Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-10T21:37:28.915Z Has data issue: false hasContentIssue false

Folloicular dominance and oocyte maturation

Published online by Cambridge University Press:  26 September 2008

B.K. Campbell*
Affiliation:
Department of Obstetrics and Gynaecology and MRC Unit, Centre for Reproductive Biology, Edinburgh, UK
A.S. McNeilly
Affiliation:
Department of Obstetrics and Gynaecology and MRC Unit, Centre for Reproductive Biology, Edinburgh, UK
*
B.K. Campbell, Department of Obstetrics and Gynaecology, Centre for Reproductive Biology, Chalmers street, Edinburgh EH3 9EW, UK. Telephone: +44 (131) 229 2575. Fax: +44 (131) 229 2408. e-mail: bkc@srvl.med.ed.ac.uk.

Extract

The ovulatory follicle has the dual role of releasing a viable oocyte capable of fertilisation and the production of key endocrine signals that result in mating behaviour, the induction of the preovulatory LH surge and ovulation. Further, following ovulation the ovulatory follicle must be capable of forming a viable corpus luteum if pregnancy is to be maintained. Follicle growth is therefore a developmental process during which the follicle progressively acquires a number of properties, each of which is an essential prerequisite for further development. Failure to acquire these properties at the correct time and in an exact sequence will lead to failure of the developmental process and to the deterioration of the follicle through atresia and degeneration of the oocyte.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adashi, E.Y., Resnick, C.E., D'ercole, A.J., Svoboda, M.E. & Van Wyk, J.J. (1985). Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. Endocr. Rev. 6, 400–20.CrossRefGoogle Scholar
Assey, R.J., Hyttel, P., Greve, T. & Purwantara, B. (1994). Oocyte morphology in dominant and subordinate follicles. Mol. Reprod. Dev. 37, 335–44.CrossRefGoogle ScholarPubMed
Baird, D.T. & McNeilly, A.S. (1981). Gonadotrophic control of follicular development and function during the oestrous cycle of the ewe. J. Reprod. Fertil. Suppl. 30, 119–33.Google ScholarPubMed
Baird, D.T., Campbell, B.K., Mann, G.E. & McNeilly, A.S. (1991). Inhibin and oestradiol the control of FSH secretion in the sheep. J. Reprod. Fertil. Suppl. 43, 125–38.Google ScholarPubMed
Beard, A.J., Groome, N. & Knight, P.G. (1991). Estimation of immunoreactive inhibin concentrations in bovine ovarian follicles using a novel 2-site immunoradiometric assay (IRMA) specific for dimeric inhibin. J. Reprod. Fertil. Abstr. Ser. 7, 40.Google Scholar
Campbell, B.K. (1988). Factors affecting ovulation rate in sheep and cattle. PhD thesis, University of Sydney.Google Scholar
Campbell, B.K. & Scaramuzzi, R.J. (1995). The effect of acute immuno-neutralisation of inhibin in ewes during the late luteal phase of the oestrous cycle on ovarian hormone secretion and follicular development during the subsequent follicular phase. J. Reprod. Fertil. 104, 337–45.CrossRefGoogle Scholar
Campbell, B.K. & Webb, R.W. (1995). Evidence that inhibin has paracrine and autocrine actions in controlling ovarian function in sheep. J. Reprod. Fertil. Abstr. Ser. 15, 140.Google Scholar
Campbell, B.K., Mann, G.E., McNeilly, A.S. & Baird, D.T. (1990). The pattern of ovarian inhibin, estradiol and androstenedione secretion during the estrous cycle in the ewe. Endocrinology 127, 227–35.CrossRefGoogle ScholarPubMed
Campbell, B.K., Scaramuzzi, R.J., Evans, G. & Downing, J.A. (1991 a). Increased ovulation rate in androstenedione-immune ewes is not due to elevated plasma concentrations of FSH. J. Reprod. Fertil. 91, 655–66.CrossRefGoogle Scholar
Campbell, B.K., McNeilly, A.S., Mann, G.E. & Baird, D.T. (1991 b). The effect of stage of estrous cycle and follicular maturation on ovarian inhibin production in sheep. Biol. Reprod. 44, 483–90.CrossRefGoogle ScholarPubMed
Cambell, B.K., Gordon, B.M., Dobson, H. & Scaramuzzi, R.J. (1993). Insulin-like growth factor can stimulate oestradiol production both in vivo and in vitro. J. Reprod. Fertil. Abstr. Ser. 12, 21.Google Scholar
Campbell, B.K., McBride, D. & Webb, R. (1994 a). Interaction between insulin and IGF-I in the stimulation of proliferation and oestradiol production by cultured ovine granulosa cells from small follicles. J. Reprod. Fertil. Abstr. Ser. 13, 19.Google Scholar
Campbell, B.K., Gordon, B.M., Tsonis, C.G. & Scaramuzzi, R.J. (1995 a). The effect of acute immuno-neutralisation of inhibin in ewes during the early luteal phase of the oestrous cycle on ovarian hormone secretion and follicular development. J. Endocrinol. 145, 479–90.CrossRefGoogle ScholarPubMed
Campbell, B.K., Scaramuzzi, R.J. & Webb, R. (1995 b). The control of antral follicle development and selection in sheep and cattle. J. Reprod. Fertil. Suppl. 49, 335–50.Google ScholarPubMed
Campbell, B.K., Scaramuzzi, R.J. & Webb, R. (1996). Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. J. Reprod. Fertil. 106, 716.CrossRefGoogle ScholarPubMed
Carson, R.S., Findlay, J.K., Clarke, I.J. & Burger, H.G. (1981). Estradiol, testosterone, and androstenedione in ovine follicular fluid during growth and atresia of ovarian follicles. Biol. Reprod. 24, 105–13.CrossRefGoogle ScholarPubMed
diZerega, G.S. & Hodgen, G.D. (1981). Folliculogenesis in the primate ovarian cycle. Endocrinol. Rev. 2, 2749.CrossRefGoogle ScholarPubMed
Dobson, H., Campbell, B.K., Gordon, B. & Scaramuzzi, R.J. (1997). Endocrine activity of persistent ovarian follicles in the sheep. Biol. Reprod. 56, 208–13.CrossRefGoogle ScholarPubMed
Evans, G., Brooks, J., Struthers, W. & McNeilly, A.S. (1994). Superovulation and embryo recovery in ewes treated with gonadotrophin-releasing hormone agonist and purified follicle-stimulating hormone. Reprod. Fertil. Dev. 6, 247–52.CrossRefGoogle ScholarPubMed
Engelhardt, H., Smith, K.B., McNeilly, A.S. & Baird, D.T. (1993).Expression of messenger ribonucleic acid for inhibin subunits and ovarian secretion of inhibin and estradiol at various stages of the sheep estrous cycle. Biol. Reprod. 49, 281–94.CrossRefGoogle ScholarPubMed
Findlay, J.K., Clarke, I.J., Luck, M.R., Rodgers, R.J., Shukovski, L., Robertson, D.M., Klein, R., Murray, J.F., Scaramuzzi, R.J., Bindon, B.M., O'Shea, T., Tsonis, C.G. & Forage, R.G. (1990). Peripheral and intragonadal actions of inhibin-related peptides. J. Reprod. Fertil. Suppl. 43, 139–50.Google Scholar
Glencross, R.G., Bleach, E.C., McLeod, B.J., Beard, A.J. & Knight, P.G. (1992). Effect of active immunization of heifers against inhibin on plasma FSH concentrations ovarian follicle development and ovulation rate. J. Endocrinol. 134, 1118.CrossRefGoogle ScholarPubMed
Goldenberg, R.L., Vaitukaitis, J.L. & Ross, G.T. (1972). Estrogen and follicle-stimulating hormone interactions on follicle growth in rats. Endocrinology 90, 1492–8.CrossRefGoogle ScholarPubMed
Gong, J.G., Bramley, T.A. & Webb, R. (1993 a). The effect of recombinant bovine somatotrophin on ovarian follicular growth and development in heifers. J. Reprod. Fertil. 97, 247–54.CrossRefGoogle ScholarPubMed
Gong, J.G., Bramley, T.A., Wilmut, I. & Webb, R. (1993 b). The effect of recombinant bovine somatotrophin on the superovulatory response to pregnant mare serum gonadotrophin in heifers. Biol. Reprod. 48, 1141–9.CrossRefGoogle ScholarPubMed
Gong, J.G., Campbell, B.K., Bramley, T.A. & Webb, R. (1996 a).Treatment with recombinant bovine somatotrophin enhances ovarian follicle development and increases secretion of insulin-like growth factor-1 by ovarian follicles in ewes. Anim. Reprod. Sci. 41, 1326.CrossRefGoogle Scholar
Gong, J.G., Campbell, B.K., Bramley, T.A., Gutierrez, C.G., Peters, A.R. & Webb, R. (1996 b). Suppression in the secretion of follicle-stimulating hormone and luteinizing hormone, and ovarian follicle development in heifers continuously infused with a gonadotropin-releasinghormone agonist. Biol. Reprod. 55, 6874.CrossRefGoogle Scholar
Groome, N.P., Illingworth, P.J., O'Brien, M., Pai, R., Rodger, F.E., Mather, J.P. & McNeilly, A.S. (1996). Measurement of dimeric inhibin B throughout the human menstrual cycle. J. Clin. Endocrinol. Metab. 81, 1401–5.Google ScholarPubMed
Guildbault, L.A., Grasso, F., Lussier, J.G., Rouillier, P. & Matton, P. (1991). Decreased superovulatory responses in heifers superovulated in the presence of the dominant follicle. J. Reprod. Fertil. 91, 81–9.CrossRefGoogle Scholar
Guidice, L.C. (1992). Insulin-like growth factors and ovarian follicle development. Endocr. Rev. 13, 641–69.Google Scholar
Gutierrez, C.G., Oldham, J., Bramley, T.A., Campbell, B.K., Gong, J.G. & Webb, R. (1995). Effect of nutrition on ovarian follicular requirements in cattle. J. Anim. Sci. 73 (Suppl. 1), 230.Google Scholar
Hillier, S.G., Yong, E.L., Illingworth, P.J., Baird, D.T., Schwall, R.H. & Mason, A.J. (1991). Effect of recombinant inhibin on androgen synthesis in cultured human thecal cells. Mol. Cell. Endocrinol. 75, R16.CrossRefGoogle ScholarPubMed
Homnes, P., Giroud, D., Howles, C. & Loumaye, E. (1993). Recombinant human follicle stimulating hormone treatment leads to normal follicle growth, estradiol secretion and pregnancy in a World Health Organization group II anovulatory women. Fertil. Steril. 60, 724–6.Google Scholar
Ireland, J.J. & Roche, J.F. (1983). Development of non-ovulatory antral follicles in heifers: changes in steroids in follicular fluid and receptors for gonadotrophins. Endocrinology 112, 150–6.CrossRefGoogle Scholar
Liu, J., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding Insulin-like growth factor-1 (IGF-I) and type-I IGF receptor (IGFIR). Cell 75, 5972.Google Scholar
Louvet, J.-P., Harman, M., Schreiber, J.R. & Ross, G.F. (1975). Evidence for a role of androgens in follicular maturation. Endocrinology 97, 366–72.CrossRefGoogle ScholarPubMed
McNeilly, A.S., Picton, H.M., Campbell, B.K. & Baird, D.T. (1991). Gonadotrophic control of follicle growth in the ewe. J. Reprod. Fertil. Suppl. 43, 177–86.Google ScholarPubMed
Merk, F.B., Botticelli, C.R. & Albright, J.T. (1972). An intercellular response to estrogen by granulosa cells in the rat ovary: an electron microscope study. Endocrinology 90, 9921007.CrossRefGoogle ScholarPubMed
Picton, H.M., Tsonis, C.G. & McNeilly, A.S. (1990). FSH causes a time-dependent stimulation of preovulatory follicle growth in the absence of pulsatile LH secretion in ewes chronically treated with gonadotrophin-releasing hormone agonist. J. Endocrinol. 126, 297307.CrossRefGoogle ScholarPubMed
Price, C.A. & Webb, R. (1989). Ovarian responses to hCG treatment during the oestrous cycle in heifers. J. Reprod. Fertil. 86, 303–8.CrossRefGoogle ScholarPubMed
Price, C.A., Carriere, P.D., Bhatia, B. & Groome, N.P. (1993). Changes in inhibin-β production and follicular dimeric inhibin and oestradiol concentrations during growth and atresia of bovine follicles. J. Reprod. Fertil. Abstr. Ser. 11, 82.Google Scholar
Revah, I. & Butler, W.R. (1996). Prolonged dominance of follicles and reduced viability of bovine oocytes. J. Reprod. Fertil. 106, 3947.CrossRefGoogle ScholarPubMed
Savio, J.D., Thatcher, W.W., Badinga, L., de la Sota, R.L. & Wolfenson, D. (1993). Regulation of dominant follicle turn-over during the oestrous cycle in cows. J. Reprod. Fertil. 97, 197203.CrossRefGoogle Scholar
Schrick, F.N., Surface, R.A., Pritchard, J.Y., Dailey, R.A., Townsend, E.C., Inskeep, E.K. (1993). Ovarian structures during the estrous cycle and early pregnancy in ewes. Biol. Reprod. 49, 1133–40.CrossRefGoogle ScholarPubMed
Schoot, D.C., Herjan, J.T., Bennink, C., Mannaerts, B.M.J.L., Lamberts, S.W.J., Bouchard, P. & Fauser, B.C.J.M. (1992). Human recombinant FSH stimulates growth of preovulatory follicles without concomitant increases in androgen and estrogen biosynthesis in a woman with isolated gamete deficiency. J. Clin. Endocrinol. Metab. 74, 1471–3.Google Scholar
Sirois, J. & Fortune, J.E. (1988). Ovarian follicular dynamics during the estrus cycle in heifers monitored by real time ultrasound. Biol. Reprod. 39, 308–17.CrossRefGoogle Scholar
Smith, L.C., Olivera-Angel, M., Groome, N.P., Bhatia, B. & Price, C.A. (1996). Oocyte quality in small antral follicles in the presence or absence of a large dominant follicle in cattle. J. Reprod. Fertil. 106, 193–9.CrossRefGoogle ScholarPubMed
Souza, C.J.H., Campbell, B.K. & Baird, D.T. (1996). Follicular dynamics and ovarian steroid secretion in sheep during anoestrus. J. Reprod. Fertil. 108, 101–6.CrossRefGoogle ScholarPubMed
Souza, C.J.H., Campbell, B.K. & Baird, D.T. (1997). Follicular dynamics and ovarian steroid secretion in sheep during the follicular and early luteal phases of the estrous cycle. Biol. Reprod. 56 (in press).CrossRefGoogle ScholarPubMed
Tetsuka, M., Whitelaw, P.F., Bremner, W.J., Millar, M.R., Smyth, C.D. & Hillier, S.G. (1995). Developmental regulation of androgen receptor in rat ovary. J. Endocrinol. 145, 535–43.CrossRefGoogle ScholarPubMed
Tsonis, C.G., Quigg, H., Lee, V.M.K., Leversha, L., Trounson, A.O. & Findlay, J.K. (1983). Inhibin in individual ovine follicles in relation to diameter and atresia. J. Reprod. Fertil. 67, 8390.CrossRefGoogle ScholarPubMed
Webb, R. & England, B.G. (1982). Identification of the ovulatory follicle in the ewe: associated changes in the follicular size, thecal and granulosa cell luteinizing hormone receptors, antral fluid steroids, and circulating hormones during the preovulatory period. Endocrinology 110, 873–81.CrossRefGoogle ScholarPubMed
Webb, R., Baxter, G., McBride, D. & McNeilly, A.S. (1992). 3β-Hydroxysteroid dehydrogenase inhibitor reduces ovarian steroid production but increases ovulation rate in the ewe: interactions with gonadotrophins and inhibin. J. Endocrinol. 134, 115–25.CrossRefGoogle Scholar
Weston, A.M., Zelinski-Wooten, M.B., Hutchinson, J.S., Stouffer, R.L. & Wolf, D.P. (1996). Developmental potential of IVF-produced embryos from GnRH antagonist treated macaques stimulated with recombinant human follicle stimulating hormone alone or in combination with luteinizing hormone. Hum. Reprod. 11, 608–13.CrossRefGoogle ScholarPubMed
Wu, T.C.J., Jih, M.H., Wang, L. & Wan, Y.J.Y. (1994). Expression of activin receptor-II and receptor-IIB messenger-RNA isoforms in mouse reproductive organs and oocytes. Mol. Reprod. Dev. 38, 915.CrossRefGoogle Scholar
Xu, Z., Garverick, H.A., Smith, G.W., Smith, M.F., Hamilton, S.A. & Youngquist, R.S. (1995). Expression of messenger ribonucleic acid encoding cytochrome P450 side–chain cleavage, cytochrome P450 17α–hydroxylase, and cytochrome P450 aromatase in bovine follicles during the first follicular wave. Endocrinology 136, 981–9.CrossRefGoogle Scholar
Ying, S-V. (1988). Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle stimulating hormone. Endocr. Rev. 9, 267–93.CrossRefGoogle ScholarPubMed
Ying, S.-Y., Becker, A., Ling, N., Uneo, N. & Guillemin, R. (1986). Inhibin and type beta transforming growth factor(TGF-β) have opposite modulating effects on the follicle stimulating hormone (FSH)-induced aromatase activity of cultured rat granulosa cells. Biochem. Biophys. Res. Commun. 136, 969–75.CrossRefGoogle ScholarPubMed
Zelinski-Wooten, M.B., Hutchinson, J.S., Hess, D.L., Wolf, D.P. & Stouffer, R.L. (1995). Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist treated monkeys. Hum. Reprod. 10, 1658–66.CrossRefGoogle ScholarPubMed