Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-18T11:21:36.136Z Has data issue: false hasContentIssue false

Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility

Published online by Cambridge University Press:  18 September 2024

Pushpa Sindhu
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
Ankit Magotra*
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
Vikas Sindhu
Affiliation:
Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
Pradeep Chaudhary
Affiliation:
Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
*
Corresponding author: Ankit Magotra; Email: ankitoms@gmail.com

Summary

Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring’s epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelatty, A. M., Iwaniuk, M. E., Potts, S. B. and Gad, A. (2018). Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. International Journal of Veterinary Science and Medicine, 6, S1S5.CrossRefGoogle ScholarPubMed
Abobaker, H., Hu, Y., Omer, N. A., Hou, Z., Idriss, A. A. and Zhao, R. (2019). Maternal betaine suppresses adrenal expression of cholesterol trafficking genes and decreases plasma corticosterone concentration in offspring pullets. Journal of Animal Science and Biotechnology, 10(1), 110.CrossRefGoogle ScholarPubMed
Alhamwe, B. A., Khalaila, R., Wolf, J., von Bülow, V., Harb, H., Alhamdan, F., Hii, C. S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H. and Potaczek, D. P. (2018). Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma & Clinical Immunology, 14(1), 116.Google Scholar
Allais-Bonnet, A., Grohs, C., Medugorac, I., Krebs, S., Djari, A., Graf, A., Fritz, S., Seichter, D., Baur, A., Russ, I., Bouet, S., Rothammer, S., Wahlberg, P., Esquerré, D., Hoze, C., Boussaha, M., Weiss, B., Thépot, D., Fouilloux, M.-N.,… and Capitan, A. (2013). Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PloS One, 8(5), e63512.CrossRefGoogle ScholarPubMed
Amorín, R., Liu, L., Moriel, P., DiLorenzo, N., Lancaster, P. A. and Peñagaricano, F. (2023). Maternal diet induces persistent DNA methylation changes in the muscle of beef calves. Scientific Reports, 13(1), 1587.CrossRefGoogle ScholarPubMed
Arriaga-Canon, C., Fonseca-Guzmán, Y., Valdes-Quezada, C., Arzate-Mejía, R., Guerrero, G. and Recillas-Targa, F. (2014). A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain. Epigenetics, 9(1), 173181.CrossRefGoogle ScholarPubMed
Banta, J. A. and Richards, C. L. (2018). Quantitative epigenetics and evolution. Heredity, 121(3), 210224.CrossRefGoogle ScholarPubMed
Barbu, M. G., Condrat, C. E., Thompson, D. C., Bugnar, O. L., Cretoiu, D., Toader, O. D., Suciu, N. and Voinea, S. C. (2020). MicroRNA involvement in signaling pathways during viral infection. Frontiers in Cell and Developmental Biology, 8, 143.CrossRefGoogle ScholarPubMed
Basagoudanavar, S. H., Hosamani, M., Tamil Selvan, R. P., Sreenivasa, B. P., Sanyal, A. and Venkataramanan, R. (2018). Host serum microRNA profiling during the early stage of foot-and-mouth disease virus infection. Archives of Virology, 163, 20552063.CrossRefGoogle ScholarPubMed
Benmoussa, A., Laugier, J., Beauparlant, C. J., Lambert, M., Droit, A. and Provost, P. (2020). Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. Journal of Dairy Science, 103(1), 1629.CrossRefGoogle ScholarPubMed
Bidwell, C. A., Waddell, J. N., Taxis, T. M., Yu, H., Tellam, R. L., Neary, M. K. and Cockett, N. E. (2014). New insights into polar overdominance in callipyge sheep. Animal Genetics, 45, 5161.CrossRefGoogle ScholarPubMed
Billerey, C., Boussaha, M., Esquerré, D., Rebours, E., Djari, A., Meersseman, C., Klopp, C., Gautheret, D. and Rocha, D. (2014). Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics, 15(1), 110.CrossRefGoogle ScholarPubMed
Bobeck, E. A. (2020). Nutrition and health: companion animal applications: functional nutrition in livestock and companion animals to modulate the immune response. Journal of Animal Science, 98(3), skaa035.CrossRefGoogle ScholarPubMed
Boddicker, R. L., Koltes, J. E., Fritz-Waters, E. R., Koesterke, L., Weeks, N., Yin, T., Mani, V., Nettleton, D., Reecy, J. M., Baumgard, L. H., Spencer, J. D., Gabler, N. K., and Ross, J. W. (2016). Genome-wide methylation profile following prenatal and postnatal dietary omega-3 fatty acid supplementation in pigs. Animal Genetics, 47(6), 658671.CrossRefGoogle ScholarPubMed
Brun, J. M., Bernadet, M. D., Cornuez, A., Leroux, S., Bodin, L., Basso, B., Davail, S., Jaglin, M., Lessire, M., Martin, X., Sellier, N., Morisson, M. and Pitel, F. (2015). Influence of grand-mother diet on offspring performances through the male line in Muscovy duck. BMC Genetics, 16, 111.CrossRefGoogle ScholarPubMed
Caballero, J., Gilbert, I., Fournier, E., Gagné, D., Scantland, S., Macaulay, A. and Robert, C. (2015). Exploring the function of long non-coding RNA in the development of bovine early embryos. Reproduction, Fertility and Development, 27(1), 4052.CrossRefGoogle Scholar
Cai, D., Yuan, M., Liu, H., Han, Z., Pan, S., Yang, Y. and Zhao, R. (2017). Epigenetic and SP1-mediated regulation is involved in the repression of galactokinase 1 gene in the liver of neonatal piglets born to betaine-supplemented sows. European Journal of Nutrition, 56, 18991909.CrossRefGoogle ScholarPubMed
Canovas, S., Ross, P. J., Kelsey, G. and Coy, P. (2017). DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). Bioessays, 39(11), 1700106.CrossRefGoogle ScholarPubMed
Canovas, S., Ivanova, E., Hamdi, M., Perez-Sanz, F., Rizos, D., Kelsey, G. and Coy, P. (2021). Culture medium and sex drive epigenetic reprogramming in preimplantation bovine embryos. International Journal of Molecular Sciences, 22(12), 6426.CrossRefGoogle ScholarPubMed
Cao, Y., Jin, H. G., Ma, H. H. and Zhao, Z. H. (2017). Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper× Small Tailed Han crossbred sheep. Asian-Australasian Journal of Animal Sciences, 30(11), 1529.CrossRefGoogle Scholar
Cao, Z., Zhang, D., Wang, Y., Tong, X., Avalos, L. F. C., Khan, I. M., Gao, D., Xu, T., Zhang, L., Knott, J. and Zhang, Y. (2020). Identification and functional annotation of m6A methylation modification in granulosa cells during antral follicle development in pigs. Animal Reproduction Science, 219, 106510.CrossRefGoogle ScholarPubMed
Casas, E., Cai, G., Kuehn, L. A., Register, K. B., McDaneld, T. G. and Neill, J. D. (2016). Association of microRNAs with antibody response to Mycoplasma bovis in beef cattle. PloS One, 11(8), e0161651.CrossRefGoogle ScholarPubMed
Cavalli, G. and Heard, E. (2019). Advances in epigenetics link genetics to the environment and disease. Nature, 571(7766), 489499.CrossRefGoogle Scholar
Chadio, S., Kotsampasi, B., Taka, S., Liandris, E., Papadopoulos, N. and Plakokefalos, E. (2017). Epigenetic changes of hepatic glucocorticoid receptor in sheep male offspring undernourished in utero. Reproduction, Fertility and Development, 29(10), 19952004.CrossRefGoogle ScholarPubMed
Chanthavixay, G., Kern, C., Wang, Y., Saelao, P., Lamont, S. J., Gallardo, R. A., Rincon, G. and Zhou, H. (2020). Integrated transcriptome and histone modification analysis reveals NDV infection under heat stress affects bursa development and proliferation in susceptible chicken line. Frontiers in Genetics, 11, 567812.CrossRefGoogle ScholarPubMed
Chen, J., Wu, Y., Sun, Y., Dong, X., Wang, Z., Zhang, Z., Xiao, Y. and Dong, G. (2019a). Bacterial lipopolysaccharide induced alterations of genome-wide DNA methylation and promoter methylation of lactation-related genes in bovine mammary epithelial cells. Toxins, 11(5), 298.CrossRefGoogle ScholarPubMed
Chen, J., Wu, Y., Sun, Y., Dong, X., Wang, Z., Zhang, Z., Xiao, Y. and Dong, G. (2019b). Bacterial endotoxin decreased histone H3 acetylation of bovine mammary epithelial cells and the adverse effect was suppressed by sodium butyrate. BMC Veterinary Research, 15, 18.CrossRefGoogle ScholarPubMed
Chen, Z., Chu, S., Xu, X., Jiang, J., Wang, W., Shen, H., Li, M., Zhang, H., Mao, Y. and Yang, Z. (2019c). Analysis of longissimus muscle quality characteristics and associations with DNA methylation status in cattle. Genes & Genomics, 41, 11471163.CrossRefGoogle ScholarPubMed
Ciccone, N. A., Smith, L. P., Mwangi, W., Boyd, A., Broadbent, A. J., Smith, A. L. and Nair, V. (2017). Early pathogenesis during infectious bursal disease in susceptible chickens is associated with changes in B cell genomic methylation and loss of genome integrity. Developmental & Comparative Immunology, 73, 169174.CrossRefGoogle Scholar
Corbett, R. J., Luttman, A. M., Wurtz, K. E., Siegford, J. M., Raney, N. E., Ford, L. M. and Ernst, C. W. (2021). Weaning induces stress-dependent DNA methylation and transcriptional changes in piglet PBMCs. Frontiers in Genetics, 12, 633564.CrossRefGoogle ScholarPubMed
Correia, C. N., Nalpas, N. C., McLoughlin, K. E., Browne, J. A., Gordon, S. V., MacHugh, D. E. and Shaughnessy, R. G. (2017). Circulating microRNAs as potential biomarkers of infectious disease. Frontiers in Immunology, 8, 118.CrossRefGoogle ScholarPubMed
Costes, V., Chaulot-Talmon, A., Sellem, E., Perrier, J. P., Aubert-Frambourg, A., Jouneau, L., Pontlevoy, C., Hozé, C., Fritz, S., Boussaha, M., Le Danvic, C., Sanchez, M.-P., Boichard, D., Schibler, L., Jammes, H., Jaffrézic, F. and Kiefer, H. (2022). Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clinical Epigenetics, 14(1), 54.CrossRefGoogle ScholarPubMed
Criscitiello, M. F., Kraev, I. and Lange, S. (2020). Post-translational protein deimination signatures in serum and serum-extracellular vesicles of Bos taurus reveal immune, anti-pathogenic, anti-viral, metabolic and cancer-related pathways for deimination. International Journal of Molecular Sciences, 21(8), 2861.CrossRefGoogle ScholarPubMed
Crouse, M. S., Caton, J. S., Claycombe-Larson, K. J., Diniz, W. J., Lindholm-Perry, A. K., Reynolds, L. P., Dahlen, C. R., Borowicz, P. P. and Ward, A. K. (2022). Epigenetic modifier supplementation improves mitochondrial respiration and growth rates and alters DNA methylation of bovine embryonic fibroblast cells cultured in divergent energy supply. Frontiers in Genetics, 13, 812764.CrossRefGoogle ScholarPubMed
Dai, B., Zhang, M., Yuan, J. L., Ren, L. Q., Han, X. Y. and Liu, D. J. (2019). Integrative Analysis of methylation and transcriptional profiles to reveal the genetic stability of cashmere traits in the T β 4 overexpression of cashmere goats. Animals, 9(12), 1002.CrossRefGoogle Scholar
de Soutello, R. V. G., Rodrigues, M. G. F., Gonçalves, J. A., Bello, H. J. S., Pavan, B. E. and Ramos, E. S. (2022). Global genomic methylation related to the degree of parasitism in cattle. Scientific Reports, 12(1), 18135.CrossRefGoogle Scholar
Dechow, C. D. and Liu, W. S. (2018). DNA methylation patterns in peripheral blood mononuclear cells from Holstein cattle with variable milk yield. BMC Genomics, 19, 112.CrossRefGoogle ScholarPubMed
Deiuliis, J. A. (2016). MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. International Journal of Obesity, 40(1), 88101.CrossRefGoogle ScholarPubMed
Deng, M., Liu, Z., Chen, B., Wan, Y., Yang, H., Zhang, Y., Cai, Y., Zhou, J. and Wang, F. (2020a). Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos. Theriogenology, 148, 2736.CrossRefGoogle ScholarPubMed
Deng, M., Liu, Z., Ren, C., An, S., Wan, Y. and Wang, F. (2019). Highly methylated Xist in SCNT embryos was retained in deceased cloned female goats. Reproduction, Fertility and Development, 31(5), 855866.CrossRefGoogle ScholarPubMed
Deng, M., Zhang, G., Cai, Y., Liu, Z., Zhang, Y., Meng, F., Wang, F. and Wan, Y. (2020b). DNA methylation dynamics during zygotic genome activation in goat. Theriogenology, 156, 144154.CrossRefGoogle ScholarPubMed
Do, D. N. and Ibeagha-Awemu, E. M. (2017). Non-coding RNA roles in ruminant mammary gland development and lactation. Current Topics in Lactation. Rijeka: Intech.Google Scholar
Dobersch, S., Rubio, K., Singh, I., Günther, S., Graumann, J., Cordero, J., Castillo-Negrete, R., Huynh, M. B., Mehta, A., Braubach, P., Cabrera-Fuentes, H., Bernhagen, J., Chao, C. M., Bellusci, S., Günther, A., Preissner, K. T., Kugel, S., Dobreva, G., Wygrecka, M., Braun, T., Papy-Garcia, D. and Barreto, G. (2021). Positioning of nucleosomes containing γ-H2AX precedes active DNA demethylation and transcription initiation. Nature Communications, 12(1), 1072.CrossRefGoogle ScholarPubMed
Doherty, R., Farrelly, C. O. and Meade, K. G. (2014). Comparative epigenetics: relevance to the regulation of production and health traits in cattle. Animal Genetics, 45, 314.CrossRefGoogle Scholar
Doherty, R., Whiston, R., Cormican, P., Finlay, E. K., Couldrey, C., Brady, C., O’Farrelly, C. and Meade, K. G. (2016). The CD4+ T cell methylome contributes to a distinct CD4+ T cell transcriptional signature in Mycobacterium bovis-infected cattle. Scientific Reports, 6(1), 31014.CrossRefGoogle ScholarPubMed
Dong, Y., Xu, S., Liu, J., Ponnusamy, M., Zhao, Y., Zhang, Y., Wang, Q., Li, P. and Wang, K. (2018). Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. International Journal of Biological Sciences, 14(9), 1133.CrossRefGoogle ScholarPubMed
Dong, W., Yang, J., Zhang, Y., Liu, S., Ning, C., Ding, X., Wang, W., Zhang, Y., Zhang, Q. and Jiang, L. (2021). Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. Journal of Animal Breeding and Genetics, 138(5), 562573.CrossRefGoogle ScholarPubMed
Dvoran, M., Nemcova, L. and Kalous, J. (2022). An interplay between epigenetics and translation in oocyte maturation and embryo development: assisted reproduction perspective. Biomedicines, 10(7), 1689.CrossRefGoogle ScholarPubMed
Dysin, A. P., Barkova, O. Y. and Pozovnikova, M. V. (2021). The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Non-Coding RNA, 7(4), 78.CrossRefGoogle ScholarPubMed
Edwards, J. R., Yarychkivska, O., Boulard, M. and Bestor, T. H. (2017). DNA methylation and DNA methyltransferases. Epigenetics & Chromatin, 10(1), 110.CrossRefGoogle ScholarPubMed
El Henafy, H. M., Ibrahim, M. A., Abd El Aziz, S. A. and Gouda, E. M. (2020). Oxidative Stress and DNA methylation in male rat pups provoked by the transplacental and translactational exposure to bisphenol A. Environmental Science and Pollution Research, 27, 45134519.CrossRefGoogle ScholarPubMed
El-Saafin, F., Devys, D., Johnsen, S. A., Vincent, S. D. and Tora, L. (2022). SAGA-dependent histone H2Bub1 deubiquitination is essential for cellular ubiquitin balance during embryonic development. International Journal of Molecular Sciences, 23(13), 7459.CrossRefGoogle ScholarPubMed
Emam, M., Livernois, A., Paibomesai, M., Atalla, H. and Mallard, B. (2019). Genetic and epigenetic regulation of immune response and resistance to infectious diseases in domestic ruminants. Veterinary Clinics: Food Animal Practice, 35(3), 405429.Google ScholarPubMed
Engmann, O. (2018). Dairy cows–an opportunity in the research field of non-genetic inheritance. Environmental Epigenetics, 4(2), dvy014.CrossRefGoogle Scholar
Fadul, S. M., Arshad, A. and Mehmood, R. (2023). CRISPR-based epigenome editing: mechanisms and applications. Epigenomics, 15(21), 11371155.CrossRefGoogle ScholarPubMed
Fan, Y., Liang, Y., Deng, K., Zhang, Z., Zhang, G., Zhang, Y. and Wang, F. (2020). Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics, 21, 115.CrossRefGoogle ScholarPubMed
Fang, L., Zhou, Y., Liu, S., Jiang, J., Bickhart, D. M., Null, D. J., … and Liu, G. E. (2019). Comparative analyses of sperm DNA methylomes among human, mouse and cattle provide insights into epigenomic evolution and complex traits. Epigenetics, 14(3), 260276.CrossRefGoogle ScholarPubMed
Fang, X., Zhao, Z., Yu, H., Li, G., Jiang, P., Yang, Y., … and Yu, X. (2017). Comparative genome-wide methylation analysis of longissimus dorsi muscles between Japanese black (Wagyu) and Chinese Red Steppes cattle. PloS One, 12(8), e0182492.CrossRefGoogle ScholarPubMed
Fernandez-Twinn, D. S., Hjort, L., Novakovic, B., Ozanne, S. E. and Saffery, R. (2019). Intrauterine programming of obesity and type 2 diabetes. Diabetologia, 62, 17891801.CrossRefGoogle ScholarPubMed
Fu, Q., Shi, H. and Chen, C. (2017). Roles of bta-miR-29b promoter regions DNA methylation in regulating miR-29b expression and bovine viral diarrhea virus NADL replication in MDBK cells. Archives of Virology, 162, 401408.CrossRefGoogle ScholarPubMed
Gao, J., Cui, Y., Bao, W., Hao, Y., Piao, X. and Gu, X. (2023). Ubiquitylome study reveals the regulatory effect of α-lipoic acid on ubiquitination of key proteins in tryptophan metabolism pathway of pig liver. International Journal of Biological Macromolecules, 236, 123795.CrossRefGoogle ScholarPubMed
Gebert, L. F. and MacRae, I. J. (2019). Regulation of microRNA function in animals. Nature reviews Molecular cell biology, 20(1), 2137.CrossRefGoogle ScholarPubMed
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A. and Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.CrossRefGoogle ScholarPubMed
Glendining, K. A. and Jasoni, C. L. (2019). Maternal high fat diet-induced obesity modifies histone binding and expression of oxtr in offspring hippocampus in a sex-specific manner. International Journal of Molecular Sciences, 20(2), 329.CrossRefGoogle Scholar
Goyal, D., Limesand, S. W. and Goyal, R. (2019). Epigenetic responses and the developmental origins of health and disease. Journal of Endocrinology, 242(1), T105T119.CrossRefGoogle ScholarPubMed
Grade, C. V. C., Mantovani, C. S. and Alvares, L. E. (2019). Myostatin gene promoter: structure, conservation and importance as a target for muscle modulation. Journal of Animal Science and Biotechnology, 10, 119.CrossRefGoogle ScholarPubMed
Gross, N., Peñagaricano, F. and Khatib, H. (2020). Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Animal Genetics, 51(4), 502510.CrossRefGoogle ScholarPubMed
Guo, M., Chen, Y., Chen, Q., Guo, X., Yuan, Z., Kang, L. and Jiang, Y. (2020). Epigenetic changes associated with increased estrogen receptor alpha mRNA transcript abundance during reproductive maturation in chicken ovaries. Animal Reproduction Science, 214, 106287.CrossRefGoogle ScholarPubMed
Gupta, S. K., Maclean, P. H., Ganesh, S., Shu, D., Buddle, B. M., Wedlock, D. N. and Heiser, A. (2018). Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne’s disease. Journal of Dairy Science, 101(11), 1025910270.CrossRefGoogle ScholarPubMed
Han, C., Deng, R., Mao, T., Luo, Y., Wei, B., Meng, P., … and Zhang, Y. (2018). Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency. The FEBS Journal, 285(14), 27082723.CrossRefGoogle ScholarPubMed
Han, W., Xue, Q., Li, G., Yin, J., Zhang, H., Zhu, Y., … and Zou, J. (2020). Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics, 112(4), 26772687.CrossRefGoogle ScholarPubMed
He, S., Wang, H., Liu, R., He, M., Che, T., Jin, L., … and Li, M. (2017). mRNA N6-methyladenosine methylation of postnatal liver development in pig. PloS One, 12(3), e0173421.CrossRefGoogle ScholarPubMed
He, X., Xie, Z., Dong, Q., Li, J., Li, W. and Chen, P. (2015b). Effect of folic acid supplementation on renal phenotype and epigenotype in early weanling intrauterine growth retarded rats. Kidney and Blood Pressure Research, 40(4), 395402.CrossRefGoogle ScholarPubMed
He, Y., Ding, Y., Zhan, F., Zhang, H., Han, B., Hu, G., … and Song, J. (2015a). The conservation and signatures of lincRNAs in Marek’s disease of chicken. Scientific Reports, 5(1), 15184.CrossRefGoogle ScholarPubMed
He, Y., Song, M., Zhang, Y., Li, X., Song, J., Zhang, Y. and Yu, Y. (2016). Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 17, 112.CrossRefGoogle ScholarPubMed
He, Y., Zuo, Q., Edwards, J., Zhao, K., Lei, J., Cai, W., … and Song, J. (2018). DNA methylation and regulatory elements during chicken germline stem cell differentiation. Stem Cell Reports, 10(6), 17931806.CrossRefGoogle ScholarPubMed
Herchenröther, A., Wunderlich, T. M., Lan, J. and Hake, S. B. (2023). Spotlight on histone H2A variants: from B to X to Z. In Seminars in Cell & Developmental Biology, 135, 312.CrossRefGoogle Scholar
Hernaiz, A., Sentre, S., Bolea, R., López-Pérez, O., Sanz, A., Zaragoza, P., … and Martín-Burriel, I. (2019). Epigenetic changes in the central nervous system of sheep naturally infected with scrapie. XVIII Jornadas sobre Producción Animal, Zaragoza, España, 7 y 8 de mayo de, 2019, 507509.Google Scholar
Hernández-Cruz, E. Y., Amador-Martínez, I., Aranda-Rivera, A. K., Cruz-Gregorio, A. and Chaverri, J. P. (2022). Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chemico-Biological Interactions, 361, 109961.CrossRefGoogle ScholarPubMed
Hong, J., Wang, X., Mei, C., Wang, H. and Zan, L. (2019). DNA methylation and transcription factors competitively regulate SIRT4 promoter activity in bovine adipocytes: roles of NRF1 and CMYB. DNA and Cell Biology, 38(1), 6375.CrossRefGoogle ScholarPubMed
Horvath, S. and Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371384.CrossRefGoogle ScholarPubMed
Horvath, S., Lu, A. T., Haghani, A., Zoller, J. A., Li, C. Z., Lim, A. R., … and Ostrander, E. A. (2022). DNA methylation clocks for dogs and humans. Proceedings of the National Academy of Sciences, 119(21), e2120887119.CrossRefGoogle ScholarPubMed
Hu, B., Li, S., Zhang, X. and Zheng, X. (2014). HSCARG, a novel regulator of H2A ubiquitination by downregulating PRC1 ubiquitin E3 ligase activity, is essential for cell proliferation. Nucleic Acids Research, 42(9), 55825593.CrossRefGoogle ScholarPubMed
Hu, Y., Sun, Q., Zong, Y., Liu, J., Idriss, A. A., Omer, N. A. and Zhao, R. (2017). Prenatal betaine exposure alleviates corticosterone-induced inhibition of CYP27A1 expression in the liver of juvenile chickens associated with its promoter DNA methylation. General and Comparative Endocrinology, 246, 241248.CrossRefGoogle ScholarPubMed
Huang, C. H., Yang, T. T. and Lin, K. I. (2024). Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. Journal of Biomedical Science, 31(1), 16.CrossRefGoogle ScholarPubMed
Ibeagha-Awemu, E. M. and Khatib, H. (2017). Epigenetics of livestock breeding. In Handbook of Epigenetics. Cambridge: Academic Press.Google Scholar
Ibeagha-Awemu, E. M. and Khatib, H. (2023). Epigenetics of livestock health, production, and breeding. In Handbook of Epigenetics. Cambridge: Academic Press.Google Scholar
Ibeagha-Awemu, E. M. and Zhao, X. (2015). Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Frontiers in Genetics, 6, 302.CrossRefGoogle ScholarPubMed
Idriss, A. A., Hu, Y., Hou, Z., Hu, Y., Sun, Q., Omer, N. A., … and Zhao, R. (2018). Dietary betaine supplementation in hens modulates hypothalamic expression of cholesterol metabolic genes in F1 cockerels through modification of DNA methylation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 217, 1420.CrossRefGoogle ScholarPubMed
Jain, A. K., Xi, Y., McCarthy, R., Allton, K., Akdemir, K. C., Patel, L. R., … and Barton, M. C. (2016). LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Molecular Cell, 64(5), 967981.CrossRefGoogle ScholarPubMed
Jeet, V., Magotra, A., Bangar, Y.C., Kumar, S., Garg, A.R., Yadav, A.S., Bahurupi, P. (2022) Evaluation of candidate point mutation of Kisspeptin 1 gene associated with litter size in Indian Goat breeds and its effect on transcription factor binding sites, Domestic Animal Endocrinology, 78, 106676.CrossRefGoogle ScholarPubMed
Jhamat, N., Niazi, A., Guo, Y., Chanrot, M., Ivanova, E., Kelsey, G., … and Humblot, P. (2020). LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function. BMC Genomics, 21, 112.CrossRefGoogle ScholarPubMed
Jia, Y., Cong, R., Li, R., Yang, X., Sun, Q., Parvizi, N. and Zhao, R. (2012). Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. The Journal of Nutrition, 142(9), 16591665.CrossRefGoogle ScholarPubMed
Jiao, Q., Yin, R. H., Zhao, S. J., Wang, Z. Y., Zhu, Y. B., Wang, W., … and Bai, W. L. (2019). Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation. Gene, 688, 182192.CrossRefGoogle ScholarPubMed
Jin, C., Zhuo, Y., Wang, J., Zhao, Y., Xuan, Y., Mou, D., … and Wu, D. (2018). Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. Journal of Animal Physiology and Animal Nutrition, 102(5), 13401350.CrossRefGoogle ScholarPubMed
Jin, W., Peng, J. and Jiang, S. (2016). The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochemistry and Biophysics Reports, 6, 209219.CrossRefGoogle ScholarPubMed
Johnson, N. D. and Conneely, K. N. (2019). The role of DNA methylation and hydroxymethylation in immunosenescence. Ageing Research Reviews, 51, 1123.CrossRefGoogle ScholarPubMed
Ju, Z., Jiang, Q., Wang, J., Wang, X., Yang, C., Sun, Y., … and Huang, J. (2020). Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows. BMC Genomics, 21, 114.CrossRefGoogle Scholar
Jurkowska, R. Z., Jurkowski, T. P. and Jeltsch, A. (2011). Structure and function of mammalian DNA methyltransferases. ChemBioChem, 12(2), 206222.CrossRefGoogle ScholarPubMed
Kang, X., Li, C., Liu, S., Baldwin, R. L., Liu, G. E. and Li, C. J. (2023). Genome-wide acetylation modification of H3K27ac in bovine rumen cell following butyrate exposure. Biomolecules, 13(7), 1137.CrossRefGoogle ScholarPubMed
Keleher, M. R., Zaidi, R., Shah, S., Oakley, M. E., Pavlatos, C., El Idrissi, S., … and Cheverud, J. M. (2018). Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring. PloS One, 13(2), e0192606.CrossRefGoogle ScholarPubMed
Khatib, H. (2021). Transgenerational epigenetic inheritance in farm animals: How substantial is the evidence? Livestock Science, 250, 104557.CrossRefGoogle Scholar
Killick, K. E., Browne, J. A., Park, S. D., Magee, D. A., Martin, I., Meade, K. G., … and MacHugh, D. E. (2011). Genome-wide transcriptional profiling of peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals suppression of host immune genes. BMC Genomics, 12, 118.CrossRefGoogle ScholarPubMed
Kozomara, A., Birgaoanu, M. and Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic acids research, 47(D1), D155D162.CrossRefGoogle ScholarPubMed
Kumar, H., Chaudhary, A., Singh, A., Sukhija, N., Panwar, A., Saravanan, K., … and Panigrahi, M. (2020). A review on epigenetics: manifestations, modifications, methods & challenges. Journal of Entomology and Zoology studies, 8(4), 0106.Google Scholar
Kutchy, N. A., Menezes, E. S. B., Chiappetta, A., Tan, W., Wills, R. W., Kaya, A., … and Memili, E. (2018). Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia, 50(3), e12915.CrossRefGoogle ScholarPubMed
Kweh, M. F., Merriman, K. E. and Nelson, C. D. (2019). Inhibition of DNA methyltransferase and histone deacetylase increases β-defensin expression but not the effects of lipopolysaccharide or 1, 25-dihydroxyvitamin D3 in bovine mammary epithelial cells. Journal of Dairy Science, 102(6), 57065712.CrossRefGoogle ScholarPubMed
Larsen, K., Kristensen, K. K. and Callesen, H. (2018). DNA methyltransferases and tRNA methyltransferase DNMT2 in developing pig brain-expression and promoter methylation. Gene Reports, 11, 4251.CrossRefGoogle Scholar
Lawless, N., Reinhardt, T. A., Bryan, K., Baker, M., Pesch, B., Zimmerman, D., … and Lynn, D. J. (2014). MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model. G3: Genes, Genomes, Genetics, 4(6), 957971.CrossRefGoogle Scholar
Leal-Gutiérrez, J. D., Elzo, M. A. and Mateescu, R. G. (2020). Identification of eQTLs and sQTLs associated with meat quality in beef. BMC Genomics, 21, 115.CrossRefGoogle ScholarPubMed
Lee, J., Lee, S., Son, J., Lim, H., Kim, E., Kim, D., … and Choi, I. (2020). Analysis of circulating-microRNA expression in lactating Holstein cows under summer heat stress. PLoS One, 15(8), e0231125.CrossRefGoogle ScholarPubMed
Lenkala, D., LaCroix, B., Gamazon, E. R., Geeleher, P., Im, H. K. and Huang, R. S. (2014). The impact of microRNA expression on cellular proliferation. Human Genetics, 133, 931938.CrossRefGoogle ScholarPubMed
Leroux, S., Gourichon, D., Leterrier, C., Labrune, Y., Coustham, V., Rivière, S., … and Pitel, F. (2017). Embryonic environment and transgenerational effects in quail. Genetics Selection Evolution, 49(1), 18.CrossRefGoogle ScholarPubMed
Li, C., Li, Y., Zhou, G., Gao, Y., Ma, S., Chen, Y., … and Wang, X. (2018b). Whole-genome bisulfite sequencing of goat skins identifies signatures associated with hair cycling. BMC Genomics, 19(1), 19.CrossRefGoogle ScholarPubMed
Li, H., Li, D., Chen, H., Yue, X., Fan, K., Dong, L. and Wang, G. (2023). Application of silicon nanowire field effect transistor (SiNW-FET) biosensor with high sensitivity. Sensors, 23(15), 6808.CrossRefGoogle ScholarPubMed
Li, J., Liang, R., Mao, Y., Yang, X., Luo, X., Qian, Z., … and Zhu, L. (2022c). Effect of dietary resveratrol supplementation on muscle fiber types and meat quality in beef cattle. Meat Science, 194, 108986.CrossRefGoogle ScholarPubMed
Li, Q., Yang, C., Du, J., Zhang, B., He, Y., Hu, Q., … and Zhong, J. (2018a). Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress. BMC Genomics, 19, 111.CrossRefGoogle ScholarPubMed
Li, T., Wang, S., Wu, R., Zhou, X., Zhu, D. and Zhang, Y. (2012). Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomics, 99(5), 292298.CrossRefGoogle ScholarPubMed
Li, X., Wang, M., Liu, S., Chen, X., Qiao, Y., Yang, X., … and Wu, S. (2022a). Paternal transgenerational nutritional epigenetic effect: a new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. Animal Nutrition, 11, 142151.CrossRefGoogle ScholarPubMed
Li, Y. C., Wang, G. W., Xu, S. R., Zhang, X. N. and Yang, Q. E. (2020). The expression of histone methyltransferases and distribution of selected histone methylations in testes of yak and cattle-yak hybrid. Theriogenology, 144, 164173.CrossRefGoogle ScholarPubMed
Li, Z., Zhang, X., Xie, S., Liu, X., Fei, C., Huang, X., … and Zhou, L. Q. (2022b). H3K36me2 methyltransferase NSD2 orchestrates epigenetic reprogramming during spermatogenesis. Nucleic Acids Research, 50(12), 67866800.CrossRefGoogle ScholarPubMed
Liu, H., Wang, J., Mou, D., Che, L., Fang, Z., Feng, B., … and Wu, D. (2017c). Maternal methyl donor supplementation during gestation counteracts the bisphenol a-induced impairment of intestinal morphology, disaccharidase activity, and nutrient transporters gene expression in newborn and weaning pigs. Nutrients, 9(5), 423.CrossRefGoogle ScholarPubMed
Liu, L., Amorín, R., Moriel, P., DiLorenzo, N., Lancaster, P. A. and Peñagaricano, F. (2021). Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. BMC Genomics, 22, 111.CrossRefGoogle ScholarPubMed
Liu, M., Zhou, J., Chen, Z. and Cheng, A. S. L. (2017a). Understanding the epigenetic regulation of tumours and their microenvironments: opportunities and problems for epigenetic therapy. The Journal of Pathology, 241(1), 1024.CrossRefGoogle ScholarPubMed
Liu, S., Fang, L., Zhou, Y., Santos, D. J., Xiang, R., Daetwyler, H. D., … and Liu, G. E. (2019a). Analyses of inter-individual variations of sperm DNA methylation and their potential implications in cattle. BMC Genomics, 20(1), 114.CrossRefGoogle ScholarPubMed
Liu, X., Yang, J., Zhang, Q. and Jiang, L. (2017b). Regulation of DNA methylation on EEF1D and RPL8 expression in cattle. Genetica, 145(4–5), 387395.CrossRefGoogle ScholarPubMed
Liu, Z., Han, S., Shen, X., Wang, Y., Cui, C., He, H., … and Yin, H. (2019b). The landscape of DNA methylation associated with the transcriptomic network in layers and broilers generates insight into embryonic muscle development in chicken. International Journal of Biological Sciences, 15(7), 1404.CrossRefGoogle ScholarPubMed
Liu, Z., Li, Q., Liu, R., Zhao, G., Zhang, Y., Zheng, M., … and Wen, J. (2016). Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken. Poultry Science, 95(6), 13871395.CrossRefGoogle ScholarPubMed
Livernois, A. M., Mallard, B. A., Cartwright, S. L. and Cánovas, A. (2021). Heat stress and immune response phenotype affect DNA methylation in blood mononuclear cells from Holstein dairy cows. Scientific Reports, 11(1), 11371.CrossRefGoogle ScholarPubMed
Lu, T., Song, Z., Li, Q., Li, Z., Wang, M., Liu, L., … and Li, N. (2017). Overexpression of histone deacetylase 6 enhances resistance to porcine reproductive and respiratory syndrome virus in pigs. PloS One, 12(1), e0169317.CrossRefGoogle ScholarPubMed
Luo, C., Hajkova, P. and Ecker, J. R. (2018). Dynamic DNA methylation: In the right place at the right time. Science, 361(6409), 13361340.CrossRefGoogle Scholar
Luo, J., Yu, Y., Chang, S., Tian, F., Zhang, H. and Song, J. (2012). DNA methylation fluctuation induced by virus infection differs between MD-resistant and-susceptible chickens. Frontiers in Genetics, 3, 20.CrossRefGoogle ScholarPubMed
Lv, Z., Fan, H., Song, B., Li, G., Liu, D. and Guo, Y. (2019). Supplementing genistein for breeder hens alters the fatty acid metabolism and growth performance of offsprings by epigenetic modification. Oxidative Medicine and Cellular Longevity, 13, 1468.Google Scholar
Ma, X., Jia, C., Chu, M., Fu, D., Lei, Q., Ding, X., … and Liang, C. (2019). Transcriptome and DNA methylation analyses of the molecular mechanisms underlying with longissimus dorsi muscles at different stages of development in the polled yak. Genes, 10(12), 970.CrossRefGoogle ScholarPubMed
Malysheva, O. V., Pivina, S. G., Ponomareva, E. N. and Ordyan, N. E. (2023). Changes in content of small noncoding rna in spermatozoa as a possible mechanism of transgenerational transmission of paternal stress effect: an experimental study. Cell and Tissue Biology, 17(3), 223232.CrossRefGoogle Scholar
Martin, E. M. and Fry, R. C. (2018). Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annual Review of Public Health, 39, 309333.CrossRefGoogle ScholarPubMed
Mei, X., Kang, X., Liu, X., Jia, L., Li, H., Li, Z. and Jiang, R. (2016). Identification and SNP association analysis of a novel gene in chicken. Animal Genetics, 47(1), 125127.CrossRefGoogle ScholarPubMed
Mennitti, L. V., Oliveira, J. L., Morais, C. A., Estadella, D., Oyama, L. M., do Nascimento, C. M. O. and Pisani, L. P. (2015). Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. The Journal of Nutritional Biochemistry, 26(2), 99111.CrossRefGoogle ScholarPubMed
Millán-Zambrano, G., Burton, A., Bannister, A. J. and Schneider, R. (2022). Histone post-translational modifications—cause and consequence of genome function. Nature Reviews Genetics, 23(9), 563580.CrossRefGoogle ScholarPubMed
Miretti, S., Lecchi, C., Ceciliani, F. and Baratta, M. (2020). MicroRNAs as biomarkers for animal health and welfare in livestock. Frontiers in Veterinary Science, 7, 578193.CrossRefGoogle ScholarPubMed
Moura, F. H., Macias-Franco, A., Pena-Bello, C. A., Archilia, E. C., Batalha, I. M., Silva, A. E., … and Fonseca, M. A. (2022). Sperm DNA 5-methyl cytosine and RNA N 6-methyladenosine methylation are differently affected during periods of body weight losses and body weight gain of young and mature breeding bulls. Journal of Animal Science, 100(2), skab362.CrossRefGoogle Scholar
Muroya, S., Otomaru, K., Oshima, K., Oshima, I., Ojima, K. and Gotoh, T. (2023). DNA methylation of genes participating in hepatic metabolisms and function in fetal calf liver is altered by maternal undernutrition during gestation. International Journal of Molecular Sciences, 24(13), 10682.CrossRefGoogle ScholarPubMed
Muroya, S., Zhang, Y., Kinoshita, A., Otomaru, K., Oshima, K., Gotoh, Y., … and Gotoh, T. (2021). Maternal undernutrition during pregnancy alters amino acid metabolism and gene expression associated with energy metabolism and angiogenesis in fetal calf muscle. Metabolites, 11(9), 582.CrossRefGoogle ScholarPubMed
Neethirajan, S. (2022). miRNA sensing in livestock: challenges and potential approaches. Biol. Life Sci. Forum, 10, 3.Google Scholar
Nilsson, E. E., Sadler-Riggleman, I. and Skinner, M. K. (2018). Environmentally induced epigenetic transgenerational inheritance of disease. Environmental Epigenetics, 4(2), dvy016.CrossRefGoogle ScholarPubMed
Norouzitallab, P., Baruah, K., Vanrompay, D. and Bossier, P. (2019). Can epigenetics translate environmental cues into phenotypes? Science of the Total Environment, 647, 12811293.CrossRefGoogle ScholarPubMed
Noya, A., Casasús, I., Ferrer, J. and Sanz, A. (2019). Effects of developmental programming caused by maternal nutrient intake on postnatal performance of beef heifers and their calves. Animals, 9(12), 1072.CrossRefGoogle ScholarPubMed
Oladejo, A. O., Li, Y., Wu, X., Imam, B. H., Shen, W., Ding, X. Z., … and Yan, Z. (2020). MicroRNAome: potential and veritable immunomolecular therapeutic and diagnostic baseline for lingering bovine endometritis. Frontiers in Veterinary Science, 7, 614054.CrossRefGoogle ScholarPubMed
Omer, N. A., Hu, Y., Hu, Y., Idriss, A. A., Abobaker, H., Hou, Z., … and Zhao, R. (2018). Dietary betaine activates hepatic VTGII expression in laying hens associated with hypomethylation of GR gene promoter and enhanced GR expression. Journal of Animal Science and Biotechnology, 9, 110.CrossRefGoogle ScholarPubMed
Omer, N. A., Hu, Y., Idriss, A. A., Abobaker, H., Hou, Z., Yang, S., … and Zhao, R. (2020). Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poultry Science, 99(6), 31213132.CrossRefGoogle ScholarPubMed
Osorio, J. S., Jacometo, C. B., Zhou, Z., Luchini, D., Cardoso, F. C. and Loor, J. J. (2016). Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine. Journal of Dairy Science, 99(1), 234244.CrossRefGoogle ScholarPubMed
Otto, T., Candido, S. V., Pilarz, M. S., Sicinska, E., Bronson, R. T., Bowden, M., … and Sicinski, P. (2017). Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proceedings of the National Academy of Sciences, 114(40), 1066010665.CrossRefGoogle Scholar
Palazzese, L., Czernik, M., Iuso, D., Toschi, P. and Loi, P. (2018). Nuclear quiescence and histone hyper-acetylation jointly improve protamine-mediated nuclear remodeling in sheep fibroblasts. Plos One, 13(3), e0193954.CrossRefGoogle ScholarPubMed
Pan, X., Gong, D., Nguyen, D. N., Zhang, X., Hu, Q., Lu, H., … and Gao, F. (2018). Early microbial colonization affects DNA methylation of genes related to intestinal immunity and metabolism in preterm pigs. DNA Research, 25(3), 287296.CrossRefGoogle ScholarPubMed
Panzeri, I. and Pospisilik, J. A. (2018). Epigenetic control of variation and stochasticity in metabolic disease. Molecular Metabolism, 14, 2638.CrossRefGoogle ScholarPubMed
Paradis, F., Wood, K. M., Swanson, K. C., Miller, S. P., McBride, B. W. and Fitzsimmons, C. (2017). Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle. BMC Genomics, 18, 114.CrossRefGoogle ScholarPubMed
Peng, X. X., Guo, T., Lu, H., Yue, L., Li, Y., Jin, D., … and Yang, F. (2020). Nanostructuring synergetic base-stacking effect: an enhanced versatile sandwich sensor enables ultrasensitive detection of microRNAs in blood. ACS Sensors, 5(8), 25142522.CrossRefGoogle ScholarPubMed
Perrier, J. P., Sellem, E., Prézelin, A., Gasselin, M., Jouneau, L., Piumi, F., … and Kiefer, H. (2018). A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features. BMC Genomics, 19, 118.CrossRefGoogle ScholarPubMed
Phakdeedindan, P., Wittayarat, M., Tharasanit, T., Techakumphu, M., Shimazaki, M., Sambuu, R., … and Sato, Y. (2022). Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle–yak showing infertility. Reproduction in Domestic Animals, 57(3), 304313.CrossRefGoogle ScholarPubMed
Pontelo, T. P., Rodrigues, S. A., Kawamoto, T. S., Leme, L. O., Gomes, A. C. M. M., Zangeronimo, M. G., … and Dode, M. A. (2020). Histone acetylation during the in vitro maturation of bovine oocytes with different levels of competence. Reproduction, Fertility and Development, 32(7), 690696.CrossRefGoogle ScholarPubMed
Qin, W., Scicluna, B. P. and van der Poll, T. (2021). The role of host cell DNA methylation in the immune response to bacterial infection. Frontiers in Immunology, 12, 696280.CrossRefGoogle ScholarPubMed
Radford, E. J., Ito, M., Shi, H., Corish, J. A., Yamazawa, K., Isganaitis, E., … and Ferguson-Smith, A. C. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science, 345(6198), 1255903.CrossRefGoogle ScholarPubMed
Ran, H., He, Q., Han, Y., Wang, J., Wang, H., Yue, B., … and Wang, H. (2023). Functional study and epigenetic targets analyses of SIRT1 in intramuscular preadipocytes via ChIP-seq and mRNA-seq. Epigenetics, 18(1), 2135194.CrossRefGoogle ScholarPubMed
Ran, M., Chen, B., Li, Z., Wu, M., Liu, X., He, C., … and Li, Z. (2016). Systematic identification of long noncoding RNAs in immature and mature porcine testes. Biology of Reproduction, 94(4), 77–71.CrossRefGoogle ScholarPubMed
Rasmussen, K. D. and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes & Development, 30(7), 733750.CrossRefGoogle ScholarPubMed
Ratan, P., Rubbi, L., Thompson, M., Naresh, K., Waddell, J., Jones, B. and Pellegrini, M. (2023). Epigenetic aging in cows is accelerated by milk production. Epigenetics, 18(1), 2240188.CrossRefGoogle ScholarPubMed
Rattan, S., Beers, H. K., Kannan, A., Ramakrishnan, A., Brehm, E., Bagchi, I., … and Flaws, J. A. (2019). Prenatal and ancestral exposure to di (2-ethylhexyl) phthalate alters gene expression and DNA methylation in mouse ovaries. Toxicology and Applied Pharmacology, 379, 114629.CrossRefGoogle ScholarPubMed
Rekawiecki, R., Kisielewska, K., Kowalik, M. K. and Kotwica, J. (2018). Methylation of progesterone receptor isoform A and B promoters in the reproductive system of cows. Reproduction, Fertility and Development, 30(12), 16341642.CrossRefGoogle Scholar
Ren, H., Wang, G., Chen, L., Jiang, J., Liu, L., Li, N., … and Zhou, P. (2016). Genome-wide analysis of long non-coding RNAs at early stage of skin pigmentation in goats (Capra hircus). BMC Genomics, 17(1), 112.CrossRefGoogle ScholarPubMed
Robaire, B., Delbes, G., Head, J. A., Marlatt, V. L., Martyniuk, C. J., Reynaud, S., … and Mennigen, J. A. (2022). A cross-species comparative approach to assessing multi-and transgenerational effects of endocrine disrupting chemicals. Environmental Research, 204, 112063.CrossRefGoogle ScholarPubMed
Roeszler, K. N., Itman, C., Sinclair, A. H. and Smith, C. A. (2012). The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis. Developmental biology, 366(2), 317326.CrossRefGoogle Scholar
Rubio, K., Hernández-Cruz, E. Y., Rogel-Ayala, D. G., Sarvari, P., Isidoro, C., Barreto, G. and Pedraza-Chaverri, J. (2023). Nutriepigenomics in environmental-associated oxidative stress. Antioxidants, 12(3), 771.CrossRefGoogle ScholarPubMed
Saeed-Zidane, M., Tesfaye, D., Mohammed Shaker, Y., Tholen, E., Neuhoff, C., Rings, F., … and Salilew-Wondim, D. (2019). Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One, 14(10), e0223753.CrossRefGoogle ScholarPubMed
Safi-Stibler, S. and Gabory, A. (2020). Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Seminars in Cell & Developmental Biology, 97, 172180.CrossRefGoogle Scholar
Saito, M., Xu, P., Faure, G., Maguire, S., Kannan, S., Altae-Tran, H., … and Zhang, F. (2023). Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature, 620(7974), 660668.CrossRefGoogle ScholarPubMed
Sajjanar, B., Trakooljul, N., Wimmers, K. and Ponsuksili, S. (2019). DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics, 20(1), 115.CrossRefGoogle ScholarPubMed
Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S. and Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of cellular physiology, 234(5), 54515465.CrossRefGoogle ScholarPubMed
Samiec, M. and Skrzyszowska, M. (2018). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Polish Journal of Veterinary Sciences, 21(1), 217227.Google ScholarPubMed
Samiec, M., Romanek, J., Lipiński, D. and Opiela, J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Animal Science Journal, 90(9), 11271141.CrossRefGoogle Scholar
Sandoval, C., Askelson, K., Lambo, C. A., Dunlap, K. A. and Satterfield, M. C. (2021). Effect of maternal nutrient restriction on expression of glucose transporters (SLC2A4 and SLC2A1) and insulin signaling in skeletal muscle of SGA and Non-SGA sheep fetuses. Domestic Animal Endocrinology, 74, 106556.CrossRefGoogle ScholarPubMed
Satheesha, G. M., Nagaraja, R., Yathish, H. M., Jayashree, R., Kotresh, A. M., Sahadev, A. and Kumar, S. N. (2020). A review on epigenetics: importance in livestock breeding and production. Int. J. Curr. Microbiol. App. Sci, 9(6), 15821590.Google Scholar
Schmitz, R. J., Lewis, Z. A. and Goll, M. G. (2019). DNA methylation: shared and divergent features across eukaryotes. Trends in Genetics, 35(11), 818827.CrossRefGoogle ScholarPubMed
Selvaraju, V., Baskaran, S., Agarwal, A. and Henkel, R. (2021). Environmental contaminants and male infertility: effects and mechanisms. Andrologia, 53(1), e13646.CrossRefGoogle ScholarPubMed
Sengar, G. S., Deb, R., Singh, U., Raja, T. V., Kant, R., Sajjanar, B., … and Joshi, C. G. (2018). Differential expression of microRNAs associated with thermal stress in Frieswal (Bos taurus x Bos indicus) crossbred dairy cattle. Cell Stress & Chaperones, 23(1), 155170.CrossRefGoogle ScholarPubMed
Shah, S. M. and Chauhan, M. S. (2019). Modern biotechnological tools for enhancing reproductive efficiency in livestock. Indian Journal Of Genetics And Plant Breeding, 79(Sup-01), 241249.Google Scholar
Shanmugam, M. K., Arfuso, F., Arumugam, S., Chinnathambi, A., Jinsong, B., Warrier, S., … and Lakshmanan, M. (2018). Role of novel histone modifications in cancer. Oncotarget, 9(13), 11414.CrossRefGoogle ScholarPubMed
Shi, P., Ruan, Y., Liu, W., Sun, J., Xu, J. and Xu, H. (2023). Analysis of promoter methylation of the bovine FOXO1 gene and its effect on proliferation and differentiation of myoblasts. Animals, 13(2), 319.CrossRefGoogle ScholarPubMed
Shirjang, S., Mansoori, B., Asghari, S., Duijf, P. H., Mohammadi, A., Gjerstorff, M. and Baradaran, B. (2019). MicroRNAs in cancer cell death pathways: apoptosis and necroptosis. Free Radical Biology and Medicine, 139, 115.CrossRefGoogle ScholarPubMed
Skinner, M. K. (2016). Epigenetic transgenerational inheritance. Nature Reviews Endocrinology, 12(2), 6870.CrossRefGoogle ScholarPubMed
Skinner, M. K., Ben Maamar, M., Sadler-Riggleman, I., Beck, D., Nilsson, E., McBirney, M., … and Yan, W. (2018). Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics & Chromatin, 11(1), 124.CrossRefGoogle ScholarPubMed
Skrzyszowska, M. and Samiec, M. (2021). Generating cloned goats by somatic cell nuclear transfer—Molecular determinants and application to transgenics and biomedicine. International Journal of Molecular Sciences, 22(14), 7490.CrossRefGoogle ScholarPubMed
Song, H., Shen, R., Liu, X., Yang, X., Xie, K., Guo, Z. and Wang, D. (2022). Histone post-translational modification and the DNA damage response. Genes & Diseases, 10, 14291444.CrossRefGoogle ScholarPubMed
Song, M., He, Y., Zhou, H., Zhang, Y., Li, X. and Yu, Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Scientific Reports, 6(1), 29390.CrossRefGoogle ScholarPubMed
Songstad, N. T., Kaspersen, K. H. F., Hafstad, A. D., Basnet, P., Ytrehus, K. and Acharya, G. (2015). Effects of high intensity interval training on pregnant rats, and the placenta, heart and liver of their fetuses. PloS One, 10(11), e0143095.CrossRefGoogle ScholarPubMed
Stachecka, J., Kolodziejski, P. A., Noak, M. and Szczerbal, I. (2021). Alteration of active and repressive histone marks during adipogenic differentiation of porcine mesenchymal stem cells. Scientific Reports, 11(1), 1325.CrossRefGoogle ScholarPubMed
Stenfeldt, C., Arzt, J., Smoliga, G., LaRocco, M., Gutkoska, J. and Lawrence, P. (2017). Proof-of-concept study: profile of circulating microRNAs in Bovine serum harvested during acute and persistent FMDV infection. Virology Journal, 14(1), 118.CrossRefGoogle ScholarPubMed
Su, Y., Fan, Z., Wu, X., Li, Y., Wang, F., Zhang, C., … and Wang, S. (2016). Genome-wide DNA methylation profile of developing deciduous tooth germ in miniature pigs. BMC Genomics, 17, 19.CrossRefGoogle ScholarPubMed
Sun, H. Z., Chen, Y. and Guan, L. L. (2019). MicroRNA expression profiles across blood and different tissues in cattle. Scientific Data, 6(1), 18.CrossRefGoogle ScholarPubMed
Sun, J., Aswath, K., Schroeder, S. G., Lippolis, J. D., Reinhardt, T. A. and Sonstegard, T. S. (2015). MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics, 16(1), 110.CrossRefGoogle ScholarPubMed
Sutovsky, P. (2018). Sperm–oocyte interactions and their implications for bull fertility, with emphasis on the ubiquitin–proteasome system. Animal, 12(s1), s121s132.CrossRefGoogle ScholarPubMed
Tarrade, A., Panchenko, P., Junien, C. and Gabory, A. (2015). Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. Journal of Experimental Biology, 218(1), 5058.CrossRefGoogle ScholarPubMed
Tatemoto, P., Pértille, F., Bernardino, T., Zanella, R., Guerrero-Bosagna, C. and Zanella, A. J. (2023). An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics, 18(1), 2196656.CrossRefGoogle ScholarPubMed
Taxis, T. M. and Casas, E. (2017). MicroRNA expression and implications for infectious diseases in livestock. CABI Reviews, 12, 120.CrossRefGoogle Scholar
Thompson, R. P., Nilsson, E. and Skinner, M. K. (2020). Environmental epigenetics and epigenetic inheritance in domestic farm animals. Animal Reproduction Science, 220, 106316.CrossRefGoogle ScholarPubMed
Tian, F., Zhan, F., VanderKraats, N. D., Hiken, J. F., Edwards, J. R., Zhang, H., … and Song, J. (2013). DNMT gene expression and methylome in Marek’s disease resistant and susceptible chickens prior to and following infection by MDV. Epigenetics, 8(4), 431444.CrossRefGoogle ScholarPubMed
Timoneda, O., Nunez-Hernandez, F., Balcells, I., Muñoz, M., Castello, A., Vera, G., … and Nunez, J. I. (2014). The role of viral and host microRNAs in the Aujeszky’s disease virus during the infection process. PloS one, 9(1), e86965.CrossRefGoogle ScholarPubMed
Triantaphyllopoulos, K. A., Ikonomopoulos, I. and Bannister, A. J. (2016). Epigenetics and inheritance of phenotype variation in livestock. Epigenetics & Chromatin, 9(1), 118.CrossRefGoogle ScholarPubMed
Usman, T., Ali, N., Wang, Y. and Yu, Y. (2021). Association of aberrant DNA methylation level in the CD4 and JAK-STAT-Pathway-Related genes with mastitis indicator traits in Chinese Holstein dairy cattle. Animals, 12(1), 65.CrossRefGoogle ScholarPubMed
van Otterdijk, S. D. and Michels, K. B. (2016). Transgenerational epigenetic inheritance in mammals: how good is the evidence? The FASEB Journal, 30(7), 24572465.CrossRefGoogle ScholarPubMed
Vargas, L. N., Nochi, A. R. F., Castro, P. S. D., Cunha, A. T. M., Silva, T. C. F., Togawa, R. C., … and Franco, M. M. (2023). Differentially methylated regions identified in bovine embryos are not observed in adulthood. Animal Reproduction, 20, e20220076.CrossRefGoogle Scholar
Veland, N., Lu, Y., Hardikar, S., Gaddis, S., Zeng, Y., Liu, B., … and Chen, T. (2019). DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Research, 47(1), 152167.CrossRefGoogle ScholarPubMed
Waddington, C. H. (2012). The epigenotype. International Journal of Epidemiology, 41(1), 1013.CrossRefGoogle ScholarPubMed
Wallace, D. R., Taalab, Y. M., Heinze, S., Tariba Lovaković, B., Pizent, A., Renieri, E., … and Buha Djordjevic, A. (2020). Toxic-metal-induced alteration in miRNA expression profile as a proposed mechanism for disease development. Cells, 9(4), 901.CrossRefGoogle ScholarPubMed
Wang, D., Wei, Y., Shi, L., Khan, M. Z., Fan, L., Wang, Y. and Yu, Y. (2020b). Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australasian Journal of Animal Sciences, 33(2), 203.CrossRefGoogle Scholar
Wang, J., Hua, G., Cai, G., Ma, Y., Yang, X., Zhang, L., … and Deng, X. (2023a). Genome-wide DNA methylation and transcriptome analyses reveal the key gene for wool type variation in sheep. Journal of Animal Science and Biotechnology, 14(1), 116.CrossRefGoogle ScholarPubMed
Wang, J., Zhou, Q., Ding, J., Yin, T., Ye, P. and Zhang, Y. (2022). The conceivable functions of protein ubiquitination and deubiquitination in reproduction. Frontiers in Physiology, 13, 886261.CrossRefGoogle ScholarPubMed
Wang, L., Hand, J. M., Fu, L., Smith, G. W. and Yao, J. (2019a). DNA methylation and miRNA-1296 act in concert to mediate spatiotemporal expression of KPNA7 during bovine oocyte and early embryonic development. BMC Developmental Biology, 19, 19.CrossRefGoogle ScholarPubMed
Wang, L., Sun, H. Z., Guan, L. L. and Liu, J. X. (2019b). Relationship of blood DNA methylation rate and milk performance in dairy cows. Journal of Dairy Science, 102(6), 52085211.CrossRefGoogle ScholarPubMed
Wang, L., Wang, Y., Meng, M., Ma, N., Wei, G., Huo, R., … and Shen, X. (2023b). High-concentrate diet elevates histone lactylation mediated by p300/CBP through the upregulation of lactic acid and induces an inflammatory response in mammary gland of dairy cows. Microbial Pathogenesis, 180, 106135.CrossRefGoogle ScholarPubMed
Wang, M., Bissonnette, N., Dudemaine, P. L., Zhao, X. and Ibeagha-Awemu, E. M. (2021). Whole genome DNA methylation variations in mammary gland tissues from holstein cattle producing milk with various fat and protein contents. Genes, 12(11), 1727.CrossRefGoogle ScholarPubMed
Wang, M., Liang, Y., Ibeagha-Awemu, E. M., Li, M., Zhang, H., Chen, Z., … and Mao, Y. (2020c). Genome-wide DNA methylation analysis of mammary gland tissues from Chinese Holstein cows with Staphylococcus aureus induced mastitis. Frontiers in Genetics, 11, 550515.CrossRefGoogle ScholarPubMed
Wang, W., Zhang, J., Zheng, N., Li, L., Wang, X. and Zeng, Y. (2020a). The role of neutrophil extracellular traps in cancer metastasis. Clinical and Translational Medicine, 10(6), 101595.CrossRefGoogle ScholarPubMed
Wang, X., Wang, Z., Wang, Q., Wang, H., Liang, H. and Liu, D. (2017). Epigenetic modification differences between fetal fibroblast cells and mesenchymal stem cells of the Arbas Cashmere goat. Research in Veterinary Science, 114, 363369.CrossRefGoogle ScholarPubMed
Wang, Y., Xue, S., Liu, X., Liu, H., Hu, T., Qiu, X., … and Lei, M. (2016). Analyses of long non-coding RNA and mRNA profiling using RNA sequencing during the pre-implantation phases in pig endometrium. Scientific Reports, 6(1), 20238.CrossRefGoogle ScholarPubMed
Wei, A. and Wu, H. (2022). Mammalian DNA methylome dynamics: mechanisms, functions and new frontiers. Development (Cambridge, England), 149(24), dev182683.CrossRefGoogle ScholarPubMed
Wei, D., Li, A., Zhao, C., Wang, H., Mei, C., Khan, R. and Zan, L. (2018). Transcriptional regulation by CpG sites methylation in the core promoter region of the bovine SIX1 gene: roles of histone H4 and E2F2. International Journal of Molecular Sciences, 19(1), 213.CrossRefGoogle ScholarPubMed
Wei, N., Wang, Y., Xu, R. X., Wang, G. Q., Xiong, Y., Yu, T. Y., … and Pang, W. J. (2015). PU. 1 antisense lnc RNA against its m RNA translation promotes adipogenesis in porcine preadipocytes. Animal Genetics, 46(2), 133140.CrossRefGoogle Scholar
Weikard, R., Demasius, W. and Kuehn, C. (2017). Mining long noncoding RNA in livestock. Animal Genetics, 48(1), 318.CrossRefGoogle ScholarPubMed
Weikard, R., Hadlich, F. and Kuehn, C. (2013). Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics, 14, 115.CrossRefGoogle ScholarPubMed
Wen, Q., Liang, X., Pan, H., Li, J., Zhang, Y., Zhu, W. and Long, Z. (2020). Rapid and sensitive electrochemical detection of microRNAs by gold nanoparticle-catalyzed silver enhancement. The Analyst, 145(24), 78937897.CrossRefGoogle Scholar
Wiedemar, N., Tetens, J., Jagannathan, V., Menoud, A., Neuenschwander, S., Bruggmann, R., … and Drögemüller, C. (2014). Independent polled mutations leading to complex gene expression differences in cattle. PloS One, 9(3), e93435.CrossRefGoogle ScholarPubMed
Wu, Y., Chen, J., Sun, Y., Dong, X., Wang, Z., Chen, J. and Dong, G. (2020). PGN and LTA from Staphylococcus aureus induced inflammation and decreased lactation through regulating DNA methylation and histone H3 acetylation in bovine mammary epithelial cells. Toxins, 12(4), 238.CrossRefGoogle ScholarPubMed
Xu, G., Chen, J., Jing, G. and Shalev, A. (2013). Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nature Medicine, 19(9), 11411146.CrossRefGoogle ScholarPubMed
Xu, H., Wang, J., Hu, Q., Quan, Y., Chen, H., Cao, Y., … and He, Q. (2010). DCAF26, an adaptor protein of Cul4-based E3, is essential for DNA methylation in Neurospora crassa. PLoS Genetics, 6(9), e1001132.CrossRefGoogle ScholarPubMed
Xue, J., Yang, J., Luo, M., Cho, W. C. and Liu, X. (2017). MicroRNA-targeted therapeutics for lung cancer treatment. Expert Opinion on Drug Discovery, 12(2), 141157.CrossRefGoogle ScholarPubMed
Xue, T., Qiu, X., Liu, H., Gan, C., Tan, Z., Xie, Y., … and Ye, T. (2021). Epigenetic regulation in fibrosis progress. Pharmacological Research, 173, 105910.CrossRefGoogle ScholarPubMed
Yang, D., Li, X., Yu, B. and Peng, H. (2023). Qualitative lysine crotonylation and 2-hydroxyisobutyrylation analysis in the ovarian tissue proteome of piglets. Frontiers in Cell and Developmental Biology, 11, 1176212.CrossRefGoogle ScholarPubMed
Yang, M., Perisse, I., Fan, Z., Regouski, M., Meyer-Ficca, M. and Polejaeva, I. A. (2018). Increased pregnancy losses following serial somatic cell nuclear transfer in goats. Reproduction, Fertility and Development, 30(11), 14431453.CrossRefGoogle ScholarPubMed
Yang, Y., Fan, X., Yan, J., Chen, M., Zhu, M., Tang, Y., … and Tang, Z. (2021). A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Research, 49(3), 13131329.CrossRefGoogle ScholarPubMed
Yang, Z., Shuli, L., Yang, H., Lingzhao, F., Yahui, G., Han, X., … and Ge, L. (2020). Comparative whole genome DNA methylation profiling of cattle tissues reveals global and tissue-specific methylation patterns. BMC Biology, 18, 85.Google Scholar
Yao, S. (2016). MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biological Procedures Online, 18, 110.CrossRefGoogle ScholarPubMed
Ye, D., Shen, Z. and Zhou, S. (2019). Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Management and Research, 969979.CrossRefGoogle ScholarPubMed
Yi, Y. J., Zimmerman, S. W., Manandhar, G., Odhiambo, J. F., Kennedy, C., Jonáková, V., … and Sutovsky, P. (2012). Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm–egg coat penetration during porcine fertilization. International Journal of Andrology, 35(2), 196210.CrossRefGoogle ScholarPubMed
Yin, D., Jiang, N., Zhang, Y., Wang, D., Sang, X., Feng, Y., … and Chen, Q. (2019). Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different Toxoplasma gondii parasites. Molecular & Cellular Proteomics, 18(11), 22072224.CrossRefGoogle ScholarPubMed
Yoon, P. H., Skopintsev, P., Shi, H., Chen, L., Adler, B. A., Al-Shimary, M., … and Doudna, J. A. (2023). Eukaryotic RNA-guided endonucleases evolved from a unique clade of bacterial enzymes. Nucleic Acids Research, 51(22), 1241412427.CrossRefGoogle ScholarPubMed
Yu, S., Cao, S., He, S. and Zhang, K. (2023). Locus-specific detection of DNA methylation: the advance, challenge, and perspective of CRISPR-Cas assisted biosensors. Small Methods, 7(2), 2201624.CrossRefGoogle ScholarPubMed
Yu, X. X., Liu, Y. H., Liu, X. M., Wang, P. C., Liu, S., Miao, J. K., … and Yang, C. X. (2018). Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Scientific Reports, 8(1), 6132.CrossRefGoogle ScholarPubMed
Yuan, B., Yu, W. Y., Dai, L. S., Gao, Y., Ding, Y., Yu, X. F., … and Zhang, J. B. (2015). Expression of microRNA–26b and identification of its target gene EphA2 in pituitary tissues in Yanbian cattle. Molecular Medicine Reports, 12(4), 57535761.CrossRefGoogle ScholarPubMed
Yue, Y., Guo, T., Liu, J., Guo, J., Yuan, C., Feng, R., … and Yang, B. (2015). Exploring differentially expressed genes and natural antisense transcripts in sheep (Ovis aries) skin with different wool fiber diameters by digital gene expression profiling. PloS One, 10(6), e0129249.CrossRefGoogle ScholarPubMed
Zglejc-Waszak, K., Waszkiewicz, E. M. and Franczak, A. (2019). Periconceptional undernutrition affects the levels of DNA methylation in the peri-implantation pig endometrium and in embryos. Theriogenology, 123, 185193.CrossRefGoogle ScholarPubMed
Zhang, J., Han, B., Zheng, W., Lin, S., Li, H., Gao, Y. and Sun, D. (2021a). Genome-wide DNA methylation profile in jejunum reveals the potential genes associated with paratuberculosis in dairy cattle. Frontiers in Genetics, 12, 735147.CrossRefGoogle ScholarPubMed
Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J. and Mi, S. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 1724.CrossRefGoogle ScholarPubMed
Zhang, J., Sheng, H., Hu, C., Li, F., Cai, B., Ma, Y., … and Ma, Y. (2023). Effects of DNA methylation on gene expression and phenotypic traits in cattle: a review. International Journal of Molecular Sciences, 24(15), 11882.CrossRefGoogle ScholarPubMed
Zhang, M., Yan, F. B., Li, F., Jiang, K. R., Li, D. H., Han, R. L., … and Sun, G. R. (2017a). Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Scientific Reports, 7(1), 45564.CrossRefGoogle ScholarPubMed
Zhang, M., Zhao, J., Lv, Y., Wang, W., Feng, C., Zou, W., … and Jiao, J. (2020). Histone variants and histone modifications in neurogenesis. Trends in Cell Biology, 30(11), 869880.CrossRefGoogle ScholarPubMed
Zhang, N. (2018b). Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Animal Nutrition, 4(1), 1116.CrossRefGoogle ScholarPubMed
Zhang, X., Cheng, Z., Wang, L., Jiao, B., Yang, H. and Wang, X. (2019a). MiR-21-3p centric regulatory network in dairy cow mammary epithelial cell proliferation. Journal of Agricultural and Food Chemistry, 67(40), 1113711147.CrossRefGoogle ScholarPubMed
Zhang, X., Wang, W., Zhu, W., Dong, J., Cheng, Y., Yin, Z. and Shen, F. (2019b). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. International Journal of Molecular Sciences, 20(22), 5573.CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, S., Ma, L., Jiang, E., Xu, H., Chen, R., … and Lan, X. (2017b). Reduced representation bisulfite sequencing (RRBS) of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes. Oncotarget, 8(70), 115326.CrossRefGoogle ScholarPubMed
Zhang, Y., Otomaru, K., Oshima, K., Goto, Y., Oshima, I., Muroya, S., … and Gotoh, T. (2021b). Effects of low and high levels of maternal nutrition consumed for the entirety of gestation on the development of muscle, adipose tissue, bone, and the organs of Wagyu cattle fetuses. Animal Science Journal, 92(1), e13600.CrossRefGoogle ScholarPubMed
Zhang, Y., Wang, X., Jiang, Q., Hao, H., Ju, Z., Yang, C., … and Zhu, H. (2018a). DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress & Chaperones, 23, 617628.CrossRefGoogle ScholarPubMed
Zhao, C., Ji, G., Carrillo, J. A., Li, Y., Tian, F., Baldwin, R. L., … and Song, J. (2020). The profiling of DNA methylation and its regulation on divergent tenderness in Angus beef cattle. Frontiers in Genetics, 11, 939.CrossRefGoogle ScholarPubMed
Zhao, Z., Bai, J., Wu, A., Wang, Y., Zhang, J., Wang, Z., … and Li, X. (2015). Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database, 2015, bav082.CrossRefGoogle Scholar
Zheng, L., Zhai, Y., Li, N., Wu, C., Zhu, H., Wei, Z., … and Hua, J. (2016). Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells. Cell Proliferation, 49(2), 163172.CrossRefGoogle ScholarPubMed
Zhu, Y., Liao, X., Lu, L., Li, W., Zhang, L., Ji, C., … and Luo, X. (2017a). Maternal dietary zinc supplementation enhances the epigenetic-activated antioxidant ability of chick embryos from maternal normal and high temperatures. Oncotarget, 8(12), 19814.CrossRefGoogle ScholarPubMed
Zhu, Y., Lu, L., Liao, X., Li, W., Zhang, L., Ji, C., … and Luo, X. (2017b). Maternal dietary manganese protects chick embryos against maternal heat stress via epigenetic-activated antioxidant and anti-apoptotic abilities. Oncotarget, 8(52), 89665.CrossRefGoogle ScholarPubMed