed
Tazawa, H., Moriya, K., Tamura, A. and Akiyama, R. (2002b) Low frequency oscillation of instantaneous heart rate in newly hatched chicks. Comparative Biochemistry and Physiology A131: 797803.CrossRefGoogle Scholar
Tazawa, H., Chiba, Y., Khandoker, A.H., Dzialowski, E.M. and Burggren, W.W. (2004) Early development of thermoregulatory competence in chickens: responses of heart rate and oxygen uptake to altered ambient temperatures. Avian and Poultry Biology Reviews (in press).CrossRefGoogle Scholar
Tzschentke, B. and Basta, D. (2002) Early development of neuronal hypothalamic thermosensitivity in birds: influence of epigenetic temperature adaptation. Comparative Biochemistry and Physiology A131: 825832.CrossRefGoogle Scholar
Tzschentke, B. (2004) Perinatal adaptation in poultry. CD Proceedings of XXII World's Poultry Congress.Google Scholar
Visschedijk, A.H.J., Tazawa, H. and Piiper, J. (1985) Variability of shell conductance and gas exchange of chicken eggs. Respiration Physiology 59: 339345.CrossRefGoogle ScholarPubMed
Wang, N., Butler, J.P. and Banzett, R.B. (1990) Gas exchange across avian eggshells oscillates in phase with heartbeat. Journal of Applied Physiology 69: 15491552.CrossRefGoogle ScholarPubMed
White, P.T. (1974) Experimental studies on the circulatory system of the late chick embryo. Journal of Experimental Biology 61: 571592.CrossRefGoogle ScholarPubMed
Whittow, G.C. and Tazawa, H. (1991) The early development of thermoregulation in birds. Physiological Zoology 64: 13711390.CrossRefGoogle Scholar