Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T21:26:55.292Z Has data issue: false hasContentIssue false

Apoptotic processes and DNA cytosine methylation in mouse embryos arrested at the 2-cell stage

Published online by Cambridge University Press:  01 August 2009

Dušan Fabian*
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4/6, 04001 Košice, Slovakia. Institute of Animal Physiology, Slovak Academy of Sciences, 04001 Košice, Slovakia.
Alexandra Bukovská
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, 04001 Košice, Slovakia.
Štefan Juhás
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, 04001 Košice, Slovakia.
Juraj Koppel
Affiliation:
Institute of Animal Physiology, Slovak Academy of Sciences, 04001 Košice, Slovakia.
*
All correspondence to: Dušan Fabian. Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4/6, 04001 Košice, Slovakia. Tel: +421 557 28 78 41. Fax: +421 557 28 78 42. e-mail: fabian@saske.sk

Summary

The present study evaluates the role of apoptotic cell death and DNA methylation reprogramming in early developmental failures occurring in embryos at the 2-cell stage. Mouse 2-cell embryos were cultured in vitro and treated with chemicals that cause developmental arrest and apoptosis (α-amanitin, actinomycin D, TNF-α). After 24 h, 48 h and 72 h culture, embryos were analysed using cell-death assays (annexin V staining, TUNEL labelling and immunodetection of active caspase-3) and genome methylation assay (immunodetection of 5-methylcytosine). The ability of embryos at the 2-cell stage to undergo apoptotic processes was very low. In arrested embryos, the presence of all evaluated features of apoptosis was recorded only after 72 h culture and their incidence was sporadical. Interestingly, the most frequently observed apoptotic sign was nuclear condensation and the timing of its appearance preceded even the phosphatidylserine flip. Both normally developing and arrested embryos displayed reduction in DNA cytosine methylation. In arrested embryos, this process was independent of cellular cleavage, was more pronounced and finished in almost complete demethylation of the embryonic genome. The timing of the demethylation overlapped with the onset of major apoptotic events. Although observed apoptotic cells showed either demethylated or methylated DNA cytosine in their nuclei, at blastocyst stage the demethylated status appeared more frequently in them.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argilés, J., Carbó, N. & López-Soriano, F. (1997). TNF-and pregnancy: the paradigm of a complex interaction. Cytokine Growth Factor Rev. 8, 181–8.CrossRefGoogle ScholarPubMed
Baran, V., Fabian, D., Rehak, P. & Koppel, J. (2003). Nucleolus in apoptosis-induced mouse preimplantation embryos. Zygote 11, 271–83.CrossRefGoogle ScholarPubMed
Bellier, S., Chastant, S., Adenot, P., Vincent, M., Renard, J. & Bensaude, O. (1997). Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J. 16, 6250–62.CrossRefGoogle ScholarPubMed
Bestor, T. (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–402.CrossRefGoogle ScholarPubMed
Bogolyubova, I., Bogoliubova, N., Bogolyubov, D. & Parfenov, V. (2006). Nuclear structure in early mouse embryos: A comparative ultrastructural and immunocytochemical study with special emphasis on the “2-cell block in vitro.” Tissue Cell 38, 389–98.CrossRefGoogle Scholar
Exley, G., Tang, C., McElhinny, A. & Warner, C. (1999). Expression of caspase and BCL-2 apoptotic family members in mouse preimplantation embryos. Biol. Reprod. 61, 231–9.CrossRefGoogle ScholarPubMed
Fabian, D., Koppel, J. & Maddox-Hyttel, P. (2005). Apoptotic processes during mammalian preimplantation development. Theriogenology 64, 221–31.CrossRefGoogle ScholarPubMed
Fabian, D., Juhás, S., Il'ková, G. & Koppel, J. (2007a). Dose- and time-dependent effects of TNFalpha and actinomycin D on cell death incidence and embryo growth in mouse blastocysts. Zygote 15, 241–9.CrossRefGoogle ScholarPubMed
Fabian, D., Makarevich, A., Chrenek, P., Bukovská, A. & Koppel, J. (2007b). Chronological appearance of spontaneous and induced apoptosis during preimplantation development of rabbit and mouse embryos. Theriogenology 68, 1271–81.CrossRefGoogle ScholarPubMed
Gjørret, J., Fabian, D., Avery, B. & Maddox-Hyttel, P. (2007). Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos. Mol. Reprod. Dev. 74, 961–71.CrossRefGoogle ScholarPubMed
Goddard, M. & Pratt, H. (1983). Control of events during early cleavage of the mouse embryo: an analysis of the ‘2-cell block’. J. Embryol. Exp. Morphol. 73, 111–33.Google ScholarPubMed
Han, Z., Chung, Y., Gao, S. & Latham, K. (2005). Maternal factors controlling blastomere fragmentation in early mouse embryos. Biol. Reprod. 72, 612–8.CrossRefGoogle ScholarPubMed
Hardy, K. (1999). Apoptosis in the human embryo. Rev. Reprod. 4, 125–34.CrossRefGoogle ScholarPubMed
Huppertz, B., Frank, H. & Kaufmann, P. (1999). The apoptosis cascade—morphological and immunohistochemical methods for its visualization. Anat. Embryol. (Berl.) 200, 118.CrossRefGoogle ScholarPubMed
Huppertz, B. & Herrler, A. (2005). Regulation of proliferation and apoptosis during development of the preimplantation embryo and the placenta. Birth Defects Res. C Embryo Today 75, 249–61.CrossRefGoogle ScholarPubMed
Jost, J. & Jost, Y. (1994). Transient DNA demethylation in differentiating mouse myoblasts correlates with higher activity of 5-methyldeoxycytidine excision repair. J. Biol. Chem. 269, 10040–3.CrossRefGoogle ScholarPubMed
Ju, E., Kwak, D., Lee, D.H., Kim, S.M., Kim, J.S., Kim, S.M., Choi, H.G., Jung, K.Y., Lee, S.U., Do, S.I., Park, Y.I. & Choo, Y.K. (2005). Pathophysiological implication of ganglioside GM3 in early mouse embryonic development through apoptosis. Arch. Pharm. Res. 28, 1057–64.CrossRefGoogle ScholarPubMed
Jurisicova, A., Latham, K., Casper, R. & Varmuza, S. (1998). Expression and regulation of genes associated with cell death during murine preimplantation embryo development. Mol. Reprod. Dev. 51, 243–53.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Jurisicova, A. & Acton, B. (2004). Deadly decisions: the role of genes regulating programmed cell death in human preimplantation embryo development. Reproduction 128, 281–91.CrossRefGoogle ScholarPubMed
Kalousek, I., Brodska, B., Otevrelova, P. & Röselova, P. (2007). Actinomycin D upregulates proapoptotic protein Puma and downregulates Bcl-2 mRNA in normal peripheral blood lymphocytes. Anticancer Drugs 18, 763–72.CrossRefGoogle ScholarPubMed
Kawamura, K., Kawamura, N., Kumagai, J., Fukuda, J. & Tanaka, T. (2007). Tumor necrosis factor regulation of apoptosis in mouse preimplantation embryos and its antagonism by transforming growth factor alpha/phosphatidylinositol 3-kinase signaling system. Biol. Reprod. 76, 611–8.CrossRefGoogle ScholarPubMed
Lawits, J.A. & Biggers, J.D. (1993). Culture of preimplantation embryos. In Guide to Techniques in Mouse Development, Methods in Enzymology. (eds Wassarman, P.M. & DePhamphilis, M.L.), pp. 153–64. San Diego: Academic Press.CrossRefGoogle Scholar
Levy, R., Cordonier, H., Czyba, J. & Guerin, J. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–8.Google ScholarPubMed
Li, E., Bestor, T. & Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–26.CrossRefGoogle ScholarPubMed
Liu, L., Trimarchi, J. & Keefe, D. (1999). Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biol. Reprod. 61, 1162–9.CrossRefGoogle ScholarPubMed
Neganova, I., Augustin, M., Sekirina, G. & Jockusch, H. (1998). LacZ transgene expression as a cell marker to analyse rescue from the 2-cell block in mouse aggregation chimeras. Zygote 6, 223–6.CrossRefGoogle ScholarPubMed
Pampfer, S., Wuu, Y., Vanderheyden, I. & De Hertogh, R. (1994). Expression of tumor necrosis factor-alpha (TNF-alpha) receptors and selective effect of TNF-alpha on the inner cell mass in mouse blastocysts. Endocrinology 134, 206–12.CrossRefGoogle ScholarPubMed
Pampfer, S. & Donnay, I. (1999). Apoptosis at the time of embryo implantation in mouse and rat. Cell Death Differ. 6, 533–45.CrossRefGoogle ScholarPubMed
Patkin, E., Kustova, M. & Perticone, P. (1998). The influence of demethylating agents on preimplantation development of mice. Zygote 6, 351–8.CrossRefGoogle ScholarPubMed
Pivko, J., Grafanau, P. & Kubovicová, E. (2002). Bovine abnormal preimplantation embryos: analysis of segregated cells occurring in the subzonal space and/or blastocoele cavity for their nuclear morphology and persistence of RNA synthesis. Zygote 10, 141–7.CrossRefGoogle ScholarPubMed
Razin, A. & Shemer, R. (1995). DNA methylation in early development. Hum. Mol. Genet. 4, 1751–5.CrossRefGoogle ScholarPubMed
Ribas, R., Taylor, J., McCorquodale, C., Maurício, A., Sousa, M. & Wilmut, I. (2006). Effect of zona pellucida removal on DNA methylation in early mouse embryos. Biol. Reprod. 74, 307–13.CrossRefGoogle ScholarPubMed
Rougier, N., Bourc'his, D., Gomes, D., Niveleau, A., Plachot, M., Pàldi, A. & Viegas-Péquignot, E. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–13.CrossRefGoogle ScholarPubMed
Santos, F., Hendrich, B., Reik, W. & Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–82.CrossRefGoogle ScholarPubMed
Santos, F. & Dean, W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction 127, 643–51.CrossRefGoogle ScholarPubMed
Schultz, R. (1993). Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–8.CrossRefGoogle ScholarPubMed
Shi, W. & Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–34.CrossRefGoogle ScholarPubMed
Warner, C., Exley, G., McElhinny, A. & Tang, C. (1998). Genetic regulation of preimplantation mouse embryo survival. J. Exp. Zool. 282, 272–9.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Weil, M., Jacobson, M., Coles, H., Davies, T., Gardner, R., Raff, K. & Raff, M. (1996). Constitutive expression of the machinery for programmed cell death. J. Cell. Biol. 133, 1053–9.CrossRefGoogle ScholarPubMed
Whitten, W. & Biggers, J. (1968). Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399401.CrossRefGoogle Scholar
Wuu, Y., Pampfer, S., Becquet, P., Vanderheyden, I., Lee, K. & De Hertogh, R. (1999). Tumor necrosis factor alpha decreases the viability of mouse blastocysts in vitro and in vivo. Biol. Reprod. 60, 479–83.CrossRefGoogle ScholarPubMed
Zeng, F. & Schultz, R. (2005). RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev. Biol. 283, 4057.CrossRefGoogle ScholarPubMed