Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T10:17:15.863Z Has data issue: false hasContentIssue false

Conservation of goose genetic resources in Poland - past and present status

Published online by Cambridge University Press:  20 August 2019

J. DOBRZAŃSKI
Affiliation:
Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska st. 33, 60-637 Poznan, Poland
J. CALIK
Affiliation:
Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska st. 1, 32-083 Balice, Poland
J. KRAWCZYK
Affiliation:
Department of Poultry Breeding, National Research Institute of Animal Production, Krakowska st. 1, 32-083 Balice, Poland
T. SZWACZKOWSKI*
Affiliation:
Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska st. 33, 60-637 Poznan, Poland
*
Corresponding author: tomasz.szwaczkowski@up.poznan.pl
Get access

Abstract

Conservation of animal genetic resources is considered as one of the main challenges of today's breeding. Every breed of livestock is a valuable element of the world's animal genetic diversity. Over the last few decades, considerable reductions in the number of local breeds and their sizes have been registered. This trend caused the need to implement conservation programmes for endangered goose species. Poland has a number of local goose breeds which are the achievements of many generations of breeders. The objective of this review was to present the current status of the realised conservation programmes for 14 goose breeds in Poland by analysing population and molecular parameters. The conservation status of these populations has been presented including the effective population sizes, hypothetical inbreeding level, trends in performance traits as well as parameters estimated on the basis of genetic markers. In all the cases population sizes were well over 100 individuals, which is the minimum recommended by the FAO for conservation flocks. The effective population size ranged from 179 to 452, affecting a relatively low inbreeding level from 0.1 to 0.74%. The estimated correlations between hypothetical inbreeding rates and reproduction traits were negative. The heterozygosity coefficients varied from 0.27 (Biłgorajska breed) to 0.55 (Garbonosa breed). Generally, the parameters for goose breeds in Poland were compatible with the recommendations of the FAO.

Type
Review
Copyright
Copyright © World's Poultry Science Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADEYEMO, S.A., SALAKO, A.E., EMIKPE, B.O., OGIE, A.J. and OLADELE, P.O. (2012) Comparative disease resistance to Newcastle disease in Nigerian local ecotype chickens: probable genetic influence. Bulletin Animal Health and Production in Africa 60: 359-368.Google Scholar
BENNEWITZ, J., EDING, H., RUANE, J. and SIMIANER, H. (2007) Selection of breed for conservation, in: OLDENBROOK, K. (Ed.) Utilization and Conservation of Farm Animal Genetic Resources, pp. 131-146 (Wageningen Academic Publishers. Wageningen, The Netherlands).Google Scholar
DOBRZAŃSKI, J., KRAWCZYK, J., CALIK, J. and SZWACZKOWSKI, T. (2017) Survey on effectiveness of goose genetic conservation programs implementation in Poland. Conference Proceedings of XXIX International Poultry Science Symposium PB WPSA Science to Practice – Practice to Science, Tarnowo Podgórne, pp 26-27.Google Scholar
EYNARD, S.E., WINDIG, J.J., HIEMSTRA, S.J. and CALUS, M.P.L. (2016) Whole-genome sequence data uncover loss of genetic diversity due to selection. Genetics Selection Evolution 48: doi: 10.1186/s12711-016-0210-4.Google Scholar
FAO (1992) The management of global animal genetic resources, Proceedings of an FAO Expert Consultation. Rome, Italy. Available in: http://www.fao.org/3/t0665e/T0665E00.htm#TOC.Google Scholar
FAO (2016) Status of Animal Genetic Resources. Available in: http://www.fao.org/documents/card/en/c/c40d538b-4765-445d-ba3c-c06eaaa49f4a/.Google Scholar
FAOSTAT (2018) database collections. Food and Agriculture Organization of the United Nation, Rome. Access date: 2018-01-15. Url: http://faostat.fao.org.Google Scholar
FENG, ZQ., LIAN, T., HUANG, Y., ZHU, Q. and LIU, Y.P. (2013) Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek's disease virus infection. BioMed Research International: Article ID 419256, 9 pages, http://dx.doi.org/10.1155/2013/419256.Google Scholar
FREGLEY, M.J. (1996) Adaptations: some general characteristics, in: FREGLEY, M.J. & BLATTEIS, C.M. (Eds), Handbook of Physiology, pp. 3-15 (Oxford University Press).Google Scholar
GRACZYK, M., ANDRES, K., KAPKOWSKA, E. and SZWACZKOWSKI, T. (2015) Pedigree analyses of the Zatorska goose population. Czech Journal of Animal Sciences 60: 513-520.Google Scholar
GRACZYK, M., ANDRES, K., KAPKOWSKA, E. and SZWACZKOWSKI, T. (2018) Genetic evaluation of reproductive potential in the Zatorska goose under a conservation program. Animal Science Journal 89: 752-759.Google Scholar
GROENEVELD, L.F., LENSTRA, J.A., EDING, H., TORO, M.A., SCHERF, B., PILLING, D., NEGRINI, R., FINLAY, E.K., JIANLIN, H., GROENEVELD, E. and WEIGEND, S. (2010) Genetic diversity in farm animals – a review. Animal Genetics 41: 6-31.Google Scholar
HARAF, G., WOŁOSZYN, J., OKRUSZEK, A., ORKUSZ, A. and WEREŃSKA, M. (2014) Fatty acids profile of muscles and abdominal fat in geese of Polish native varieties. Animal Science Papers and Reports 32: 239-249.Google Scholar
HE, S.P., LI, S., AROWOLO, M.A., YU, Q.F., CHEN, F., HU, R.Z. and HE, J.H. (2019) Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Animal Science Journal 90: 401-411.Google Scholar
HOFFMANN, I. (2009) The global plan of action for animal genetic resources and the conservation of poultry genetic resources. World's Poultry Science Journal 65: 286-297.Google Scholar
HRNCAR, C., GARDIANOVA, I., MINDEK, S., WEIS, J., SVOBODOVA, I. and VANICKOVA, M. (2012) Analysis of Slovak and Czech national breeds of Geese with respect to effective population size. Slovak Journal of Animal Sciences 45: 43-47.Google Scholar
KRANIS, A., GHEYAS, A.A., BOSCHIERO, C., TURNER, F., YU, L., SMITH, S., TALBOT, R., PIRANI, A., BREW, F., KAISER, P., HOCKING, P.M., FIFE, M., SALMON, N., FULTON, J., STROM, T.M., HABERER, G., WEIGEND, S., PREISINGER, R., GHOLAMI, M., QANBARI, S., SIMIANER, H., WATSON, K.A., WOOLLIAMS, J.A. and BURT, D.W. (2013) Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 14: 59, doi: 0.1186/1471-2164-14-59.Google Scholar
KRAWCZYK, J., OBRZUT, J. and ZWIERZYŃSKI, R. (2014) Analiza wyników użytkowości i efektywnej wielkości populacji krajowych gęsi czterech odmian południowych. Roczniki Naukowe Zootechniki 41: 107-118 (in Polish, with English summary).Google Scholar
KSIĄŻKIEWICZ, J., CALIK, J., SZUKALSKI, G. and KAPKOWSKA, E. (2012) . Kury, gęsi i kaczki w programie ochrony zasobów. Program ochrony zasobów genetycznych populacji gęsi IZ PIB, Kraków, 35-46 (in Polish, with English summary).Google Scholar
LAN PHUONG, T.N., DONG XUAN, K.D.T., KOVACS, K. and SZALAY, I.T. (2016) . Conservation progress of old Hungarian poultry breeds. Proceedings of 9th Vietnamese-Hungarian International Conference Research for Developing Sustainable Agriculture, Tra Vinh, 83-91.Google Scholar
LEROY, G. (2014) Inbreeding depression in livestock species: review and meta-analysis. Animal Genetics 45: 618-628.Google Scholar
LI, H.F., CHEN, K.W., YANG, N., SONG, W.T. and TANG, Q.P. (2007) Evaluation of genetic diversity of Chinese native geese revealed by microsatellite markers. World's Poultry Science Journal 63: 381-390.Google Scholar
LI, M., LI, W., ZHANG, G., CHENG, W., GUO, L., LIU, S. and YANG, C. (2018) Rosa Roxburghii Tratt extracts improves performance, enhances immune function and reduces oxidative stress in geese under heat stress. Journal of Animal Science 96: 333-334.Google Scholar
LYNCH, M., CONERY, J. and BURGER, R. (1995) Mutation accumulation and the extinction of small populations. American Naturalist 146: 489-518.Google Scholar
ŁUKASZEWICZ, E. (2010) Artificial insemination in geese. World's Poultry Science Journal 66: 647-657.Google Scholar
MAZANOWSKI, A. (2012) Rasy i odmiany gęsi, in: Hodowla i chów gęsi, APRA sp. z o. o., pp. 19-35 (in Polish).Google Scholar
MEUWISSEN, T.H. and WOOLIAMS, J.A. (1994) Effective sizes of livestock populations to prevent a decline in fitness. Theoretical and Applied Genetics 89: 1019-1026.Google Scholar
MIYAHARA, D., MORI, T., MAKINO, R., NAKAMURA, Y., OISCHI, I., ONO, T., NIRASAWA, K., TAGAMI, T. and TAGAMI, H. (2014) Culture conditions for maintain propagation, long-term survival and germline transmission of chicken primordial germ cell. Journal of Poultry Science 51: 87-95.Google Scholar
MOULA, N., PHILIPPE, F.X., ANTOINE-MOUSSIAUX, N., LEROY, P. and MICHAUX, C. (2014) Estimation of inbreeding rates and extinction risk of forty one Belgian chicken breeds in 2005 and 2010. Archivos de Zootechnia 63: 1-4.Google Scholar
MURRAY, G.G., WOOLHOUSE, M.E., TAPIO, M., MBOLE-KARIUKI, M.N., SONSTEGARD, T.S., THUMBI, S.M., JENNINGS, A.E., VAN WYK, I.C., CHASE-TOPPING, M., KIARA, H., TOYE, P., COETZER, K., DEC BRONSVOORT, B.M. and HANOTTE, O. (2013) Genetic susceptibility to infectious disease in East African Shorthorn Zebu: a genome-wide analysis of the effect of heterozygosity and exotic introgression. BMC Evolutionary Biology 13: 246-254.Google Scholar
MWAI, O., HANOTTE, O., KWON, Y.J. and CHO, S. (2015) African indigenous cattle: unique genetic resources in a rapidly changing world. Asian Australasian Journal of Animal Science 28: 911-921.Google Scholar
NAKAMURA, Y. (2016) Poultry genetic resource conservation using primordial cells. Journal of Reproduction and Development 62: 431-437.Google Scholar
NARDONE, A., RONCHI, B., LACETERA, N., RANIERI, M.S. and BERNABUCCI, U. (2010) Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science 130: 57-69.Google Scholar
NEI, M. and ROYCHOUDHURY, A.K. (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.Google Scholar
NIKNAFS, S., ABDI, H., FATEMI, S.A., ZANDI, M.B. and BANEH, H. (2013) Genetic Trend and Inbreeding Coefficients Effects for Growth and Reproductive Traits in Mazandaran Indigenous Chicken. Journal of Biology 3: 25-31.Google Scholar
PAIVA, S.R., CONCEPTA, M.M. and BLACKBURN, H. (2016) Conservation of animal genetic resources – A new tact. Livestock Science 193: 32-38.Google Scholar
PARADA, R., KSIĄŻKIEWICZ, J. and JASZCZAK, K. (2011) A note on cytogenetic monitoring of geese in native conservative flocks. Journal of Animal and Feed Sciences 2: 200-205.Google Scholar
PARADA, R., KSIĄŻKIEWICZ, J., KAWKA, M. and JASZCZAK, K. (2012) Studies on resources of genetic diversity in conservative flocks of geese using microsatellite DNA polymorphic markers. Molecular Biology Reports 39: 5291-5297.Google Scholar
PASTERNAK, M. (2012) Jakość mięsa populacji drobiu wodnego objętej programem ochrony zasobów genetycznych na tle mieszańców towarowych. Wiadomości Zootechniczne 1: 27-31 (in Polish, with English summary).Google Scholar
PINGEL, H. (2011) Waterfowl Production for Food Security. Lohmann Information 46: 32-46.Google Scholar
RABSZTYN, A. (2006) Gęsi Zatorskie jako populacja należąca do krajowych zasobów genetycznych drobiu. Zeszyty Naukowe Akademii Rolniczej w Krakowie, Rozprawy Naukowe 314 (in Polish, with English summary).Google Scholar
ROSIŃSKI, A. (2000) Analiza bezpośrednich i skorelowanych efektów selekcji w dwóch rodach gęsi. Roczniki AR Poznań, Rozprawy Naukowe 309 (in Polish, with English summary).Google Scholar
SAWICKA, D., BRZEZIŃSKA, J. and BEDNARCZYK, M. (2011) Cryoconservation of embryonic cells and gametes as a poultry biodiversity preservation method. Folia biologica (Kraków) 1-2: 1-5Google Scholar
SMALEC, E. (1991) Zróżnicowanie gęsi rezerwy genetycznej pod względem cech użytkowości i polimorfizmu białek surowicy krwi. Centralny Ośrodek Badawczo-Rozwojowy Drobiarstwa w Poznaniu (in Polish, with English summary).Google Scholar
SZWACZKOWSKI, T., WĘŻYK, S., STANISŁAWSKA-BARCZAK, E., BADOWSKI, J., BIELIŃSKA, H. and WOLC, A. (2007) Genetic variability of body weight in two goose strains under long-term selection. Journal of Applied Genetics 48: 253-260.Google Scholar
THORTON, P.K. (2010) Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences 27: 2853-2867.Google Scholar
TONUS, C., CLOQUETTE, K., ECTORS, F., PIRET, J., GILLET, L., ANTOINE, N., DESMECHT, D., VANDERPLASSCHEN, A., WAROUX, O. and GROBEL, L. (2014) Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency. Reproduction Fertility Development 28: 628-639.Google Scholar
WANG, Y., LUPIANI, B., REDDY, S.M., LAMONT, S.J. and ZHOU, H. (2014) RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poultry Science 93: 485-493.Google Scholar
WEIGEND, S., ROMANOV, M.N. and RATH, D. (2004) Methodologies to identify, evaluate and conserve genetic resources. XXII World's Poultry Congress Istanbul, Book of abstracts, June8-13, 2004: 84.Google Scholar
WEST, J.W. (2003) Effects of heat stress on production in dairy cattle. Journal of Dairy Science 86: 2131-2144.Google Scholar
WOELDERS, H., ZUIDBERG, C.A. and HIEMSTRA, S.J. (2006) Animal Genetic Resources Conservation in The Netherlands and Europe: Poultry Perspective. Poultry Science 85: 216-222.Google Scholar
WOLC, A., BARCZAK, E., WĘŻYK, S., BADOWSKI, J., BIELIŃSKA, H. and SZWACZKOWSKI, T. (2008) Genetic evaluation of production traits in two selected geese lines under multitrait animal model. Animal Science Papers and Reports 26: 71-78.Google Scholar
WRZASZCZ, Ł. (2011) Assessment of genetic diversity among geese populations according to DNA polymorphism. Ph.D. Thesis. Siedlce University of Natural Sciences and Humanities (in Polish, with English summary).Google Scholar