Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T17:39:06.644Z Has data issue: false hasContentIssue false

Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos

Published online by Cambridge University Press:  12 September 2014

Beatriz C. S. Leão
Affiliation:
School of Veterinary Medicine, Department of Animal Health, UNESP–Univ Estadual Paulista, Rua Clóvis Pestana 793, 16050–680, Araçatuba, São Paulo, Brazil.
Nathália A. S. Rocha-Frigoni
Affiliation:
School of Veterinary Medicine, Department of Animal Health, UNESP–Univ Estadual Paulista, Rua Clóvis Pestana 793, 16050–680, Araçatuba, São Paulo, Brazil.
Elaine C. Cabral
Affiliation:
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083–970, Distrito de Barão Geraldo–Campinas, São Paulo, Brazil.
Marcos F. Franco
Affiliation:
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083–970, Distrito de Barão Geraldo–Campinas, São Paulo, Brazil.
Christina R. Ferreira
Affiliation:
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083–970, Distrito de Barão Geraldo–Campinas, São Paulo, Brazil.
Marcos N. Eberlin
Affiliation:
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083–970, Distrito de Barão Geraldo–Campinas, São Paulo, Brazil.
Paulo R. Filgueiras
Affiliation:
ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, CP 6154, bloco A6, sala 111, 13083–970, Distrito de Barão Geraldo–Campinas, São Paulo, Brazil.
Gisele Z. Mingoti*
Affiliation:
School of Veterinary Medicine, Department of Animal Health, UNESP–Universidade Estadual Paulista, Araçatuba 16050-680, São Paulo, Brazil.
*
All correspondence to: G.Z. Mingoti, School of Veterinary Medicine, Department of Animal Health, UNESP-Universidade Estadual Paulista, Araçatuba 16050–680, São Paulo, Brazil. Tel: +55 18 3636 1375. Fax: +55 18 3636 1352. E-mail: gmingoti@fmva.unesp.br

Summary

This study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2–20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase ‘e’ and ‘p‘, respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almodin, C.G., Minguetti-Camara, V.C., Paixao, C.L. & Pereira, P.C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Hum. Reprod. 25, 1192–8.CrossRefGoogle ScholarPubMed
Apparicio, M., Ferreira, C.R., Tata, A., Santos, V.G., Alves, A.E., Mostachio, G.Q., Pires-Butler, E.A., Motheo, T.F., Padilha, L.C., Pilau, E.J., Gozzo, F.C., Eberlin, M.N., Lo Turco, E.G., Luvoni, G.C. & Vicente, W.R. (2012). Chemical composition of lipids present in cat and dog oocyte by matrix-assisted desorption ionization mass spectrometry (MALDI-MS). Reprod. Domest. Anim. 47, 113–7.CrossRefGoogle Scholar
Arav, A., Zeron, Y., Leslie, S.B., Behboodi, E., Anderson, G.B. & Crowe, J.H. (1996). Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33, 589–99.CrossRefGoogle ScholarPubMed
Bartz, R., Li, W.H., Venables, B., Zehmer, J.K., Roth, M.R., Welti, R., Anderson, R.G., Liu, P. & Chapman, K.D. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–47.CrossRefGoogle ScholarPubMed
Berry, K.A., Hankin, J.A., Barkley, R.M., Spraggins, J.M., Caprioli, R.M. & Murphy, R.C. (2011). MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–512.CrossRefGoogle ScholarPubMed
Byrne, A.T., Southgate, J., Brison, D.R. & Leese, H.J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97105.CrossRefGoogle ScholarPubMed
Cabral, E.C., Sevart, L., Spindola, H.M., Coelho, M.B., Sousa, I.M., Queiroz, N.C., Foglio, M.A., Eberlin, M.N. & Riveros, J.M. (2013). Pterodon pubescens oil: characterisation, certification of origin and quality control via mass spectrometry fingerprinting analysis. Phytochem. Anal. 24, 184–92.CrossRefGoogle ScholarPubMed
Camargo, L.S., Boite, M.C., Wohlres-Viana, S., Mota, G.B., Serapiao, R.V., As, W.F., Viana, J.H. & Nogueira, L.A. (2011). Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology 63, 256–62.CrossRefGoogle ScholarPubMed
Cortes, C. & Vapnik, V. (1995). Support-Vector Networks. In: Saitta L, ed. Machine Learning 20, 273–97.CrossRefGoogle Scholar
Cortezzi, S.S., Cabral, E.C., Trevisan, M.G., Ferreira, C.R., Setti, A.S., Braga, D.P., Figueira, R.E.C., Iaconelli, A., Eberlin, M.N. & Borges, E. (2013). Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium. Reproduction 145, 453–62.CrossRefGoogle ScholarPubMed
Dinnyes, A. & Nedambale, L. (2009). Cryopreservation of manipulated embryos: tackling the double jeopardy. Reprod. Fertil. Dev. 21, 4559.CrossRefGoogle ScholarPubMed
Eberlin, L.S., Abdelnur, P.V., Passero, A., de Sa, G.F., Daroda, R.J., de Souza, V. & Eberlin, M.N. (2009). Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry. Analyst 134, 1652–7.CrossRefGoogle ScholarPubMed
Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, 606–12.CrossRefGoogle ScholarPubMed
Ferreira, C.R., Saraiva, S.A., Catharino, R.R., Garcia, J.S., Gozzo, F.C., Sanvido, G.B., Santos, L.F., Lo Turco, E.G., Pontes, J.H., Basso, A.C., Bertolla, R.P., Sartori, R., Guardieiro, M.M., Perecin, F., Meirelles, F.V., Sangalli, J.R. & Eberlin, M.N. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 51, 1218–27.CrossRefGoogle ScholarPubMed
Ferreira, C.R., Eberlin, L.S., Hallett, J.E. & Cooks, R.G. (2012). Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J. Mass Spectrom. 47, 2933.CrossRefGoogle ScholarPubMed
Fuchs, B., Süss, R. & Schiller, J. (2011). An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 50, 132.CrossRefGoogle ScholarPubMed
Gardner, D.K. (2008). Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod. Fertil. Dev. 20, 918.CrossRefGoogle ScholarPubMed
Hankin, J.A. & Murphy, R.C. (2010). Relationship between 392 MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal. Chem. 82, 8476–84.CrossRefGoogle Scholar
Horvath, G. & Seidel, Jr., G.E. (2006). Vitrification of bovine oocytes after treatment with cholesterol-loaded methyl-β-cyclodextrin. Theriogenology 66, 1026–33.CrossRefGoogle ScholarPubMed
Huwiler, A., Kolter, T., Pfeilschifter, J. & Sandhoff, K. (2000). Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim. Biophys. Acta 1485, 6399.CrossRefGoogle ScholarPubMed
Kaplan, M.R. & Simoni, R.D. (1985). Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 101, 441–5.CrossRefGoogle ScholarPubMed
Kim, J.Y., Kinoshita, M., Ohnishi, M. & Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–8.CrossRefGoogle ScholarPubMed
Lapa, M., Marques, C.C., Alves, S.P., Vasques, M.I., Baptista, M.C., Carvalhais, I., Silva Pereira, M., Horta, A.E., Bessa, R.J. & Pereira, R.M. (2011). Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod. Domest. Anim. 46, 904–10.CrossRefGoogle ScholarPubMed
Leibo, S.P. (1981). Preservation of ova and embryos by freezing. In New Technologies in Animal Breeding (eds Brackett, B.G., Seidel, G.E. Jr & Seidel, S.M.), pp. 127–39. New York: Academic Press.Google Scholar
McKeegan, P.J. & Sturmey, R.G. (2011). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 5967.CrossRefGoogle ScholarPubMed
Merrill, A.H., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A. & Wang, E. (1997). Sphingolipids—the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208–25.CrossRefGoogle ScholarPubMed
Paula-Lopes, F.F. & Hansen, P.J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biol. Reprod. 66, 1169–77.CrossRefGoogle ScholarPubMed
Pereira, R.M., Baptista, M.C., Vasques, M.I., Horta, A.E., Portugal, P.V., Bessa, R.J., Silva, J.C., Pereira, M.S. & Marques, C.C. (2007). Cryosurvival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t,12c CLA). Anim. Reprod. Sci. 98, 293301.CrossRefGoogle Scholar
Rocha-Frigoni, N.A.S., Leão, B.C.S., Nogueira, É., Accorsi, M.F. & Mingoti, G.Z. (2014). Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reprod. Fertil. Dev. 26, 797805.CrossRefGoogle Scholar
Räty, M., Ketoja, E., Pitkänen, T., Ahola, V., Kananen, K. & Peippo, J. (2011). In vitro maturation supplements affect developmental competence of bovine cumulus–oocyte complexes and embryo quality after vitrification. Cryobiology 63, 245–55.CrossRefGoogle ScholarPubMed
Saraiva, S.A., Cabral, E.C., Eberlin, M.N. & Catharino, R.R. (2009). Amazonian vegetable oils and fats: fast typification and quality control via triacylglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. J. Agric. Food Chem. 57, 4030–4.CrossRefGoogle ScholarPubMed
Seidel, G.E. Jr. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–35.CrossRefGoogle ScholarPubMed
Sturmey, R.G., Reis, A., Leese, H.J. & McEvoy, T.G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–8.CrossRefGoogle ScholarPubMed
Sudano, M.J., Paschoal, D.M., Rascado, T.A.S., Magalhães, L.C., Crocomo, L.F., de Lima-Neto, J.F. & Landim-Alvarenga, F.A.C. (2011). Lipid content and apoptosis of in vitro produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology 75, 1211–20.CrossRefGoogle ScholarPubMed
Sudano, M.J., Santos, V.G., Tata, A., Ferreira, C.R., Paschoal, D.M., Machado, R., Buratini, J., Eberlin, M.N. & Landim-Alvarenga, F.D. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro and in vivo-produced blastocysts. Biol. Reprod. 87, 1211–20.CrossRefGoogle ScholarPubMed
Tata, A., Sudano, M.J., Santos, V.G., Landim-Alvarenga, F.D., Ferreira, C.R. & Eberlin, M.N. (2013). Optimal single-embryo mass spectrometry fingerprinting. J. Mass Spectrom. 48, 844–9.CrossRefGoogle ScholarPubMed
Vajta, G., Rindom, N., Peura, T.T., Holm, P., Greve, T. & Callesen, H. (1999). The effect of media, serum and temperature on in vitro survival of bovine blastocysts after open pulled straw (OPS) vitrification. Theriogenology 52, 939–48.CrossRefGoogle ScholarPubMed
Van Meer, G., Voelker, D.R. & Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell. Biol. 9, 112–24.CrossRefGoogle ScholarPubMed
Vance, J.E. & Tasseva, G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 1831, 543–54.CrossRefGoogle ScholarPubMed
Wiegmann, K., Schütze, S., Kampen, E., Himmler, A., Machleidt, T. & Krönke, M. (1992). Human 55-kDa receptor for tumor necrosis factor coupled to signal transduction cascades. J. Biol. Chem. 267, 79978001.CrossRefGoogle ScholarPubMed
Wold, S., Esbensen, K. & Geladi, P. (1987). Principal component analysis. In Chemometrics and Intelligent Laboratory Systems, pp. 3752. Amsterdam: Elsevier Science Publishers.Google Scholar
Zeron, Y., Sklan, D. & Arav, A. (2002). Effect of polyunsaturated fatty acid supplementation on biophysical parameters and chilling sensitivity of ewe oocytes. Mol. Reprod. Dev. 61, 271–8.CrossRefGoogle ScholarPubMed