1. Introduction
The Keller–Segel type equations describe chemotaxis, that is the movement of organisms (typically bacteria) in the presence of a (chemical) substance. The simplest Keller–Segel system is a pair of equations on the density of the organisms, $\varrho$, and the concentration of the substance, $c$, both of which are functions on $[0,\, T) \times \mathbb {R}^{n}$. Furthermore, $\varrho$ is assumed to be nonnegative and integrable. Together they satisfy the (parabolic-elliptic) Keller–Segel equations:
where $\operatorname {d\!}{}$ is the gradient, $\operatorname {d\!}{}^{*}$ is its $L^{2}$-dual (the divergence), and $\Delta = \operatorname {d\!}{}^{*} \operatorname {d\!}{}$. The mass of $\varrho$ is
is a conserved quantity.
Stationary solutions to equations (1.1a) and (1.1b) satisfy
There is some ambiguity in the choice of $c$ in equations (1.2a) and (1.2b), and the standard choice is to use the Green's function of the Laplacian to eliminate $c$ and Eqn (1.2b) via
and use the single equation
There is a well-known family of solutions to equation (1.3): Let $\lambda \in \mathbb {R}_+$ and $x_\star \in \mathbb {R}^{2}$ be arbitrary, and define
Then $\varrho _{\lambda, x_\star }$ is a solution to equation (1.3) with $m = 8 \pi$.
When the metric is the standard, euclidean metric on $\mathbb {R}^{2}$, the literature of equations (1.1a), (1.1b) and (1.3) is vast; the Reader may find good introductions in [Reference Blanchet, Dolbeault and Perthame2, Reference Dolbeault and Campos5, Reference Dolbeault and Perthame6]. Very little is known about the curved case, that is, when the underlying space is not the (flat) plane. We remark here the work of [Reference Maheux and Pierfelice8], where the authors considered equation (1.1a) and (1.1b) on the hyperbolic plane.
In this paper, we study the case when the metric is conformally equivalent to the flat metric and the conformal factor has the form $e^{2 \varphi }$, where $\varphi$ is smooth and compactly supported. Let us note that some of our results are novel already in the flat $(\varphi = 0)$ case. In particular, we prove that (under very mild hypotheses), solutions to equation (1.3) have mass $8 \pi$.
Outline of the paper
In $\mathbb {S}$ 2, we introduce the static Keller–Segel equation on the curved plane $( \mathbb {R}^{2},\, e^{2 \varphi } g_0 )$. In $\mathbb {S}$ 3, we prove in theorem 3.1 that, under mild hypothesis of the growth of $\varrho$, the static Keller–Segel equation can be reduced to a simpler equation (see in equation (2.2)). Furthermore, in corollary 3.4, we give sharp bounds on the decay rate of $\varrho$ and in theorem 3.7 we show that a (nonzero) solution must have $m = 8 \pi$. In $\mathbb {S}$ 4, we explore a connection between solutions to the (reduced) static Keller–Segel equation and Kazdan–Warner equation on the round sphere. As an application, we prove the nonexistence of solutions for certain conformal factors in theorem 4.2. Finally, in $\mathbb {S}$ 5.1, we prove the logarithmic Hardy–Littlewood–Sobolev for $( \mathbb {R}^{2},\, e^{2 \varphi } g_0 )$ and in $\mathbb {S}$ 5.2, as an application, we show that, as in the flat case, the Keller–Segel free energy on $( \mathbb {R}^{2},\, e^{2 \varphi } g_0 )$ is bounded from below only when $m = 8 \pi$.
2. The curved, static Keller–Segel equation
Let $g_0$ be the standard metric on $\mathbb {R}^{2}$, let $\varphi \in C_\mathrm {cpt}^{\infty } ( \mathbb {R}^{2} )$, let $g_\varphi := e^{2 \varphi } g_0$. Let $L_k^{p} ( \mathbb {R}^{2},\, g_\varphi )$ be Banach space of functions on $\mathbb {R}^{2}$ that are $L_k^{p}$ with respect to $g_\varphi$. Note that the properties of being bounded in $L_{1, \mathrm {loc}}^{2}$ are independent of the chosen metric. Finally, let $L_+^{1} ( \mathbb {R}^{2},\, g_\varphi ) \subseteq L^{1} ( \mathbb {R}^{2},\, g_\varphi )$ be the space of almost everywhere positive functions.
The area form and the Laplacian behave under a conformal change via
Thus the Green's function is conformally invariant:
For any $\varrho \in L_+^{1} ( \mathbb {R}^{2},\, g_\varphi )$, let
when the integral exists. Assume that the function $\varrho \in L_+^{1} ( \mathbb {R}^{2},\, g_\varphi ) \cap L_{1, \mathrm {loc}}^{2}$ is such that $c_{\varphi, \varrho }$ is defined on $\mathbb {R}^{2}$. Then $\varrho$ is a solution to the static Keller–Segel equation on $( \mathbb {R}^{2},\, g_\varphi )$ if it solves (the weak version of)
In the next section we prove that, under mild hypotheses, equation (2.1) is equivalent to the simpler
We call equation (2.2) the reduced, static Keller–Segel equation.
In applications it is always assumed that $\varrho$ has finite mass. Furthermore, the minimal regularity needed for the weak version of equation (2.1) is $L_{1, \mathrm {loc}}^{2}$ and the fact that $c_{\varphi, \varrho }$ is defined. Finally, we impose the finiteness of the entropy: $\varrho \ln ( \varrho ) \in L^{1} ( \mathbb {R}^{2},\, g_\varphi )$. This is implied by, for example, the finiteness of the Keller–Segel free energy; cf $\mathbb {S}$ 5.2. With that in mind, we define the (curved) Keller–Segel configuration space as:
Let $r (x) := |x|$ be the euclidean radial function. First we prove a bound on $c_{\varphi, \varrho }$.
Lemma 2.1 Let $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, \varphi )$ be a solution of the static Keller–Segel equation (2.1). Then the function $c_{\varphi, \varrho } + \tfrac {m}{4 \pi } \ln ( 1 + r^{2} )$ is bounded.
Proof. As $\Delta _\varphi c_{\varphi, \varrho } \in L^{1} ( B_1 (0),\, g_\varphi )$, it is enough to prove, without any loss of generality, the boundedness of $c_{\varphi, \varrho } + \tfrac {m}{2 \pi } \ln ( r )$, when $r \geqslant 1$.
Since $c_{\varphi, \varrho } (0) = - \tfrac {1}{2 \pi } \int _{\mathbb {R}^{2}} \varrho \ln (r) \: \mathrm {dA}_\varphi$ is finite, we have that
This proves the upper bound.
In order to get the lower bound, let us use Jensen's inequality to get
Since $\varrho \in L_{1, \mathrm {loc}}^{2}$, we get that there exists $\delta > 0$, such that for all $p > 1$, $\varrho \in L^{p} ( B_\delta (0) )$. We can assume that $\delta \leqslant 1$. Since for all $q \in [1,\, 2)$, $r^{- 1} \in L^{q} ( B_\delta (0) )$ and $\tfrac {|x - y|}{|y|} \leqslant \tfrac {\sqrt {|x|^{2} + \delta ^{2}}}{\delta }$ on $\mathbb {R}^{2} - B_\delta (0)$, we get that, for any $p > 1$, that
Thus, when $r \geqslant 1$, we get that
which completes the proof.
3. Reduction of order and the necessity of $m = 8 \pi$
Theorem 3.1 Let $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, \varphi )$ be a solution of the static Keller–Segel equation (2.1). Furthermore assume the following bound: there exists a positive number $C,$ such that on $\mathbb {R}^{2} - B_C (0),$ we have
Then the reduced, static Keller–Segel equation (2.2) holds, that is $\operatorname {d\!}{} ( \ln ( \varrho ) - c_{\varphi, \varrho } ) = 0$.
Remark 3.2 If $\varrho \in L^{\infty } ( \mathbb {R}^{2} )$, then equation (3.1) is trivially satisfied with $C = \max ( 1,\, \| \varrho \|_{L^{\infty } ( \mathbb {R}^{2} )} )$. We conjecture that equation (3.1) is not necessary in general for the conclusion theorem 3.1 to hold.
Remark 3.3 A corollary of the reduced, static Keller–Segel equation (2.2) is that the (nonreduced) static Keller–Segel equation (2.1) is no longer nonlocal, as $c_{\varrho, \varphi }$ can be eliminated using $\operatorname {d\!}{} c_{\varphi, \varrho } = \operatorname {d\!}{} ( \ln ( \varrho ) ) = \tfrac {\operatorname {d\!}{} \varrho }{\varrho }$, and get
Thus the static Keller–Segel equation (2.1) becomes
Proof of theorem 3.1. Let $f := \ln ( \varrho ) - c_{\varphi, \varrho }$. The static Keller–Segel equation (2.1) implies that
We now apply an Agmon-trick type argument: Let $\chi$ be a smooth and compactly supported function. Then, using $\phi = f \chi ^{2}$ in the second row, we get
Now for each $R \gg 1$, let $\chi = \chi _R$ be a smooth cut-off function that is 1 on $B_R (0)$, vanishes on $\mathbb {R}^{2} - B_{2 R} (0)$, and (for some $K \in \mathbb {R}_+$) $|\operatorname {d\!}{} \chi _R| = \tfrac {K}{R}$. Let $A_R = B_{2 R} (0) - B_R (0)$. Then we get that
To complete the proof, we show now that the last limit inferior is zero. Since
it is enough to show that both terms under the square roots are $o ( R^{2} )$, at least for some divergent sequence of radii. This is immediate for the second term by lemma 2.1. To bound the first term, let $C$ be the constant from equation (3.1) and break up $A_R$ into 2 pieces:
By equation (3.1), $A_R = A_{R, I} \cup A_{R, II}$. Let us first inspect
Finally, note that on $A_{R, II}$, we have $\left | \ln ( \varrho ) \right | = O ( R^{2} \ln (R) )$. Thus, for $R \gg 1$, we have
Now let $R_k := 2^{k}$, and then
Since $\varrho \ln ( \varrho ) \in L^{1} ( \mathbb {R}^{2},\, g_0 )$ we have that
and thus
and hence
which implies equation (2.2), and thus completes the proof.
Corollary 3.4 If $\varrho \in \mathcal {C}_\mathrm {KS}$ is a solution of the static Keller–Segel equation (2.1) and satisfies (3.1), then there is a number $K = K (\varphi,\, \varrho ) \geqslant 1$ such that
In particular, $\varrho \sim r^{- \frac {m}{2 \pi }}$ and $m > 4 \pi$.
Proof. We have
which concludes the proof.
Remark 3.5 Theorem 3.1 remains true (with the same proof) even when $g_\varphi$ is replaced by any compactly supported, smooth perturbation of $g_0$. However proving lemma 2.1 becomes more complicated in that case, although conjecturally, that claim should still hold, and thus so should corollary 3.4.
Remark 3.6 Before stating our next theorem, let us recall a few facts, commonly used in literature of the Keller–Segel equations.
First of all, and to the best of our knowledge, the only known solutions in the flat case are the ones given in equation (1.4). Note that they all have mass $8 \pi$.
A complementary fact, supporting the conjecture that static solutions must have mass $8 \pi$, is the the following ‘Virial Theorem’ that applies to the time-dependent equation as well: Assume that $\varrho$ is a solution to the (time-dependent) Keller–Segel equation (1.1a) and (1.1b), such that for all $t$ in the domain of $\varrho$ the following quantity is finite
Then $W$ satisfies the following equation (cf. [Reference Blanchet, Dolbeault and Perthame2]*lemma 22 for the proof):
In particular, if $\varrho$ is a (positive) solution to the static Keller–Segel equation (2.1) with finite $W$, then $m = 8 \pi$. Note that for each $\varrho _{\lambda, x_\star }$ in equation (1.4), we get $W = \infty$, so the above two results are indeed complementary.
In the next theorem we prove that, under equation (3.1), all (positive) solutions to the static Keller–Segel equation (2.1) must have mass $8 \pi$.
Theorem 3.7 If $\varrho \in \mathcal {C}_\mathrm {KS}$ is a solution of the static Keller–Segel equation (2.1) and satisfies equation (3.1), then its mass is necessarily $8 \pi$.
Proof. By corollary 3.4, we have that $m > 4 \pi$ and thus, for some $\epsilon > 0$, we have $\varrho = O ( r^{- 2 - \epsilon } )$.
Let now $v = (v_1,\, v_2)$ be a smooth, compactly supported vector field. Let us pair both sides of equation (2.2) with $- \varrho v$, integrate over $\mathbb {R}^{2}$ with respect to $\: \mathrm {dA}_0$ and then integrate by parts in the first term to get
For any smooth, real function $f$, let
and let $\chi _R$ as in the proof of theorem 3.1. Let us assume that $\left | \operatorname {d\!}{} f \right | \in L^{2} ( \mathbb {R}^{2},\, g_\varphi )$. Then for $v = \chi _R v^{f}$ equation (3.3) becomes
As $R \rightarrow \infty$ the last term goes to zero, by definition, $\mathcal {I}_1 (R) \rightarrow m$. Using equation (2), we get
thus
Finally, if we can choose a smooth $f$ so that
and $|\operatorname {d\!}{} f| \in L^{2} ( \mathbb {R}^{2},\, g_\varphi )$, then $\mathcal {I}_3 (R) = 0$, for all $R$. For any smooth, compactly supported function $\phi$, let
and let $( \mathcal {H}_{\varphi, \varrho },\, \langle - | - \rangle _{\varphi, \varrho } )$ the corresponding Hilbert space. Clearly $\mathcal {H}_{\varphi, \varrho } \subseteq L_{1, \mathrm {loc}}^{2}$. The weak formulation of equation (3.5) on $\mathcal {H}_{\varphi, \varrho }$ is
Now if $f = \phi \in C_{\mathrm {cpt}}^{\infty } ( \mathbb {R}^{2} )$, then
and, using that $\varphi$ has compact support and equation (3.2), we have
Thus the conditions of the Lax–Milgram theorem are satisfied and hence there is a unique $f \in \mathcal {H}_{\varphi, \varrho }$ that solves equation (3.5). By elliptic regularity, $f$ is in fact smooth and by the definition $\mathcal {H}_{\varphi, \varrho }$, $|\operatorname {d\!}{} f| \in L^{2} ( \mathbb {R}^{2},\, g_\varphi )$. Hence equation (3.4) becomes $0 = 4\,m - \tfrac {m^{2}}{2 \pi }$, which concludes the proof.
4. Connection to the critical Kazdan–Warner equation on the round sphere
Let us assume that $\varrho \in \mathcal {C}_\mathrm {KS}$ is a solution of the static Keller–Segel equation (2.1) and satisfies equation (3.1), and thus $m = 8 \pi$. Fix $\lambda \in \mathbb {R}_+$ and $x_\star \in \mathbb {R}^{2}$, and let $\varrho _{\lambda, x_\star }$ as in equation (1.4). Pick the unique stereographic projection $p_{\lambda, x_\star } : \mathbb {S}^{2} - \{ \mbox { North pole } \} \rightarrow \mathbb {R}^{2}$, so that $g_{\mathbb {S}^{2}} := ( p_{\lambda, x_\star } )^{*} ( \tfrac {1}{2} \varrho _{\lambda, x_\star } g_0 )$ is the round metric of unit radius. By corollary 3.4, the function $\widetilde {u} := \tfrac {1}{2} \ln ( \tfrac {\varrho }{\varrho _{\lambda, x_\star }} )$ is bounded on $\mathbb {R}^{2}$. Let $u := \widetilde {u} \circ p_{\lambda, x_\star } \in L^{\infty } ( \mathbb {S}^{2} )$. Then (omitting obvious pullbacks and computations) we have
Since $\varphi$ is compactly supported, the pullback of $e^{2 \varphi }$ to $\mathbb {S}^{2}$ via $p_{\lambda, x_\star }$ extends smoothly over the North pole. Let us denote this extension by $h$. Then the equation on $u$ becomes
This is the equation of Kazdan and Warner, [Reference Kazdan and Warner7]*equation (1.3), with $k = 1$ (note that they use the opposite sign convention for the Laplacian). When $\varphi$ vanishes identically, then $u = 0$ is a solution, which corresponds to the well-known $\varrho = \varrho _{\lambda, x_\star }$ solution on the flat plane. More generally, given any $\lambda \in \mathbb {R}_+$ and $x_\star \in \mathbb {R}^{2}$ and any positive scalar curvature metric $g$ on $\mathbb {S}^{2}$, one can construct a solution to curved, static Keller–Segel equation (2.1) as follows: by the uniformization theorem, $g$ and $g_{\mathbb {S}^{2}}$ are always conformally equivalent. Thus we have a function, $u$, that solves equation (4.1) with $h$ being the scalar curvature of $g$ (pulled back under a diffeomorphism). Let now $\widetilde {u}$ and $\widetilde {h}$ be the pushforwards of $u$ and $h$, respectively, to $\mathbb {R}^{2}$ via $p_{\lambda, x_\star }$, and let $\varrho := \varrho _{\lambda, x_\star } e^{2 \widetilde {u}}$. Then $\varrho$ solves the curved, static Keller–Segel equation (2.1) with $\varphi = \tfrac {1}{2} \ln ( \widetilde {h} )$.
Remark 4.1 Using the reduced, static Keller–Segel equation (2.2) also, equations similar to the Kazdan–Warner equation (4.1) were studied in [Reference Bonheure, Casteras and Noris3, Reference Wang, Wang and Yang9]. These equations however are still on the plane so the geometric interpretation above is lost.
Unfortunately, equation (4.1) is the critical version of the Kazdan–Warner equation in [Reference Kazdan and Warner7]. Thus we cannot, in general, assume solvability for an arbitrary $h$. In fact, Kazdan and Warner found a necessary condition for the existence of solutions: For each spherical harmonic of degree one, $u_1$, by [Reference Kazdan and Warner7]*equation (8.10), we have
where $\omega _{\mathbb {S}^{2}}$ is the symplectic/area form of $g_{\mathbb {S}^{2}}$. We use equation (4.2) to prove the following:
Theorem 4.2 There exists $\varphi \in C_\mathrm {cpt}^{\infty } ( \mathbb {R}^{2} )$, arbitrarily close to the identically zero function, such that the static Keller–Segel equation (2.1) has no solutions satisfying equation (3.1).
Proof. Let us assume that $\varphi$ is radial (with respect to $x_\star$). Then $h$ is only a function of the polar angle $\theta \in ( - \tfrac {\pi }{2},\, \tfrac {\pi }{2} )$, on $\mathbb {S}^{2}$. When $u_1 = \sin ( \theta )$, then equation (4.2) becomes
Since $\partial _\theta h \sim e^{2 \varphi } \partial _r \varphi$, we get that if $\varphi$ is nonconstant and $\partial _r \varphi$ is either nonnegative or nonpositive, then equation (4.3) cannot hold. This concludes the proof.
5. The variation aspects of the Keller–Segel theory on curved planes
We end this paper with a complementary result to theorem 3.7, showing that the energy functional (formally) corresponding to the Keller–Segel flow in equation (1.1a) and (1.1b) is bounded from below only when $m = 8 \pi$. In order to do that, we first prove a curved version of the logarithmic Hardy–Littlewood–Sobolev inequality.
5.1 Curved logarithmic Hardy–Littlewood–Sobolev inequality and the Keller–Segel free energy
Let $\lambda \in \mathbb {R}_+$ and $x_\star \in \mathbb {R}^{2}$, and define
Then $\mu _{\lambda, x_\star }$ is everywhere positive, $\int _{\mathbb {R}^{2}} \mu _{\lambda, x_\star } \: \mathrm {dA}_0 = 1$, and for any $f \in C_{\mathrm {cpt}}^{\infty } ( \mathbb {R}^{2} )$
The following identities about $\mu _{\lambda, x_\star }$ are easy to verify:
Now we can state the logarithmic Hardy–Littlewood–Sobolev inequality on $( \mathbb {R}^{2},\, g_0 )$, which is a special case of [Reference Beckner1]*theorem 2.
Theorem 5.1 Let $\varrho$ be an almost everywhere positive function on $\mathbb {R}^{2}$ and assume that
Then for all $\lambda \in \mathbb {R}_+,$ $x_\star \in \mathbb {R}^{2},$ we have
Moreover, equality holds exactly when $\varrho = m \mu _{\lambda, x_\star }$.
Idea of the proof: Note that equations (5.3a), (5.3c), and (5.3a) imply that equation (5.4) is equivalent to
Now equation (5.5) is the $n = 2$ and $f = g$ case of [Reference Beckner1]*inequality (27).
Let now $g$ be any smooth Riemannian metric on $\mathbb {R}^{2}$, not necessarily conformally equivalent to $g_0$. There still exists a smooth function, $\varphi$, such that if the area form of $g$ is $\: \mathrm {dA}_g$, then
For the remainder of this section (but this section only), let $\varphi$ be defined via equation (5.6), and write, as before $\: \mathrm {dA}_\varphi := \: \mathrm {dA}_g$. When $g$ is not conformally equivalent to $g_0$, then $G$ is no longer the Green's function for $g$. Now let $\mu _{\lambda, x_\star }^{\varphi } := \mu _{\lambda, x_\star } e^{- 2 \varphi }$. Note that $\int _{\mathbb {R}^{2}} \mu _{\lambda, x_\star }^{\varphi } \: \mathrm {dA}_\varphi = 1$.
The next lemma is a generalization of theorem 5.1.
Lemma 5.2 Let $\varrho$ be an almost everywhere positive function on $\mathbb {R}^{2}$ and assume that
Then for all $\lambda \in \mathbb {R}_+$ and $x_\star \in \mathbb {R}^{2},$ we have
and equality holds exactly when $\varrho = m \mu _{\lambda, x_\star }^{\varphi }$.
Proof. Let us first rewrite the left-hand side of equation (5.7):
Since $\varrho e^{2 \varphi }$ is almost everywhere positive and
we can use equation (5.4), with $\varrho$ replaced by $\varrho e^{2 \varphi }$, and get
Furthermore
Combining equations (5.8), (5.9), and (5.10) proves equation (5.7). Finally, equality in equation (5.9) holds exactly when $\varrho e^{2 \varphi } = m \mu$, or equivalently, when $\varrho = m \mu _{\lambda, x_\star }^{\varphi }$, which conclude the proof.
Remark 5.3 As opposed to the flat case, when $\varphi$ is not identically zero, the $m = 8 \pi$ minimizer for the curved logarithmic Hardy–Littlewood–Sobolev equation (5.7), $8 \pi \mu _{\lambda, x_\star }^{\varphi }$, is not a solution to the static Keller–Segel equation (2.1), nor the reduced, static Keller–Segel equation (2.2). Instead, we get
5.2 The Keller–Segel free energy
The (flat) Keller–Segel free energy of $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, 0)$ is
Remark 5.4 Formally, equation (1.1a) is the negative gradient flow of the Keller–Segel free energy under the Wasserstein metric. Formally this metric can be introduced as follows: If $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, \varphi )$, then the operator $f \mapsto L_\varrho (f) := \operatorname {d\!}{}^{*} ( \varrho \operatorname {d\!}{} f )$ is expected to be nondegenerate. Then if $\dot {\varrho }$ is a tangent vector to $\mathcal {C}_\mathrm {KS} (m,\, \varphi )$, then its Wasserstein norm is given by
Then the Wasserstein norm is a Hilbert norm, thus can be used to define gradient flows.
Remark 5.5 The functional in (5.11) is also the energy of self-gravitating Brownian dust; cf. [Reference Chavanis, Ribot, Rosier and Sire4].
Let us generalize $\mathcal {F}_0$ to $( \mathbb {R}^{2},\, g_\varphi )$: For any $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, \varphi )$, let the curved Keller–Segel free energy be
Now we are ready to prove our last main result.
Theorem 5.6 The curved Keller–Segel free energy (5.12) is bounded from below on $\mathcal {C}_\mathrm {KS} (m,\, \varphi ),$ exactly when $m = 8 \pi$.
Proof. Let $m,\, \lambda \in \mathbb {R}_+$, and $\mu _{\lambda, 0}$ as in equation (5.1) (with $x_\star = 0$). Now equations (5.3c) and (5.3a) imply that
As $\lambda \rightarrow 0^{+}$, the last term goes to $\varphi (x_\star )$. Thus, when $m > 8 \pi$, then
Similarly, as $\lambda \rightarrow \infty$, the last term goes to zero. Thus, when $m < 8 \pi$, then
This proves the claim for $m \neq 8 \pi$.
When $m = 8 \pi$, then for any $\varrho \in \mathcal {C}_\mathrm {KS} (m,\, \varphi )$, we have
Now, using equations (5.7), (5.3b), (5.3c), and (5.2), and plugging back $m = 8 \pi$, we get
which completes the proof.
Remark 5.7 It is not entirely obvious if the relevant generalization of Keller–Segel free energy (5.11) is the functional, $\mathcal {F}_\varphi$, in equation (5.12). There is an generalization that is minimally coupled to the metric: Let $\kappa _\varphi := \Delta _\varphi \varphi$ be the Gauss curvature of $g_\varphi$ and $q \in \mathbb {R}$ be a coupling constant. Then let us define
When $m \neq 8 \pi$, the proof of theorem 5.6 can still be used to prove the unboundedness of $\mathcal {F}_{\varphi, q}$, and when $m = 8 \pi$, we get
In particular, when $q = 2$, then $\varrho = 8 \pi \mu _{\lambda, x_\star }^{\varphi }$ is an absolute minimizer of $\mathcal {F}_{\varphi, q}$.
Acknowledgments
I thank Michael Sigal for introducing me to the topic and for his initial guidance. I also thank the referee for their helpful recommendations.