Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T20:21:48.120Z Has data issue: false hasContentIssue false

Analysis of risk factors for the introduction of Salmonella spp. and Campylobacter spp. in poultry farms using Delphi method

Published online by Cambridge University Press:  18 November 2011

A. WILKE*
Affiliation:
Institute for Spatial Analysis and Planning in Areas of Intensive Agriculture (ISPA), Driverstrasse 22, 49377 Vechta, Germany
H.-W. WINDHORST
Affiliation:
Institute for Spatial Analysis and Planning in Areas of Intensive Agriculture (ISPA), Driverstrasse 22, 49377 Vechta, Germany
B. GRABKOWSKY
Affiliation:
Lohmann Animal Health GmbH & Co. KG, Science, Heinz-Lohmann-Straße 4, 27472 Cuxhaven, Germany
*
Corresponding author: awilke@ispa.uni-vechta.de
Get access

Abstract

The reduction of the prevalence of zoonoses and zoonotic agents like campylobacteriosis and salmonellosis requires eradication, control and monitoring measures to protect both animal and public health. Therefore, it is important to identify the main sources of infections within the poultry production chain. As the latest EFSA results show, these zoonotic agents were mostly found on fresh poultry meat as well as in live poultry. Consequently, the main entrance paths have to be identified directly at farm level. Based on a literature review, the 112 risk factors for an introduction of Campylobacter spp. and Salmonella spp. infections were summarised and attributed to 14 risk categories such as farm management, biosecurity, staff hygiene and carcass handling. Afterwards, the main risk factors were identified by elicitation of expert opinion using the Delphi methodology. In the explorative study, an international expert panel defined and weighted the relative importance of the risk categories and risk factors within a three-stage procedure. According to the working hypothesis, risk factors related to hygiene in the poultry house as well as external service crews are the main determinants for infection. Based on the results an evaluation and assessment scheme for poultry farms will be developed. Furthermore, the results can help to assess the status of poultry farms, to raise awareness in farmers and their staff for relevant farm management techniques within education and training manuals.

Type
Review Article
Copyright
Copyright © World's Poultry Science Association 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADKIN, A., HARTNETT, E., JORDAN, L., NEWELL, D. and DAVISON, H. (2006) Use of systematic review to assist the development of Campylobacter control strategies in broilers. Journal of Applied Microbiology 100: 306-315.Google Scholar
ALTER, T., BERESWILL, S., GLÜNDER, G., HAAG, L.-M., HÄNEL, I., HEIMESAAT, M.M., LUGERT, R., RAUTENSCHLEIN, S., WEBER, R.M., ZAUTNER, A.E. and GROß, U. (2011) Die Campylobacteriose des Menschen. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz 54: 728-734CrossRefGoogle Scholar
COX, N.A., RICHARDSON, L.J., BUHR, R.J., FEDORKA-CRAY, P.J. and VIZZIER-THAXTON, Y. (2010) Campylobacter - How does it get in the chicken? Watt Poultry USA, Vol. 11 No. 9: 22-25Google Scholar
DALKEY, N.C. (1969) The Delphi method: An experimental study of group opinion. RM-5888-PR. - Downloadable from: http://www.rand.org/pubs/research_memoranda/2005/RM5888.pdfGoogle Scholar
EUROPÄISCHE UNION (EU), (2003) Verordnung (EG) Nr. 2160/2003 des Europäischen Parlaments und des Rates vom 17. November 2003 zur Bekämpfung von Salmonellen und bestimmten anderen durch Lebensmittel übertragbaren Zoonoseerregern. Amtsblatt der Europäischen Union L325: 1-15.Google Scholar
EUROPEAN FOOD SAFETY AUTHORITY (EFSA), (2011a) Trends and Sources of Zoonoses and Zoonotic Agents and Food-borne Outbreaks in the European Union in 2009. The EFSA Journal 2090: 1-378.Google Scholar
EUROPEAN FOOD SAFETY AUTHORITY (EFSA), (2011b) Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. The EFSA Journal 2105: 1-141.Google Scholar
FRASER, R.W., WILLIAMS, N.T., POWELL, L.F. and COOK, A.J.C. (2009) Reducing Campylobacter and Salmonella Infection: Two studies of the Economic Cost and Attitude to Adoption of On-farm Besecurity Measures. Zoonoses and Public Health 57: e109-e115.Google Scholar
GLÜNDER, G., WEBER, R.M. and AUERBACH, M.I. (2004) Campylobacter beim Geflügel: eine Übersicht über Verbreitung, Bedeutung und Bekämpfungsmöglichkeiten. Bundesforschungsanstalt für Viruskrankheiten der Tiere (BFAV) (Hrsg.): Campylobacter-Infektionen: 23. Jenaer Symposium: 01.-02.07.2004: p. 2.Google Scholar
HESS, M. (2006) Hygiene und Biosecurity in der Geflügelprimärproduktion unter besonderer Berücksichtigung vom Campylobacter spp. und Salmonella spp. Tagung: Überwachung und Bekämpfung von Infektionen durch Salmonellen und Campylobacter - Schwerpunkt Geflügel, AGES, Wien, 03.03.2006.Google Scholar
KENT, A.J., FAROUK, L., MAIN, J. and HOARE, J.M. (2008) Antibiotica-resistant Campylobacter: an increasing problem. Postgraduate Medical Journal 84: 106-108Google Scholar
PASQUALI, F., DE CESARE, A., MANFREDA, G. and FRANCHINI, A. (2011) Campylobacter control strategies in European poultry production. World's Poultry Science Journal 67: 5-18.Google Scholar
PAN AMERICAN HEALTH ORGANIZATION (PAHO), (2001) Zoonoses and communicable diseases common to man and animal. Scientific and Technical Publication 580: 1-395.Google Scholar
POPPE, C. (2000) Salmonella infections in the domestic fowl, in: WRAY, C. & WRAY, A. (Eds) Salmonella in domestic animals, pp.107-132 (Wallingford, CABI Publishing).Google Scholar
ROSE, N., BEAUDEAU, F., DROUIN, P., TOUX, J.Y., ROSE, V. and COLIN, P. (1999) Risk factors for Salmonella enterica subsp. enterica contamination in French broiler-chicken flocks at the end of the rearing period. Preventive Veterinary Medicine 39: 265-277.CrossRefGoogle ScholarPubMed
SACKMAN, H. (1974) Delphi Assessment: Expert Opinion, Forecasting and Group Process. R-1283-PR. – Downloadable from: http://www.rand.org/pubs/reports/2006/R1283.pdfGoogle Scholar
SNOW, L.C., DAVIES, R.H., CHRISTIANSEN, K.H., CARRIQUE-MAS, J.J., COOK, A.J. and EVANS, S.J. (2010) Investigation of risk factors for Salmonella on commercial egg-laying farms in Great Britain. Veterinary Record 166(19): 579-586.CrossRefGoogle ScholarPubMed
THORNTON, G. (2010) Dynamics of Salmonella, Campylobacter in poultry. Watt Poultry USA, Vol. 11 No. 10: 24-25.Google Scholar
UNITED STATES DEPARTMENT OF AGRICULTURE (USDA), (2010) Compliance Guideline for Controlling Salmonella and Campylobacter in Poultry. Third Edition. Downloadable from: http://origin-www.fsis.usda.gov/PDF/Compliance_Guide_Controling_Salmonella_Campylobacter_Poultry_0510.pdf.Google Scholar
WEDDERKOPP, A., GRADEL, K.O., JORGENSEN, J.C. and MADSEN, M. (2001) Pre-harvest surveillance of Campylobacter and Salmonella in Danish broiler flocks: a 2-year study. International Journal of Food and Microbiology 68: 53-59.CrossRefGoogle Scholar
WORLD HEALTH ORGANISATION (WHO), (2010) Zoonoses and veterinary public health (VPH). Downloadable from: http://www.who.int/zoonoses/en/.Google Scholar