Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-25T12:49:00.536Z Has data issue: false hasContentIssue false

Proof of some conjectural congruences involving Apéry and Apéry-like numbers

Published online by Cambridge University Press:  07 March 2024

Guo-Shuai Mao
Affiliation:
Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China (maogsmath@163.com; 1282468588@qq.com)
Lilong Wang
Affiliation:
Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China (maogsmath@163.com; 1282468588@qq.com)
Rights & Permissions [Opens in a new window]

Abstract

In this paper, we mainly prove the following conjectures of Sun [16]: Let p > 3 be a prime. Then

\begin{align*}&A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{2p-1}\equiv A_1+\frac{16p^3}3B_{p-3}\ ({\rm{mod}}\ p^4),\\&A_{3p}\equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4),\end{align*}

where $A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}{k}^2$ is the nth Apéry number, and Bn is the nth Bernoulli number.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

1. Introduction

It is well known that the Riemann zeta function was defined by $\zeta(s)=\sum_{n=1}^\infty\frac1{n^s}$, where s is a complex number with real part larger than 1. In 1979, Apéry [Reference Apéry1] introduced the Apéry numbers ${A_n}$ and ${A^{'}_n}$ to prove that $\zeta(2)$ and $\zeta(3)$ are irrational, and these numbers are defined by:

\begin{equation*} A_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}k^2\ \ \ \mbox{and}\ \ \ A^{'}_n=\sum_{k=0}^n\binom{n}k^2\binom{n+k}k. \end{equation*}

It is well known (see [Reference Beukers2]) that:

\begin{align*} &(n+1)^3A_{n+1}=(2n+1)(17n(n+1)+5)A_n-n^3A_{n-1}\ \ (n\geq1),\\ &(n+1)^2A^{'}_{n+1}=(11n(n+1)+3)A^{'}_n+n^2A^{'}_{n-1}\ \ (n\geq1). \end{align*}

The Apéry-like numbers $\{u_n\}$ of the first kind satisfy:

\begin{equation*} u_0=1,\ \ u_1=b,\ \ (n+1)^3u_{n+1}=(2n+1)(an(n+1)+b)u_n-cn^3u_{n-1}, \end{equation*}

where $a,b,c$ are integers and c ≠ 0. The well-known Domb numbers $D_n=\sum_{k=0}^n\binom{n}k^2\binom{2k}k\binom{2n-2k}{n-k}$ are Apéry-like numbers of this kind, and the following numbers are also Apéry-like numbers of the first kind,

\begin{equation*} T_n=\sum_{k=0}^n\binom{n}k^2\binom{2k}n^2. \end{equation*}

In 2009, Zagier [Reference Zagier, Harnad and Winternitz20] studied the Apéry-like numbers $\{u_n\}$ of the second kind given by:

\begin{equation*} u_0=1,\ \ u_1=b,\ \mbox{and}\ \ (n+1)^2u_{n+1}=(an(n+1)+b)u_n-cn^2u_{n-1}\ \ (n\geq1), \end{equation*}

where $a,b,c$ are integers and c ≠ 0. And the famous Franel numbers $f_n=\sum_{k=0}^n\binom{n}k^3$ and $a_n=\sum_{k=0}^n\binom{n}k^2\binom{2k}k$ are Apéry-like sequences of the second kind. For more congruences involving Apéry-like numbers, we refer the readers to [Reference Liu6Reference Liu and Wang8, Reference Mao and Li11, Reference Mao, Li and Ma12].

In [Reference Sun16], Sun proposed many congruence conjectures involving these numbers, for example:

Conjecture 1.1. ([Reference Sun16, Conjectures 5.1 and 5.3]) Let p be a prime with p > 3. Then

\begin{align*} &A_p\equiv A_1-\frac{14}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ A^{'}_{p}\equiv A^{'}_1-\frac{5}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ &T_p\equiv T_1-p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ D_p\equiv D_1+\frac{16}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ &f_p\equiv f_1+\frac12p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ a_p\equiv a_1+\frac{p^2}2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3). \end{align*}

Remark 1.1. Actually,

\begin{equation*}a_p\equiv a_1+\frac12p^2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3),\end{equation*}

has been proved by the first author [Reference Mao9] in 2017, which is earlier than the above conjecture. The congruences of Ap and Dp were proved by Zhang [Reference Zhang21].

The above $\{B_n\}$ and $\{B_n(x)\}$ are Bernoulli numbers and Bernoulli polynomials given by:

\begin{gather*} B_0=1,\ \ \ \sum_{k=0}^{n-1}\binom{n}{k}B_{k}=0\ \ (n\geq2),\\ B_n(x)=\sum_{k=0}^n\binom nkB_kx^{n-k}\ \ (n=0,1,2,\ldots). \end{gather*}

For $n,m\in\{1,2,3,\ldots\}$, define:

\begin{equation*} H_n^{(m)}=\sum_{1\leq k\leq n}\frac1{k^m}, \end{equation*}

these numbers with m = 1 are often called the classic harmonic numbers.

Let p > 3 be a prime. Wolstenholme [Reference Wolstenholme19] proved that:

(1.1)\begin{align} \binom{2p-1}{p-1}\equiv1\ ({\rm{mod}}\ p^3). \end{align}

In 1990, Glaisher [Reference Glaisher3, Reference Glaisher4] showed further that:

(1.2)\begin{equation} \binom{2p-1}{p-1}\equiv1-\frac23p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation}

In this paper, our first goal is to prove the rest unsolved congruences in Conjecture 1.1.

Theorem 1.1. Let p be a prime with p > 3. Then

\begin{align*} &A^{'}_{p}\equiv A^{'}_1-\frac{5}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ \ T_p\equiv T_1-p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ &f_p\equiv f_1+\frac12p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

And, we also confirm some conjectures of Sun [Reference Sun16, Conjectures 5.1 and 5.3] involving $()_{2p}$:

Theorem 1.2. For any prime p > 3, we have:

\begin{gather*} A_{2p}\equiv A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ A^{'}_{2p}\equiv A^{'}_2-\frac{280}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ T_{2p}\equiv T_2-136p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ D_{2p}\equiv D_2+\frac{448}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ f_{2p}\equiv f_2-8p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ a_{2p}\equiv a_2+6p^2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3). \end{gather*}

We also proved some conjecture of Sun [Reference Sun16, Conjecture 5.2] involving $()_{2p-1}$:

Theorem 1.3. Let p > 3 be a prime. Then,

\begin{align*} &A_{2p-1}\equiv A_1+\frac{16}3p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ &T_{2p-1}\equiv16^{2(p-1)}T_1-6p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

At last, we prove some conjectures of Sun [Reference Sun16, Conjecture 5.1] involving $()_{3p}$:

Theorem 1.4. Let p > 3 be a prime. Then,

\begin{gather*} A_{3p}\equiv A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4), A^{'}_{3p}\equiv A^{'}_{3}-2475p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ T_{3p}\equiv T_3-6696p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ D_{3p}\equiv D_3+3168p^3B_{p-3}\ ({\rm{mod}}\ p^4)\\ f_{3p}\equiv f_3-189p^3B_{p-3}\ ({\rm{mod}}\ p^4), \\ a_{3p}\equiv a_3+\frac{135p^2}2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3). \end{gather*}

We are going to prove Theorem 1.1 in the next section. Sections 35 are devoted to proving Theorems 1.21.4.

2. Proof of Theorem 1.1

Lemma 2.1. (Lemma [Reference Sun15]). Let p > 5 be a prime. Then,

\begin{gather*} H_{(p-1)/2}\equiv-2q_p(2)+pq^2_p(2)\ ({\rm{mod}}\ p^2),\ \ H_{\frac{p-1}2}^{(2)}\equiv\frac73pB_{p-3}\ ({\rm{mod}}\ p^2),\\ H_{\frac{p-1}2}^{(3)}\equiv-2B_{p-3}\ ({\rm{mod}}\ p),\ \ H_{p-1}\equiv-\frac13p^2B_{p-3}\ ({\rm{mod}}\ p^3),\\ H_{p-1}^{(2)}\equiv\frac23pB_{p-3}\ ({\rm{mod}}\ p^2),\ \ H_{p-1}^{(3)}\equiv0\ ({\rm{mod}}\ p). \end{gather*}

Proof of Theorem 1.1

p = 5 can be checked directly. We will assume p > 5 from now on. It is easy to check that:

(2.1)\begin{equation} \binom{p+k}k^2=\frac{(p+k)^2\cdots(p+1)^2}{k!^2}\equiv1+2pH_k\ ({\rm{mod}}\ p^2), \end{equation}

and

(2.2)\begin{equation} \binom{p-1}{k-1}^2=\frac{(p-1)^2\cdots(p-k+1)^2}{(k-1)!^2}\equiv1-2pH_{k-1}\ ({\rm{mod}}\ p^2). \end{equation}

These yield that:

\begin{align*} A^{'}_p&=\sum_{k=0}^p\binom{p}k^2\binom{p+k}k=1+\binom{2p}p+\sum_{k=1}^{p-1}\binom{p}k^2\binom{p+k}k\\ &\equiv1+\binom{2p}p+p^2\sum_{k=1}^{p-1}\frac1{k^2}\left(1-pH_k+\frac{2p}k\right)\\ &\equiv1+\binom{2p}p+p^2H_{p-1}^{(2)}+2p^3H_{p-1}^{(3)}-p^3\sum_{k=1}^{p-1}\frac{H_k}{k^2}\ ({\rm{mod}}\ p^4). \end{align*}

In view of [Reference Sun18, (3.17)], we have

(2.3)\begin{align} \sum_{k=1}^{p-1}\frac{H_k}{k^2}\equiv B_{p-3}\ ({\rm{mod}}\ p). \end{align}

This, with (1.2), Lemma 2.1 yields that:

\begin{equation*} A^{'}_p\equiv3-\frac53p^3B_{p-3}=A^{'}_1-\frac53p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now, we are ready to evaluate Tp modulo p 4. In the same way of proving (2.1), we have the following congruence for each $1\leq k\leq (p-1)/2$,

\begin{equation*} \binom{2p-2k}{p-2k}^2\equiv1+2pH_{p-2k}\equiv1+2pH_{2k-1}\ ({\rm{mod}}\ p^2). \end{equation*}

This with (2.2) yields that:

\begin{align*} T_p&=\sum_{k=0}^p\binom{p}k^2\binom{2k}p^2=\binom{2p}p^2+\sum_{k=\frac{p+1}2}^{p-1}\binom{p}k^2\binom{2k}p^2\\ &=\binom{2p}p^2+\sum_{k=1}^{\frac{p-1}2}\binom{p}k^2\binom{2p-2k}{p-2k}^2\\ &\equiv\binom{2p}p^2+p^2\sum_{k=1}^{\frac{p-1}2}\frac{1}{k^2}(1+2pH_{2k-1}-2pH_{k-1})\\ &\equiv\binom{2p}p^2+p^2H_{\frac{p-1}2}^{(2)}+2p^3\sum_{k=1}^{\frac{p-1}2}\frac{H_{2k}-H_{k}}{k^2}+p^3H_{\frac{p-1}2}^{(3)}\ ({\rm{mod}}\ p^3). \end{align*}

In view of [Reference Mao9, Reference Mao and Wang13], we have

(2.4)\begin{equation} \sum_{k=1}^{\frac{p-1}2}\frac{H_{2k}}{k^2}\equiv\frac32B_{p-3}\ ({\rm{mod}}\ p)\ \ \mbox{and}\ \ \sum_{k=1}^{\frac{p-1}2}\frac{H_k}{k^2}\equiv-\frac12B_{p-3}\ ({\rm{mod}}\ p). \end{equation}

So with (1.2) and Lemma 2.1, we immediately obtain the desired result:

\begin{equation*} T_p\equiv4-p^3B_{p-3}=T_1-p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

At last, we evaluate fp modulo p 4. This is much easier. By (2.2),

\begin{align*} f_p&=\sum_{k=0}^p\binom{p}k^3=2+\sum_{k=1}^{p-1}\binom{p}k^3\equiv2-p^3\sum_{k=1}^{p-1}\frac{(-1)^{k}}{k^3}\\ &=2-p^3\sum_{k=1}^{p-1}\frac{1+(-1)^{k}}{k^3}+p^3H_{p-1}^{(3)}\\ &=2-\frac14p^3H_{\frac{p-1}2}^{(3)}+p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

So we immediately get the desired result:

\begin{equation*} f_p\equiv 2+\frac12p^3B_{p-3}=f_1+\frac12p^3B_{p-3}\ ({\rm{mod}}\ p^4), \end{equation*}

with the help of Lemma 2.1.

Now the proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2

Lemma 3.1. Let p > 3 be a prime. If $1\leq k\leq (p-1)/2$, then

(3.1)\begin{equation} \binom{2k}k\binom{4p-2k}{2p-k}\equiv-\frac{12p}k(1+4pH_{2k-1}-4pH_{k-1})\ ({\rm{mod}}\ p^3). \end{equation}

If $(p+1)/2\leq k\leq p-1$, then

(3.2)\begin{equation} \binom{4p-2k}{2p-k}\equiv2\binom{2p-2k}{p-k}(1+2pH_{2p-2k}-2pH_{k-1})\ ({\rm{mod}}\ p^2). \end{equation}

Proof. If $1\leq k\leq (p-1)/2$. Since $H_{p-1}\equiv0\ ({\rm{mod}}\ p^2)$ and $H_{p-1-k}\equiv H_k\ ({\rm{mod}}\ p)$ for each $0\leq k\leq p-1$, we have

\begin{align*} &\binom{4p-2k}{2p-k}\\ &=\frac{6p(4p-2k)\cdots(3p+1)(3p-1)\cdots(2p+1)(2p-1)\cdots(2p-k+1)}{(2p-k)\cdots(p+1)(p-1)!}\\ &\equiv\frac{6p(p-2k)!(1+3pH_{p-2k})(-1)^{k-1}(k-1)!(1-2pH_{k-1})}{(p-k)!(1+pH_{p-k})}\\ &\equiv\frac{6p}{k}\frac{(-1)^{k-1}(1+3pH_{2k-1}-2pH_{k-1})}{\binom{p-k}k(1+pH_{k-1})}\ ({\rm{mod}}\ p^3), \end{align*}

and

(3.3)\begin{align} \binom{p-k}k&=\frac{(p-k)\cdots(p-2k+1)}{k!}\notag\\ &\equiv\frac{(-1)^kk\cdots(2k-1)(1-pH_{2k-1}+pH_{k-1})}{k!}\notag\\ &\equiv\frac{(-1)^k}2\binom{2k}k(1-pH_{2k-1}+pH_{k-1})\ ({\rm{mod}}\ p^2). \end{align}

Hence

\begin{align*} &\binom{2k}k\binom{4p-2k}{2p-k}\equiv\frac{-12p}{k}\frac{1+3pH_{2k-1}-3pH_{k-1}}{1-pH_{2k-1}+pH_{k-1}}\\ &\equiv\frac{-12p}k(1+4pH_{2k-1}-4pH_{k-1})\ ({\rm{mod}}\ p^3). \end{align*}

If $(p+1)/2\leq k\leq p-1$. It is easy to see that:

\begin{align*} &\binom{4p-2k}{2p-k}\\ &=\frac{2(4p-2k)\cdots(2p+1)(2p-1)\cdots(2p-k+1)}{(2p-k)\cdots(p+1)(p-1)!}\\ &\equiv\frac{2(2p-2k)!(1+2pH_{2p-2k})(-1)^{k-1}(k-1)!(1-2pH_{k-1})}{(p-k)!(1+pH_{p-k})}\\ &\equiv2\binom{2p-2k}{p-k}\frac{(-1)^{k-1}(1+2pH_{2p-2k}-2pH_{k-1})}{\binom{p-1}{k-1}(1+pH_{k-1})}\\ &\equiv2\binom{2p-2k}{p-k}(1+2pH_{2p-2k}-2pH_{k-1})\ ({\rm{mod}}\ p^2). \end{align*}

Now the proof of Lemma 3.1 is complete.

Proof of Theorem 1.2

We can check case p = 5 directly. So we will assume that p > 5 in the following process. As the same way of proving (2.1) and (2.2), we have

(3.4)\begin{align} \binom{2p-1}{k-1}^2\equiv1-4pH_{k-1}\ ({\rm{mod}}\ p^2), \end{align}
(3.5)\begin{align} \binom{2p+k}{k}^2\equiv1+4pH_k\ ({\rm{mod}}\ p^2), \end{align}
(3.6)\begin{align} \binom{4p-k}{2p-k}^2\equiv9(1+4pH_{k-1})\ ({\rm{mod}}\ p^2). \end{align}

So we have

\begin{align*} &A_{2p}-1-\binom{4p}{2p}^2-\binom{3p}p^2\binom{2p}p^2\\ &=\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2p+k}k^2+\sum_{k=p+1}^{2p-1}\binom{2p}k^2\binom{2p+k}k^2\\ &=\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2p+k}k^2+\sum_{k=1}^{p-1}\binom{2p}k^2\binom{4p-k}{2p-k}^2. \end{align*}

Thus, in view of (3.4), (3.5) and (3.6), we have

\begin{align*} &A_{2p}-1-\binom{4p}{2p}^2-\binom{2p}p^2\binom{3p}p^2\equiv4p^2\sum_{k=1}^{p-1}\frac1{k^2}\left(1+\frac{4p}k\right)+4p^2\sum_{k=1}^{p-1}\frac{9}{k^2}\\ &=4p^2H_{p-1}^{(2)}+16p^3H_{p-1}^{(3)}+36p^2H_{p-1}^{(2)}=40p^2H_{p-1}^{(2)}+16p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

Mao [Reference Mao10, Lemma 4.1] proved that:

(3.7)\begin{equation} \binom{4p}{2p}\equiv6-32p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation}

Similarly, with (1.2), Lemma 2.1 and (2.3) we can get that:

(3.8)\begin{align} &\binom{3p}p=\sum_{k=0}^p\binom{2p}k\binom{p}k=1+\binom{2p}p+\sum_{k=1}^{p-1}\binom{2p}k\binom{p}k\notag\\ &=1+\binom{2p}p+\sum_{k=1}^{p-1}\frac{2p^2}{k^2}\binom{2p-1}{k-1}\binom{p-1}{k-1}\notag\\ &\equiv1+\binom{2p}p+\sum_{k=1}^{p-1}\frac{2p^2}{k^2}(1-3pH_{k-1})\equiv3-6p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align}

This, with (1.2), (3.7) and Lemma 2.1 yields that:

\begin{equation*} A_{2p}\equiv73-\frac{1648}3p^3B_{p-3}=A_2-\frac{1648}3p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now, we consider $A^{'}_{2p}$ modulo p 4. Similarly, we have

\begin{align*} &A^{'}_{2p}-1-\binom{4p}{2p}-\binom{2p}p^2\binom{3p}p\\ &=\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2p+k}k+\sum_{k=1}^{p-1}\binom{2p}k^2\binom{4p-k}{2p-k}. \end{align*}

In view of (3.4), (3.5) and (3.6), we have

\begin{align*} &A^{'}_{2p}-1-\binom{4p}{2p}-\binom{2p}p^2\binom{3p}p\\ &\equiv4p^2\sum_{k=1}^{p-1}\frac1{k^2}(1+2pH_k-4pH_{k-1})+12p^2\sum_{k=1}^{p-1}\frac1{k^2}(1-2pH_{k-1})\\ &=16p^2H_{p-1}^{(2)}-32p^3\sum_{k=1}^{p-1}\frac{H_k}{k^2}+40p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

Therefore, with (1.2), (3.7), (3.8), Lemma 2.1 and (2.3), we can deduce that:

\begin{align*} A^{'}_{2p}\equiv19-\frac{280}3p^3B_{p-3}=A^{'}_2-\frac{280}3p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

Now we evaluate $T_{2p}$ modulo p 4. In the same way of proving Lemma 3.1, we have, if $1\leq k\leq(p-1)/2$,

\begin{equation*} \binom{4p-2k}{2p-2k}^2\equiv9(1+4pH_{2k-1})\ ({\rm{mod}}\ p^2), \end{equation*}

and if $(p+1)/2\leq k\leq p-1$,

\begin{equation*} \binom{4p-2k}{2p-2k}^2\equiv9(1+4pH_{2p-2k})\ ({\rm{mod}}\ p^2). \end{equation*}

So with (3.4) we can deduce that:

\begin{align*} &T_{2p}-\binom{2p}p^2-\binom{4p}{2p}^2=\sum_{k=p+1}^{2p-1}\binom{2p}k^2\binom{2k}{2p}^2=\sum_{k=1}^{p-1}\binom{2p}k^2\binom{4p-2k}{2p-2k}^2\\ \equiv&36p^2\sum_{k=1}^{\frac{p-1}2}\frac{1+4pH_{2k-1}-4pH_{k-1}}{k^2}+4p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{1+4pH_{2p-2k}-4pH_{k-1}}{k^2}\\ \equiv&36p^2\sum_{k=1}^{\frac{p-1}2}\frac{1+4pH_{2k-1}-4pH_{k-1}}{k^2}+\sum_{k=\frac{p+1}2}^{p-1}\frac{4p^2}{k^2}+16p^3\sum_{k=1}^{\frac{p-1}2}\frac{H_{2k}-H_{p-k-1}}{k^2}\\ \equiv&32p^2H_{\frac{p-1}2}^{(2)}+4p^2H_{p-1}^{(2)}+72p^3H_{\frac{p-1}2}^{(3)}+160p^3\sum_{k=1}^{\frac{p-1}2}\frac{H_{2k}-H_k}{k^2}\ ({\rm{mod}}\ p^4). \end{align*}

This, with (1.2), (3.7), Lemma 2.1 and (2.4) yields that:

\begin{equation*} T_{2p}\equiv40-136p^3B_{p-3}=T_2-136p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Next, we consider $D_{2p}$ modulo p 4. It is easy to see that:

\begin{align*} &D_{2p}-2\binom{4p}{2p}-\binom{2p}p^4\\ &=\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2k}k\binom{4p-2k}{2p-k}+\sum_{k=p+1}^{2p-1}\binom{2p}k^2\binom{2k}k\binom{4p-2k}{2p-k}\\ &=2\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2k}k\binom{4p-2k}{2p-k}. \end{align*}

So by Lemma 3.1 and (3.4), we obtain that:

\begin{align*} &D_{2p}-2\binom{4p}{2p}-\binom{2p}p^4\equiv-96p^3H_{\frac{p-1}2}^{(3)}+16p^2\sum_{k=\frac{p+1}2}^{p-1}\frac1{k^2}\binom{2k}k\binom{2p-2k}{p-k}\\ &\equiv-96p^3H_{\frac{p-1}2}^{(3)}+16p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{2p}{k^3}=-128p^3H_{\frac{p-1}2}^{(3)}+32p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

Then, we can obtain the desired result:

\begin{equation*} D_{2p}\equiv28+\frac{448}3p^3B_{p-3}=D_2+\frac{448}3p^3B_{p-3}\ ({\rm{mod}}\ p^4), \end{equation*}

with the help of (1.2), (3.7) and Lemma 2.1.

Similarly, $f_{2p}$ modulo p 4 is also easier. It is easy to check that by (3.4),

\begin{align*} &f_{2p}-2-\binom{2p}p^3=\sum_{k=1}^{p-1}\binom{2p}k^3+\sum_{k=p+1}^{2p-1}\binom{2p}k^3=2\sum_{k=1}^{p-1}\binom{2p}k^3\\ &\equiv-16p^3\sum_{k=1}^{p-1}\frac{(-1)^k}{k^3}=-16p^3\sum_{k=1}^{p-1}\frac{1+(-1)^k}{k^3}+16p^3H_{p-1}^{(3)}\\ &=-4p^3H_{\frac{p-1}2}^{(3)}+16p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

In view of (1.2) and Lemma 2.1, we immediately get the desired result:

\begin{equation*} f_{2p}\equiv10-8p^3B_{p-3}=f_2-8p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

At last, we evaluate $a_{2p}$ modulo p 3. By (1.1), (3.4) and (3.7), we have:

\begin{align*} &a_{2p}=1+\binom{4p}{2p}+\binom{2p}p^3+\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2k}k+\sum_{k=p+1}^{2p-1}\binom{2p}k^2\binom{2k}k\\ &\equiv15+\sum_{k=1}^{p-1}\binom{2p}k^2\binom{2k}k+\sum_{k=1}^{p-1}\binom{2p}k^2\binom{4p-2k}{2p-k}\\ &\equiv15+4p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}+4p^2\sum_{k=1}^{p-1}\frac1{k^2}\binom{4p-2k}{2p-k}\ ({\rm{mod}}\ p^3). \end{align*}

And then in view of Lemma 3.1, we have

\begin{align*} a_{2p}&\equiv15+4p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}+8p^2\sum_{k=\frac{p+1}2}^{p-1}\frac1{k^2}\binom{2p-2k}{p-k}\\ &\equiv15+4p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}+8p^2\sum_{k=1}^{\frac{p-1}2}\frac1{k^2}\binom{2k}{k}\\ &\equiv15+12p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}\ ({\rm{mod}}\ p^3). \end{align*}

In view of [Reference Mattarei and Tauraso14], we have

(3.9)\begin{equation} \sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}\equiv\frac12\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p). \end{equation}

Therefore, we immediately get the desired result:

\begin{equation*} a_{2p}\equiv15+6p^2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)=a_2+6p^2\left(\frac{p}3\right)B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3). \end{equation*}

Now the proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.3

In the same way of proving Lemma 3.1, we have, for $1\leq k\leq p-1$

(4.1)\begin{align} \binom{2p-1}k^2\binom{2p-1+k}{k}^2\equiv\frac{4p^2}{k^2}\left(1-\frac{4p}k\right)\ ({\rm{mod}}\ p^4), \end{align}

and for $0\leq k\leq p-2$:

(4.2)\begin{equation} \binom{2p-1}k^2\binom{4p-2-k}{2p-1-k}^2\equiv\frac{36p^2}{(p-1-k)^2}\left(1+\frac{6p}{k+1}\right)\ ({\rm{mod}}\ p^4). \end{equation}

So we have

\begin{align*} &A_{2p-1}-1-\binom{2p-1}{p-1}^2\binom{3p-1}{2p-1}^2\\ &=\sum_{k=1}^{p-1}\binom{2p-1}k^2\binom{2p-1+k}k^2+\sum_{k=p+1}^{2p-1}\binom{2p-1}k^2\binom{2p-1+k}k^2\\ &=\sum_{k=1}^{p-1}\binom{2p-1}k^2\binom{2p-1+k}k^2+\sum_{k=0}^{p-2}\binom{2p-1}k^2\binom{4p-2-k}{2p-1-k}^2\\ &\equiv4p^2\sum_{k=1}^{p-1}\frac{1-\frac{4p}k}{k^2}+\sum_{k=0}^{p-2}\frac{36p^2}{(p-1-k)^2}\left(1+\frac{6p}{k+1}\right)\\ &\equiv4p^2\sum_{k=1}^{p-1}\frac{1-\frac{4p}k}{k^2}+36p^2\sum_{k=1}^{p-1}\frac{k+2p}{k^3}\left(1+\frac{6p}{k}\right)\\ &\equiv40p^2H_{p-1}^{(2)}+272p^3H_{p-1}^{(2)}\ ({\rm{mod}}\ p^4). \end{align*}

In view of (1.2), (3.8) and Lemma 2.1, we immediately get the desired result:

\begin{equation*} A_{2p-1}\equiv5+\frac{16}3p^3B_{p-3}=A_1+\frac{16}3p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now we consider $T_{2p-1}$ modulo p 4. It is easy to see that:

\begin{equation*} T_{2p-1}=\sum_{k=p}^{2p-1}\binom{2p-1}k^2\binom{2k}{2p-1}^2=\sum_{k=0}^{p-1}\binom{2p-1}k^2\binom{4p-2-2k}{2p-1-2k}^2. \end{equation*}

So

\begin{align*} &T_{2p-1}-\binom{2p-1}{\frac{p-1}2}^2\binom{3p-1}{2p-1}^2\\ =&\sum_{k=0}^{\frac{p-3}2}\binom{2p-1}k^2\binom{4p-2-2k}{2p-1-k}^2+\sum_{k=\frac{p+1}2}^{p-1}\binom{2p-1}k^2\binom{4p-2-2k}{2p-1-2k}^2. \end{align*}

In the same way of proving Lemma 3.1, we have, for $0\leq k\leq (p-3)/2$:

\begin{align*} &\binom{2p-1}k^2\binom{4p-2-2k}{2p-1-2k}^2\\ &\equiv\frac{36p^2}{(p-1-2k)^2}\left(1-4pH_k+4pH_{2k}+\frac{6p}{2k+1}\right)\ ({\rm{mod}}\ p^4), \end{align*}

and for $(p+1)/2\leq k\leq p-1$,

\begin{align*} &\binom{2p-1}k^2\binom{4p-2-2k}{2p-1-2k}^2\\ &\equiv\frac{4p^2}{(2p-1-2k)^2}(1+4pH_{2p-2-2k}-4pH_k)\ ({\rm{mod}}\ p^4). \end{align*}

So we have

\begin{align*} &T_{2p-1}-\binom{2p-1}{\frac{p-1}2}^2\binom{3p-1}{2p-1}^2\\ \equiv& 36p^2\sum_{k=0}^{\frac{p-3}2}\frac{2k+1+8p}{(2k+1)^3}+4p^2\sum_{k=0}^{\frac{p-3}2}\frac{1-4pH_k+4pH_{2k}}{(2k+1)^2}\\ \equiv&40p^2\sum_{k=0}^{\frac{p-3}2}\frac{1}{(2k+1)^2}+160p^3\sum_{k=0}^{\frac{p-3}2}\frac{H_{2k}-H_k}{(2k+1)^2}+288p^3\sum_{k=0}^{\frac{p-3}2}\frac{1}{(2k+1)^3}\\ \equiv&10p^2H_{\frac{p-1}2}^{(2)}-26p^3H_{\frac{p-1}2}^{(3)}+160p^3\sum_{k=0}^{\frac{p-3}2}\frac{H_{2k}-H_k}{(2k+1)^2}\ ({\rm{mod}}\ p^4). \end{align*}

In view of [Reference Mao10, (5.1)], we have

\begin{align*} \binom{2p-1}{\frac{p-1}2}^2&=\frac{(2p-1)^2\cdots(2p-\frac{p-1}2)^2}{(\frac{p-1}2)!^2}\equiv(16^{p-1}+\frac{11}6p^3B_{p-3})^2\\ &\equiv16^{2(p-1)}+\frac{11}3p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

This, with (3.8), [Reference Mao10, Lemma 2.3] and Lemma 2.1 yields that:

\begin{equation*} T_{2p-1}\equiv4\cdot16^{2(p-1)}-6p^3B_{p-3}=16^{2(p-1)}V_1-6p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now the proof of Theorem 1.3 is complete.□

5. Proof of Theorem 1.4

For any $n\geq m$, we define the alternating multiple harmonic sum as:

\begin{equation*} H(a_1,a_2,\ldots,a_m;n)=\sum_{\substack{1\leq k_1 \lt k_2 \lt \ldots \lt k_m\leq n}}\prod_{i=1}^m\frac{\mbox{sign}(a_i)^{k_i}}{k_i^{|a_i|}}. \end{equation*}

The integers m and $\sum_{i=1}^m|a_i|$ are respectively the depth and the weight of the harmonic sum. As a matter of convenience, we remember $H(1;n)$ as Hn. In view of [Reference Hoffman5], we have

(5.1)\begin{align} H(\{a\}^r;p-1)\equiv\begin{cases}(-1)^r\frac{a(ar+1)}{2(ar+2)}p^2B_{p-ar-2}&\ ({\rm{mod}}\ p^3)\quad \text{if}\ ar\ \text{is odd},\\ (-1)^{r-1}\frac{a}{ar+1}p B_{p-ar-1}&\ ({\rm{mod}}\ p^2)\quad \text{if}\ ar\ \text{is even}.\end{cases} \end{align}

Lemma 5.1. For any prime p > 3, we have

\begin{gather*} \binom{4p}p\equiv4-16p^3B_{p-3}\ ({\rm{mod}}\ p^4),\ \ \binom{5p}{2p}\equiv10-100p^3B_{p-3}\ ({\rm{mod}}\ p^4),\\ \binom{6p}{3p}\equiv20-360p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{gather*}

Proof. It is easy to see that

\begin{align*} &\binom{4p}p=4\binom{4p-1}{p-1}=\frac{(4p-1)\cdots(3p+1)}{(p-1)!}\\ \equiv&1+3pH_{p-1}+\frac{9p^2}2(H_{p-1}^2-H_{p-1}^{(2)})+27p^3H(1,1,1,p-1)\ ({\rm{mod}}\ p^4). \end{align*}

This, with (5.1) and Lemma 2.1 yields that:

\begin{equation*} \binom{4p}p\equiv4-16p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Then with this, Lemma 2.1 and (5.1) we have

\begin{align*} &\binom{5p}{2p}=\frac52\binom{5p-1}{2p-1}=\frac52\frac{(5p-1)\cdots(4p+1)}{(2p-1)\cdots(p+1)}\binom{4p}{p}\\ &\equiv\frac52\binom{4p}{p}\frac{1+4pH_{p-1}+8p^2(H_{p-1}^2-H_{p-1}^{(2)})+64p^3H(1,1,1,p-1)}{1+pH_{p-1}+\frac{p^2}2(H_{p-1}^2-H_{p-1}^{(2)})+p^3H(1,1,1,p-1)}\\ &\equiv10-100p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

Similarly, with this and (5.1) and Lemma 2.1, we have

\begin{align*} &\binom{6p}{3p}\equiv2\binom{5p}{2p}\frac{(6p-1)\cdots(5p+1)}{(3p-1)\cdots(2p+1)}\\ &\equiv2\binom{5p}{2p}\frac{1+5pH_{p-1}+\frac{25}2p^2(H_{p-1}^2-H_{p-1}^{(2)})+125p^3H(1,1,1,p-1)}{1+2pH_{p-1}+2p^2(H_{p-1}^2-H_{p-1}^{(2)})+8p^3H(1,1,1,p-1)}\\ &\equiv20-360p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

Now the proof of Lemma 5.1 is complete.

In the same way of proving (2.1) and (2.2), we have

(5.2)\begin{align} \binom{3p-1}{k-1}^2\equiv1-6pH_{k-1}\ ({\rm{mod}}\ p^2), \end{align}
(5.3)\begin{align} \binom{3p-1}{p+k-1}^2\equiv4(1-6pH_{k-1})\ ({\rm{mod}}\ p^2), \end{align}
(5.4)\begin{align} \binom{3p+k}{k}^2\equiv1+6pH_{k}\ ({\rm{mod}}\ p^2), \end{align}
(5.5)\begin{align} \binom{4p+k}{p+k}^2\equiv16(1+6pH_{k})\ ({\rm{mod}}\ p^2), \end{align}
(5.6)\begin{align} \binom{6p-k}{3p-k}^2\equiv100(1+6pH_{k-1})\ ({\rm{mod}}\ p^2). \end{align}

So, we have

\begin{align*} &A_{3p}-1-\binom{3p}p^2\binom{4p}{2p}^2-\binom{3p}{2p}^2\binom{5p}{2p}^2-\binom{6p}{3p}^2\\ =&\sum_{k=1}^{p-1}\binom{3p}k^2\binom{3p+k}k^2+\sum_{k=1}^{p-1}\binom{3p}{p+k}^2\binom{4p+k}{p+k}^2\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +\sum_{k=1}^{p-1}\binom{3p}{k}^2\binom{6p-k}{3p-k}^2\\ \equiv&9p^2\sum_{k=1}^{p-1}\frac{1+\frac{6p}k}{k^2}+576p^2\sum_{k=1}^{p-1}\left(\frac1{k^2}+\frac{4p}{k^3}\right)+900p^2H_{p-1}^{(2)}\\ \equiv&1485p^2H_{p-1}^{(2)}+(54+36\cdot64)p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

Then with Lemma 2.1, (3.7), (3.8) and Lemma 5.1, we immediately obtain the desired result:

\begin{equation*} A_{3p}\equiv1445-36738p^3B_{p-3}= A_3-36738p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Next we consider $A^{'}_{3p}$ modulo p 4. Similarly,

\begin{align*} &A^{'}_{3p}-1-\binom{3p}p^2\binom{4p}{2p}-\binom{3p}{2p}^2\binom{5p}{2p}-\binom{6p}{3p}\\ =&\sum_{k=1}^{p-1}\binom{3p}k^2\binom{3p+k}k+\sum_{k=1}^{p-1}\binom{3p}{p+k}^2\binom{4p+k}{p+k}\\ &+\sum_{k=1}^{p-1}\binom{3p}{k}^2\binom{6p-k}{3p-k}\equiv9p^2\sum_{k=1}^{p-1}\frac{1-3pH_k+\frac{6p}k}{k^2}\\ &+144p^2\sum_{k=1}^{p-1}\left(\frac1{k^2}+\frac{4p}{k^3}-\frac{3pH_k}{k^2}\right)+90p^2\sum_{k=1}^{p-1}\frac{1-3pH_k+\frac{3p}k}{k^2}\\ \equiv&243p^2H_{p-1}^{(2)}+900p^3H_{p-1}^{(3)}-729p^3\sum_{k=1}^{p-1}\frac{H_k}{k^2}\ ({\rm{mod}}\ p^4). \end{align*}

This, with (2.3), (3.7), (3.8), Lemma 2.1 and Lemma 5.1 yields that:

\begin{equation*} A^{'}_{3p}\equiv147-2475p^3B_{p-3}= A^{'}_{3}-2475p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now we evaluate $T_{3p}$ modulo p 4. It is easy to see that modulo p 4,

\begin{align*} &T_{3p}-\binom{6p}{3p}^2-\binom{3p}{p}^2\binom{4p}p^2\\ =&\sum_{k=1}^{p-1}\binom{3p}k^2\binom{6p-2k}{3p-2k}^2+\sum_{k=1}^{\frac{p-1}2}\binom{3p}{p+k}^2\binom{4p-2k}{p-2k}^2\\ \equiv&\sum_{k=1}^{p-1}\frac{9p^2}{k^2}\binom{3p-1}{k-1}^2\binom{6p-2k}{3p-2k}^2+\sum_{k=1}^{\frac{p-1}2}\frac{9p^2}{(p+k)^2}\binom{3p}{p+k}^2\binom{4p-2k}{p-2k}^2. \end{align*}

Similar to prove (2.1) and (2.2), we have, for any $1\leq k\leq(p-1)/2$,

\begin{equation*} \binom{4p-2k}{p-2k}^2\equiv1+6pH_{2k-1}\ ({\rm{mod}}\ p^2), \end{equation*}
\begin{equation*} \binom{6p-2k}{3p-2k}^2\equiv100(1+6pH_{2k-1})\ ({\rm{mod}}\ p^2), \end{equation*}

and for each $(p+1)/2\leq k\leq p-1$,

\begin{equation*} \binom{6p-2k}{3p-2k}^2\equiv16(1+6pH_{2p-2k})\ ({\rm{mod}}\ p^2). \end{equation*}

So we have

\begin{align*} &T_{3p}-\binom{6p}{3p}^2-\binom{3p}{p}^2\binom{4p}p^2\\ \equiv&900p^2\sum_{k=1}^{\frac{p-1}2}\frac{1+6pH_{2k-1}-6pH_{k-1}}{k^2}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ +144p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{1+6pH_{2p-2k}-6pH_{k-1}}{k^2}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +36p^2\sum_{k=1}^{\frac{p-1}2}\left(\frac1{k^2}+\frac{p}{k^3}+\frac{6pH_{2k}-6pH_k}{k^2}\right)\\ \equiv&1080p^2H_{\frac{p-1}2}^{(2)}+3024p^3H_{\frac{p-1}2}^{(3)}+6480p^3\sum_{k=1}^{\frac{p-1}2}\frac{H_{2k}-H_k}{k^2}\ ({\rm{mod}}\ p^4). \end{align*}

Therefore, we immediately obtain the desired result:

\begin{equation*} T_{3p}\equiv544-6696p^3B_{p-3}= T_3-6696p^3B_{p-3}\ ({\rm{mod}}\ p^4), \end{equation*}

with the help of (3.8), Lemma 5.1, (2.4) and Lemma 2.1.

Then, we consider $f_{3p}$ modulo p 4. This is easier; it is easy to check that:

\begin{equation*} \binom{3p-1}{p+k-1}=\binom{2p+p-1}{p+k-1}\equiv\binom{2p}p\binom{p-1}{k-1}\equiv2(-1)^{k-1}\ ({\rm{mod}}\ p). \end{equation*}

So

\begin{align*} f_{3p}-2-2\binom{3p}p^2&=2\sum_{k=1}^{p-1}\binom{3p}k^3+\sum_{k=1}^{p-1}\binom{3p}{p+k}^3\\ &\equiv54p^3\sum_{k=1}^{p-1}\frac{(-1)^{k-1}}{k^3}+216p^3\sum_{k=1}^{p-1}\frac{(-1)^{k-1}}{k^3}\\ &=-270p^3\sum_{k=1}^{p-1}\frac{1+(-1)^k}{k^3}+270p^3H_{p-1}^{(3)}\\ &=-\frac{135}2p^3H_{\frac{p-1}2}^{(3)}+270p^3H_{p-1}^{(3)}\ ({\rm{mod}}\ p^4). \end{align*}

This, with (3.8) and Lemma 2.1 yields that:

\begin{equation*} f_{3p}\equiv56-189p^3B_{p-3}=f_3-189p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

Now we consider $D_{3p}$ modulo p 4. In the same way of proving Lemma 3.1, modulo p 2 we have, for $1\leq k\leq (p-1)/2$,

\begin{equation*} \binom{2k}k\binom{6p-2k}{3p-k}\equiv\frac{-60p}k, \ \ \ \binom{4p-2k}{2p-k}\binom{2p+2k}{p+k}\equiv\frac{-24p}k, \end{equation*}

and for $(p+1)/2\leq k\leq p-1$,

\begin{equation*} \binom{2k}k\binom{6p-2k}{3p-k}\equiv\frac{12p}k, \ \ \ \binom{4p-2k}{2p-k}\binom{2p+2k}{p+k}\equiv\frac{24p}k. \end{equation*}

In view of [Reference Sun17, Lemma 2.1], we have

(5.7)\begin{equation} j\binom{2j}j\binom{2(p-j)}{p-j}\equiv2p(-1)^{\lfloor 2k/p\rfloor-1}\ ({\rm{mod}}\ p^2). \end{equation}

These, with (5.2), (5.3) yield that:

\begin{align*} &D_{3p}-2\binom{6p}{3p}-2\binom{3p}p^2\binom{2p}p\binom{4p}{2p}\\ =&2\sum_{k=1}^{p-1}\binom{3p}k^2\binom{2k}k\binom{6p-2k}{3p-k}+\sum_{k=1}^{p-1}\binom{3p}{p+k}^2\binom{2p+2k}{p+k}\binom{4p-2k}{2p-k}\\ \equiv&18p^2\sum_{k=1}^{p-1}\binom{3p-1}{k-1}^2\binom{2k}k\binom{6p-2k}{3p-k}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +9p^2\sum_{k=1}^{p-1}\binom{3p-1}{p+k-1}^2\binom{2p+2k}{p+k}\binom{4p-2k}{2p-k}\\ \equiv&18p^2\sum_{k=1}^{\frac{p-1}2}\frac{-60p}{k^3}+18p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{6}{k^2}\binom{2k}k\binom{2p-2k}{p-2}\\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ +9p^2\sum_{k=1}^{\frac{p-1}2}\frac{-96p}{k^3}+9p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{96p}{k^3}\\ \equiv&-3024p^3H_{\frac{p-1}2}^{(3)}+864p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{align*}

Finally, with the help of Lemma 5.1, Lemma 2.1, (1.2), (3.7) and (3.8), we immediately get the desired result:

\begin{equation*} D_{3p}\equiv 256+3168p^3B_{p-3}=D_3+3168p^3B_{p-3}\ ({\rm{mod}}\ p^4). \end{equation*}

At last, we evaluate $a_{3p}$ modulo p 3. It is easy to verify that, for each $1\leq k\leq(p-1)/2$,

\begin{equation*} \binom{2p+2p}{p+k}\equiv2\binom{2k}k\ ({\rm{mod}}\ p), \ \ \binom{6p-2k}{3p-k}\equiv0\ ({\rm{mod}}\ p), \end{equation*}

and for $(p+1)/2\leq k\leq p-1$,

\begin{equation*} \binom{2p+2p}{p+k}\equiv0\ ({\rm{mod}}\ p), \ \ \binom{6p-2k}{3p-k}\equiv6\binom{2p-2k}{p-k}\ ({\rm{mod}}\ p). \end{equation*}

These, with (5.2), (5.3) yield that:

\begin{align*} &a_{3p}-1-\binom{3p}p^2\binom{2p}p-\binom{3p}p^2\binom{4p}{2p}-\binom{6p}{3p}\\ =&\sum_{k=1}^{p-1}\binom{3p}k^2\binom{2k}k+\sum_{k=1}^{p-1}\binom{3p}{p+k}^2\binom{2p+2k}{p+k}+\sum_{k=1}^{p-1}\binom{3p}k^2\binom{6p-2k}{3p-k}\\ \equiv&9p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}+36p^2\sum_{k=1}^{p-1}\frac{\binom{2p+2k}{p+k}}{k^2}+9p^2\sum_{k=1}^{p-1}\frac{\binom{6p-2k}{3p-k}}{k^2}\\ \equiv&9p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}+36p^2\sum_{k=1}^{\frac{p-1}2}\frac{2\binom{2k}{k}}{k^2}+9p^2\sum_{k=\frac{p+1}2}^{p-1}\frac{6\binom{2p-2k}{p-k}}{k^2}\\ \equiv&135p^2\sum_{k=1}^{p-1}\frac{\binom{2k}k}{k^2}\ ({\rm{mod}}\ p^3). \end{align*}

Hence with (1.1), (3.7), (3.8), (3.9) and Lemma 5.1, we immediately obtain the desired result:

\begin{align*} a_{3p}&\equiv93+\frac{135}2p^2\left(\frac{p}3\right)p^2B_{p-2}\left(\frac13\right)\\ &=a_3+\frac{135}2p^2\left(\frac{p}3\right)p^2B_{p-2}\left(\frac13\right)\ ({\rm{mod}}\ p^3). \end{align*}

Therefore the proof of Theorem 1.4 is complete.□

Funding Statement

This research was supported by the National Natural Science Foundation of China (grant no. 12001288).

References

Apéry, R., Irrationalité de $\unicode{x03B6}(2)$ et $\unicode{x03B6}(3)$, Astérisque 61 (1979), 1113.Google Scholar
Beukers, F., Another congruences for the Apéry numbers, J. Number Theory 25 (1987), 201210.CrossRefGoogle Scholar
Glaisher, J.W.L., Congruences relating to the sums of products of the first n numbers and to other sums of products, Quart. J. Math. 31 (1900), 135.Google Scholar
Glaisher, J.W.L., On the residues of the sums of products of the first p − 1 numbers, and their powers, to modulus p 2 or p 3, Quart. J. Math. 31 (1900), 321353.Google Scholar
Hoffman, M. E., Quasi-symmetric functions and mod p multiple harmonic sums, Kyushu J. Math. 69 (2015), 345366.CrossRefGoogle Scholar
Liu, J-C., On two supercongruences for sums of Apéry-like numbers, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 115(3) (2021), .Google Scholar
Liu, J.-C. and Ni, H.-X., Supercongruences for Almkvist-Zudilin sequences, Czech. Math. J. 71(4) (2021), 12111219.CrossRefGoogle Scholar
Liu, J.-C. and Wang, C., Congruences for the $(p-1)$th Apéry number, Bull. Aust. Math. Soc. 99(3) (2019), 362368.CrossRefGoogle Scholar
Mao, G.-S., Proof of some congruences conjectured by Z.-W. Sun, Int. J. Number Theory 13(8) (2017), 19831993.CrossRefGoogle Scholar
Mao, G.-S., On Some Conjectural Congruences Involving Apéry-Like Numbers n, Preprint ( Researchgate).Google Scholar
Mao, G.-S. and Li, D. R., Proof of some conjectural congruences modulo p 3, J. Differ. Equ. Appl. 28(4) (2022), 496509.CrossRefGoogle Scholar
Mao, G-S., Li, D. R. and Ma, X. M., On some congruences involving Apéry-like numbers Sn, J. Differ. Equ. Appl. 29(2) (2023), 181197, doi: 10.1080/10236198.2023.2186714.CrossRefGoogle Scholar
Mao, G.-S. and Wang, J., On some congruences involving Domb numbers and harmonic numbers, Int. J. Number Theory 15 (2019), 21792200.CrossRefGoogle Scholar
Mattarei, S. and Tauraso, R., Congruences for central binomial sums and finite polylogarithms, J. Number Theory 133 (2013), 131157.CrossRefGoogle Scholar
Sun, Z.-H., Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105(1–3) (2000), 193223.CrossRefGoogle Scholar
Sun, Z.-H., Congruences for two types of Apéry-like sequences, Preprint, arXiv:2005.02081v2.Google Scholar
Sun, Z.-W., Super congruences and Euler numbers, Sci. China Math. 54(12) (2011), 25092535.CrossRefGoogle Scholar
Sun, Z.-W., A new series for $\unicode{x03C0}^3$ and related congruences, Int. J. Math. 26(8) (2015), .CrossRefGoogle Scholar
Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 3539.Google Scholar
Zagier, D., Integral solutions of Apéry-like recurrence equations, in Groups and Symmetries: From Neolithic Scots to John McKay, (In: Harnad, J. and Winternitz, P., eds), pp. 349366, Vol. 47, CRM Proceedings & Lecture Notes (American Mathematical Society, Providence, RI, 2009).CrossRefGoogle Scholar
Zhang, Y., Some conjectural supercongruences related to Bernoulli and Euler numbers, Rocky Mountain J. Math. 52(3) (2022), 11051126.CrossRefGoogle Scholar