Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-21T01:18:32.144Z Has data issue: false hasContentIssue false

Real-time Bayesian non-parametric prediction of solvency risk

Published online by Cambridge University Press:  07 February 2018

Liang Hong*
Affiliation:
Department of Mathematics, Robert Morris University, 6001 University Boulevard, Moon Township, PA 15108, USA
Ryan Martin
Affiliation:
Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695, USA
*
*Correspondence to: Liang Hong, Department of Mathematics, Robert Morris University, Moon Township, PA 15108-2574, USA. Tel: +412 397 4024. E-mail: hong@rmu.edu

Abstract

Insurance regulation often dictates that insurers monitor their solvency risk in real time and take appropriate actions whenever the risk exceeds their tolerance level. Bayesian methods are appealing for prediction problems thanks to their ability to naturally incorporate both sample variability and parameter uncertainty into a predictive distribution. However, handling data arriving in real time requires a flexible non-parametric model, and the Monte Carlo methods necessary to evaluate the predictive distribution in such cases are not recursive and can be too expensive to rerun each time new data arrives. In this paper, we apply a recently developed alternative perspective on Bayesian prediction based on copulas. This approach facilitates recursive Bayesian prediction without computing a posterior, allowing insurers to perform real-time updating of risk measures to assess solvency risk, and providing them with a tool for carrying out dynamic risk management strategies in today’s “big data” era.

Type
Paper
Copyright
© Institute and Faculty of Actuaries 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brazauskas, V. & Kleefeld, A. (2011). Folded and log-folded-t distributions as models for insurance loss data. Scandinavian Actuarial Journal, 1, 5974.Google Scholar
Brazauskas, V. & Kleefeld, A. (2014). Author’s reply to “Letter to Editor: Regarding Folded and the Paper by Brazauskas and Kleefeld” by Scollnik. Scandinavian Actuarial Journal, 8, 753757.Google Scholar
Brazauskas, Y. & Kleefeld, A. (2016). Modeling severity and measuring tail risk of Norwegian fire claims. North American Actuarial Journal, 20(1), 116.Google Scholar
Bühlmann, & Gisler, (2005). A Course in Credibility Theory and Its Application. Springer, , New York.Google Scholar
Calderín-Ojeda, E. & Kwok, C.F. (2016). Modeling claims data with composite Stoppa models. Scandinavian Actuarial Journal, 9, 817836.Google Scholar
Cooray, K. & Cheng, C.I. (2015). Bayesian estimators of the lognormal-Pareto composite distribution. Scandinavian Actuarial Journal, 6, 500515.Google Scholar
Ferguson, T.S. (1973). Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209230.Google Scholar
Frees, E.W., Derrig, R.A. & Meyers, G. (2014). Predictive Modeling Applications in Actuarial Science, Vol. I: Predictive Modeling Techniques. Cambridge University Press, Cambridge.Google Scholar
Fröhlich, A. & Weng, A. (2015). Modeling parameter uncertainty for risk capital calculation. European Actuarial Journal, 5, 79112.Google Scholar
Gerrard, R. & Tsanakas, A. (2011). Failure probability under parameter uncertainty. Risk Analysis, 31, 727744.Google Scholar
Ghosal, S. (2010). The Dirichlet process, related priors and posterior asymptotics. In N.L. Hjort, C. Holmes, P. Müller & S.G. Walker (Eds.), Bayesian Nonparametrics (pp. 35–79). Cambridge University Press, Cambridge.Google Scholar
Hahn, P.R., Martin, R. & Walker, S.G. (2017). On recursive Bayesian predictive distributions. Journal of the American Statistical Association, https://doi.org/10.1080/01621459.2017.1304219.Google Scholar
Hong, L. & Martin, R. (2017a). A flexible Bayesian nonparametric model for predicting future insurance claims. North American Actuarial Journal, 21(2), 228241.Google Scholar
Hong, L. & Martin, R. (2017b). Dirichlet process mixture models for insurance loss data, Scandinavian Actuarial Journal, https://doi.org/10.1080/03461238.2017.1402086.Google Scholar
Kalli, M., Griffin, J.E. & Walker, S.G. (2011). Slice sampling mixture models. Statistical Computing, 21, 93105.Google Scholar
Klugman, S.A., Panjer, H.H. & Willmot, G.E. (2012). Loss Models: From Data to Decisions, 4th edition. Wiley, Hoboken, NJ.Google Scholar
Makov, U.E. (2001). Principal applications of Bayesian methods in actuarial science. North American Actuarial Journal, 5(4), 5357.Google Scholar
Martin, R. & Ghosh, J.K. (2008). Stochastic approximation and Newton’s estimate of a mixing distribution. Statistical Science, 23, 365382.Google Scholar
Martin, R. & Tokdar, S.T. (2009). Asymptotic properties of predictive recursion: robustness and rate of convergence. Electronic Journal of Statistics, 3, 14551472.Google Scholar
Martin, R. & Tokdar, S.T. (2011). Semiparametric inference in mixture models with predictive recursion marginal likelihood. Biometrika, 98, 567582.Google Scholar
Martin, R. & Tokdar, S.T. (2012). A nonparametric empirical Bayes framework for large-scale multiple testing. Biostatistics, 13, 427439.Google Scholar
Müller, P. & Quintana, F.A. (2004). Nonparametric Bayesian data analysis. Statistical Science, 19, 95110.Google Scholar
Nadarajah, S. & Bakar, S.A.A. (2015). New folded models for the log-transformed Norwegian fire claim data. Communications in StatisticsTheory and Methods , 44, 44084440.Google Scholar
Own Risk and Solvency Assessment (2017). Available online at the address http://www.naic.org/cipr_topics/topic_own_risk_solvency_assessment.htm [accessed on 8-Aug-2017].Google Scholar
Nelson, R.B. (2006). An Introduction to Copulas, 2nd edition. Springer, New York.Google Scholar
Newton, M. (2002). On a nonparametric recursive estimator of the mixing distribution. Sankhyā: The Indian Journal of Statistics , 64, 306322.Google Scholar
Newton, M. & Zhang, Y. (1999). A recursive algorithm for nonparametric analysis with missing data. Biometrika, 86(1), 1526.Google Scholar
Rytgaard, M. (1990). Estimation in the Pareto distribution. ASTIN Bulletin, 20, 201216.Google Scholar
Scollnik, D.P.M. (2001). Actuarial modeling with MCMC and BUGS. North American Actuarial Journal, 5(2), 96124.Google Scholar
Scollnik, D.P.M. & Sun, C. (2012). Modeling with Weibull–Pareto models. North American Actuarial Journal, 16, 260272.Google Scholar
Scollnik, D.P.M. (2014). Letter to editor: regarding folded models and the paper by Brazauskas and Kleefeld (2011). Scandinavian Actuarial Journal, 2014(3), 278281.Google Scholar
Sheather, S.J. (2004). Density estimation. Statistical Science, 19(4), 588597.Google Scholar
Sklar, M. (1959). Fonctions de répartition á n dimensions et leurs marges. Université Paris, 8, 229–231.Google Scholar
Solvency II (2009). Available online at the address http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:335:0001:0155:en:PDF [accessed 8-Aug-2017].Google Scholar
Tokdar, S.T., Martin, R. & Ghosh, J.K. (2009). Consistency of a recursive estimate of mixing distributions. Annals of Statistics, 37, 25022522.Google Scholar