Skip to main content Accessibility help
Internet Explorer 11 is being discontinued by Microsoft in August 2021. If you have difficulties viewing the site on Internet Explorer 11 we recommend using a different browser such as Microsoft Edge, Google Chrome, Apple Safari or Mozilla Firefox.

Machine Learning Refined Foundations, Algorithms, and Applications

Authors

, Northwestern University, Illinois, , Northwestern University, Illinois, , Northwestern University, Illinois
Published 2020

Description

With its intuitive yet rigorous approach to machine learning, this text provides students with the fundamental knowledge and practical tools needed to conduct research and build data-driven products. The authors prioritize geometric intuition and algorithmic thinking, and include detail on all the essential mathematical prerequisites, to offer a fresh and accessible way to learn. Practical applications are emphasized, with examples from disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology. Over 300 color illustrations are…

  • Get access
  • Add bookmark
  • Cite
  • Share
Resources available Unlock the full potential of this textbook with additional resources. There are free resources and Instructor restricted resources available for this textbook. Explore resources

Key features

  • Encourages geometric intuition and algorithmic thinking to provide an intuitive understanding of key concepts and an interactive way of learning
  • Features coding exercises for Python to help put knowledge into practice
  • Emphasizes practical applications, with real-world examples, to give students the confidence to conduct research, build products, and solve problems
  • Completely self-contained, with appendices covering the essential mathematical prerequisites

About the book

Access options

Review the options below to login to check your access.

Purchase options

There are no purchase options available for this title.

Have an access code?

To redeem an access code, please log in with your personal login.

If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.

Also available to purchase from these educational ebook suppliers