Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T20:56:17.829Z Has data issue: false hasContentIssue false

Analysis of trophectoderm markers in domestic cat blastocysts cultured without zona pellucida

Published online by Cambridge University Press:  31 August 2022

Daniel Veraguas-Dávila*
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
Darling Saéz-Ruíz
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
María Consuelo Álvarez
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
Fernando Saravia
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
Fidel Ovidio Castro
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
Lleretny Rodríguez-Alvarez
Affiliation:
Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
*
Author for correspondence: Daniel Veraguas-Dávila, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillán, Chile. E-mail: daniveraguas@udec.cl

Summary

Domestic cat embryos generated by in vitro fertilization (IVF) and cultured without the zona pellucida have a reduced implantation capacity after embryo transfer at the blastocyst stage. The objective of this study was to evaluate the expression of trophectoderm markers in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were selected: (1) domestic cat embryos generated by IVF and cultured in vitro normally (zona intact group, ZI); and (2) domestic cat embryos generated by IVF and cultured in vitro without a zona pellucida (zona-free group, ZF). In the ZF group, the zona pellucida of the presumptive zygote was removed and these were cultured using the well of the well (WOW) system. In vitro culture was carried out for 7 days. The cleavage, morula and blastocyst rates were estimated. Finally, the relative expression levels of the trophectoderm markers TEAD4, YAP1, CDX2 and EOMES, the cell adhesion marker E-cadherin and the apoptosis marker CASP3 were evaluated by RT-qPCR in the blastocysts. The Wilcoxon test was used to evaluate differences (P < 0.05). No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups. No differences were found in the expression of TEAD4, CDX2, E-cadherin and CASP3 between groups. The expression of YAP1 and EOMES was higher in ZF blastocysts than in ZI blastocysts. In conclusion, the in vitro culture without the zona pellucida generates an overexpression of YAP1 and EOMES in the domestic cat blastocysts. More studies are needed to confirm if this overexpression might affect in vivo development.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, K., Suemori, H., Yasuda, S. Y., Nakatsuji, N. and Kawase, E. (2010). Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes to Cells: Devoted to Molecular and Cellular Mechanisms, 15(5), 455470. doi: 10.1111/j.1365-2443.2010.01400.x Google ScholarPubMed
Boiani, M., Eckardt, S., Leu, N. A., Schöler, H. R. and McLaughlin, K. J. (2003). Pluripotency deficit in clones overcome by clone–clone aggregation: Epigenetic complementation? EMBO Journal, 22(19), 53045312. doi: 10.1093/emboj/cdg507 CrossRefGoogle ScholarPubMed
Buemo, C. P., Gambini, A., Moro, L. N., Hiriart, M. I., Fernández-Martín, R., Collas, P. and Salamone, D. F. (2016). Embryo aggregation in pig improves cloning efficiency and embryo quality. PLOS ONE, 11(2), e0146390. doi: 10.1371/journal.pone.0146390 CrossRefGoogle ScholarPubMed
Chung, H., Lee, B. K., Uprety, N., Shen, W., Lee, J. and Kim, J. (2016). Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Reports, 17(4), 519529. doi: 10.15252/embr.201540933 CrossRefGoogle ScholarPubMed
Cohen, J., Malter, H., Elsner, C., Kort, H., Massey, J. and Mayer, M. P. (1990). Immunosuppression supports implantation of zona pellucida dissected human embryos. Fertility and Sterility, 53(4), 662665. doi: 10.1016/s0015-0282(16)53460-8 CrossRefGoogle ScholarPubMed
Emura, N., Saito, Y., Miura, R. and Sawai, K. (2020). Effect of downregulating the Hippo pathway members YAP1 and LATS2 transcripts on early development and gene expression involved in differentiation in porcine embryos. Cell Reprogram, 22(2), 6270. doi: 10.1089/cell.2019.0082 CrossRefGoogle ScholarPubMed
Frum, T., Watts, J. L. and Ralston, A. (2019). TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development, 146(17), dev179861. doi: 10.1242/dev.179861 Google Scholar
Gambini, A., Jarazo, J., Olivera, R. and Salamone, D. F. (2012). Equine cloning: In vitro and in vivo development of aggregated embryos. Biology of Reproduction, 87(1), 19. doi: 10.1095/biolreprod.112.098855 CrossRefGoogle ScholarPubMed
Gambini, A., De Stefano, A., Bevacqua, R. J., Karlanian, F. and Salamone, D. F. (2014). The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos. PLOS ONE, 9(11), e110998. doi: 10.1371/journal.pone.0110998 CrossRefGoogle ScholarPubMed
Gómez, M. C., Pope, C. E., Giraldo, A., Lyons, L. A., Harris, R. F., King, A. L., Cole, A., Godke, R. A. and Dresser, B. L. (2004). Birth of African Wildcat cloned kittens born from domestic cats. Cloning and Stem Cells, 6(3), 247258. doi: 10.1089/clo.2004.6.247 CrossRefGoogle ScholarPubMed
Gómez, M. C., Pope, C. E., Kutner, R. H., Ricks, D. M., Lyons, L. A., Ruhe, M., Dumas, C., Lyons, J., López, M., Dresser, B. L. and Reiser, J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning and Stem Cells, 10(4), 469483. doi: 10.1089/clo.2008.0021 CrossRefGoogle ScholarPubMed
Gómez, M. C., Pope, C. E., Ricks, D. M., Lyons, J., Dumas, C. and Dresser, B. L. (2009). Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reproduction, Fertility, and Development, 21(1), 7682. doi: 10.1071/rd08222 CrossRefGoogle ScholarPubMed
Gómez, M. C., Pope, C. E., Biancardi, M. N., Dumas, C., Galiguis, J., Morris, A. C., Wang, G. and Dresser, B. L. (2011). Trichostatin A modified histone covalent pattern and enhanced expression of pluripotent genes in interspecies black-footed cat cloned embryos but did not improve in vitro and in vivo viability. Cell Reprogram, 13(4), 315329. doi: 10.1089/cell.2010.0111 CrossRefGoogle Scholar
Gómez, M. C., Biancardi, M. N., Jenkins, J. A., Dumas, C., Galiguis, J., Wang, G. and Earle Pope, C. E. (2012). Scriptaid and 5-aza-2’ deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reproduction in Domestic Animals, 47 Suppl. 6, 130135. doi: 10.1111/rda.12027 CrossRefGoogle ScholarPubMed
International Union for Conservation of Nature and Natural Resources. (2021). The IUCN red list of threatened species. Version 2021–3. Available from: https://www.iucnredlist.org/search/list?taxonomies=101738&searchType=species Google Scholar
Kanda, M., Oikawa, H., Nakao, H. and Tsutsui, T. (1995). Early embryonic development in vitro and embryo transfer in the cat. Journal of Veterinary Medical Science, 57(4), 641646. doi: 10.1292/jvms.57.641 CrossRefGoogle ScholarPubMed
Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M. and Kimber, S. J. (2010). Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLOS ONE, 5(11), e13952. doi: 10.1371/journal.pone.0013952 CrossRefGoogle ScholarPubMed
Lagutina, I., Lazzari, G. and Galli, C. (2006). Birth of cloned pigs from zona-free nuclear transfer blastocysts developed in vitro before transfer. Cloning and Stem Cells, 8(4), 283293. doi: 10.1089/clo.2006.8.283 CrossRefGoogle ScholarPubMed
LeBlanc, L., Lee, B. K., Yu, A. C., Kim, M., Kambhampati, A. V., Dupont, S. M., Seruggia, D., Ryu, B. U., Orkin, S. H. and Kim, J. (2018). Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. eLife, 7, e40167. doi: 10.7554/eLife.40167 CrossRefGoogle ScholarPubMed
Lee, S. G., Park, C. H., Choi, D. H., Kim, H. S., Ka, H. H. and Lee, C. K. (2007). In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Molecular Reproduction and Development, 74(11), 14361445. doi: 10.1002/mrd.20728 CrossRefGoogle ScholarPubMed
Marikawa, Y. and Alarcon, V. B. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results and Problems in Cell Differentiation, 55, 165184. doi: 10.1007/978-3-642-30406-4_9 CrossRefGoogle ScholarPubMed
Moro, L. N., Jarazo, J., Buemo, C., Hiriart, M. I., Sestelo, A. and Salamone, D. F. (2015a). Tiger, Bengal and domestic cat embryos produced by homospecific and interspecific zona-free nuclear transfer. Reproduction in Domestic Animals, 50(5), 849857. doi: 10.1111/rda.12593 CrossRefGoogle ScholarPubMed
Moro, L. N., Hiriart, M. I., Buemo, C., Jarazo, J., Sestelo, A., Veraguas, D., Rodriguez-Alvarez, L. and Salamone, D. F. (2015b). Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction, 150(1), 110. doi: 10.1530/REP-15-0048 CrossRefGoogle Scholar
Nishioka, N., Inoue, K.-I., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, R. O., Ogonuki, N., Makita, R., Kurihara, H., Morin-Kensicki, E. M., Nojima, H., Rossant, J., Nakao, K., Niwa, H. and Sasaki, H. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Developmental Cell, 16(3), 398410. doi: 10.1016/j.devcel.2009.02.003 CrossRefGoogle ScholarPubMed
Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R. and Rossant, J. (2005). Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell, 123(5), 917929. doi: 10.1016/j.cell.2005.08.040 CrossRefGoogle ScholarPubMed
Oback, B., Wiersema, A. T., Gaynor, P., Laible, G., Tucker, F. C., Oliver, J. E., Miller, A. L., Troskie, H. E., Wilson, K. L., Forsyth, J. T., Berg, M. C., Cockrem, K., McMillan, V., Tervit, H. R. and Wells, D. N. (2003). Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning and Stem Cells, 5(1), 312. doi: 10.1089/153623003321512111 CrossRefGoogle ScholarPubMed
Pope, C. E. (2014). Aspects of in vivo oocyte production, blastocyst development, and embryo transfer in the cat. Theriogenology, 81(1), 126137. doi: 10.1016/j.theriogenology.2013.09.006 CrossRefGoogle ScholarPubMed
Pope, C. E. (2019). Thirty years of assisted reproductive technology in the domestic cat: A selected summary. Revista Brasileira de Reproducao Animal, 43, 129136.Google Scholar
Rodríguez-Alvarez, L., Sharbati, J., Sharbati, S., Cox, J. F., Einspanier, R. and Castro, F. O. (2010). Differential gene expression in bovine elongated (Day 17) embryos produced by somatic cell nucleus transfer and in vitro fertilization. Theriogenology, 74(1), 4559. doi: 10.1016/j.theriogenology.2009.12.018 CrossRefGoogle ScholarPubMed
Russ, A. P., Wattler, S., Colledge, W. H., Aparicio, S. A., Carlton, M. B., Pearce, J. J., Barton, S. C., Surani, M. A., Ryan, K., Nehls, M. C., Wilson, V. and Evans, M. J. (2000). Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature, 404(6773), 9599. doi: 10.1038/35003601 CrossRefGoogle ScholarPubMed
Sasaki, H. (2010). Mechanisms of trophectoderm fate specification in preimplantation mouse development. Development, Growth and Differentiation, 52(3), 263273. doi: 10.1111/j.1440-169X.2009.01158.x CrossRefGoogle ScholarPubMed
Vajta, G., Peura, T. T., Holm, P., Páldi, A., Greve, T., Trounson, A. O. and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: The Well of the Well (WOW) system. Molecular Reproduction and Development, 55(3), 256264. doi: 10.1002/(SICI)1098-2795(200003)55:3<256::AID-MRD3>3.0.CO;2-7 3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Vajta, G., Lewis, I. M., Trounson, A. O., Purup, S., Maddox-Hyttel, P., Schmidt, M., Pedersen, H. G., Greve, T. and Callesen, H. (2003). Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro. Biology of Reproduction, 68(2), 571578. doi: 10.1095/biolreprod.102.008771 CrossRefGoogle ScholarPubMed
Vajta, G., Korösi, T., Du, Y., Nakata, K., Ieda, S., Kuwayama, M. and Nagy, Z. P. (2008). The Well-of-the-well system: An efficient approach to improve embryo development. Reproductive Biomedicine Online, 17(1), 7381. doi: 10.1016/s1472-6483(10)60296-9 CrossRefGoogle ScholarPubMed
Van Soom, A., Wrathall, A. E., Herrler, A. and Nauwynck, H. J. (2010). Is the zona pellucida an efficient barrier to viral infection? Reproduction, Fertility, and Development, 22(1), 2131. doi: 10.1071/RD09230 CrossRefGoogle ScholarPubMed
Veraguas, D., Echeverry, D., Castro, F. O. and Rodriguez-Alvarez, L. (2017). Applied biotechnologies in the conservation of wild felids: In vitro embryo production and cellular regenerative therapies. In Shrivastav, A. B. & Singh, K. P. (Eds.), Big cats. IntechOpen.Google Scholar
Veraguas, D., Cuevas, S. R., Gallegos, P. F., Saez-Ruiz, D., Castro, F. O. and Rodriguez-Alvarez, L. (2018). eCG stimulation in domestic cats increases the expression of gonadotrophin-induced genes improving oocyte competence during the non-breeding season. Reproduction in Domestic Animals, 53(6), 13061316. doi: 10.1111/rda.13229 CrossRefGoogle ScholarPubMed
Veraguas, D., Aguilera, C., Echeverry, D., Saez-Ruiz, D., Castro, F. O. and Rodriguez-Alvarez, L. (2020a). Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology, 158, 148157. doi: 10.1016/j.theriogenology.2020.09.006 CrossRefGoogle ScholarPubMed
Veraguas, D., Saez, S., Aguilera, C., Echeverry, D., Gallegos, P. F., Saez-Ruiz, D., Castro, F. O. and Rodriguez-Alvarez, L. (2020b). In vitro and in vivo development of domestic cat embryos generated by in vitro fertilization after eCG priming and oocyte in vitro maturation. Theriogenology, 146, 94103. doi: 10.1016/j.theriogenology.2020.02.012 CrossRefGoogle ScholarPubMed
Veraguas-Davila, D., Cordero, M. F., Saez, S., Saez-Ruiz, D., Gonzalez, A., Saravia, F., Castro, F. O. and Rodriguez-Alvarez, L. (2021). Domestic cat embryos generated without zona pellucida are capable of developing in vitro but exhibit abnormal gene expression and a decreased implantation rate. Theriogenology, 174, 3646. doi: 10.1016/j.theriogenology.2021.08.013 CrossRefGoogle Scholar
Wassarman, P., Chen, J., Cohen, N., Litscher, E., Liu, C., Qi, H. and Williams, Z. (1999). Structure and function of the mammalian egg zona pellucida. Journal of Experimental Zoology, 285(3), 251258. doi: 10.1002/(SICI)1097-010X(19991015)285:3<251::AID-JEZ8>3.0.CO;2-1 3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Wicklow, E., Blij, S., Frum, T., Hirate, Y., Lang, R. A., Sasaki, H. and Ralston, A. (2014). HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLOS Genetics, 10(10), e1004618. doi: 10.1371/journal.pgen.1004618 CrossRefGoogle Scholar
Wu, G., Gentile, L., Fuchikami, T., Sutter, J., Psathaki, K., Esteves, T. C., Araúzo-Bravo, M. J., Ortmeier, C., Verberk, G., Abe, K. and Schöler, H. R. (2010). Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development, 137(24), 41594169. doi: 10.1242/dev.056630 CrossRefGoogle ScholarPubMed