Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T14:47:18.367Z Has data issue: false hasContentIssue false

A Miocene sperm whale (Cetacea, Physeteroidea) tooth from Liessel (Noord-Brabant, the Netherlands)

Published online by Cambridge University Press:  29 April 2024

Felix Snoodijk*
Affiliation:
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands Institute of Biology, Leiden University, Leiden, the Netherlands
Jonathan J. W. Wallaard
Affiliation:
Oertijdmuseum, Boxtel, the Netherlands
Anne S. Schulp
Affiliation:
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands Naturalis Biodiversity Center, Leiden, the Netherlands
Jelle W. F. Reumer
Affiliation:
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands Naturalis Biodiversity Center, Leiden, the Netherlands Natural History Museum Rotterdam, Rotterdam, the Netherlands
*
Corresponding author: Felix Snoodijk; Email: felixsnoodijk@hotmail.com
Rights & Permissions [Opens in a new window]

Abstract

Here we report a well-preserved isolated physeteroid tooth of Late Miocene age from Liessel, the Netherlands. The presence of several morphological features allows attribution to the macroraptorial physeteroids. Size and morphology are to some extent comparable to Zygophyseter and almost identical to the primarily tooth-based Tortonian taxon Scaldicetus caretti. However, the genus Scaldicetus was declared unutilizable, which is supported here with an overview of modern classifications of Scaldicetus species and specimens. Despite the restrictions, the type species S. caretti is still valid, although the name is to be restricted to the type material. Based on its morphological resemblance, the tooth is identified as Physeteroidea indet. cf. Scaldicetus caretti.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Netherlands Journal of Geosciences Foundation

Introduction

Physeteroidea is a monophyletic clade within Odontoceti, the toothed whales (Geisler et al., Reference Geisler, McGowen, Yang and Gatesy2011). Physeteroid origins trace back to the late Oligocene, and the diversity of Physeteroidea peaked during the Middle and Late Miocene (Mchedlidze, Reference Mchedlidze1970; Gol’din & Marareskul, Reference Gol’din and Marareskul2013; Lambert et al., Reference Lambert, Bianucci and de Muizon2017; Lambert et al., Reference Lambert, de Muizon, Urbina and Bianucci2020; Paolucci et al., Reference Paolucci, Buono, Fernández, Marx and Cuitiño2020; Peri et al., Reference Peri, Collareta, Aringhieri, Caramella, Foresi and Bianucci2022). The clade comprises three extant species: giant sperm whale (Physeter macrocephalus Linnaeus, Reference Linnaeus1758), pygmy sperm whale (Kogia breviceps (de Blainville, Reference de Blainville1838)) and dwarf sperm whale (Kogia sima (Owen, Reference Owen1866)). All of the extant members are specialized deep-diving suction feeders, preying on cephalopods. The extant sperm whales lack their upper dentition or have vestigial teeth positioned in their maxilla (Werth, Reference Werth2004, Reference Werth2006). Some extinct physeteroids were probably foraging at great depths as well, but the full shift to a deep-diving ecology likely occurred relatively recently (Lambert, Reference Lambert2008). Most of the Miocene representatives of Physeteroidea still possessed upper dentition and displayed a wide variety in feeding strategies. The largest members with teeth up to 36.2 cm in length were mostly macroraptorial, feeding on fish and possibly on medium-sized cetaceans as well (Lambert et al., Reference Lambert, Bianucci, Post, de Muizon, Salas-Gismondi, Urbina and Reumer2010b; Lambert et al., Reference Lambert, Bianucci and de Muizon2017; Reumer et al., Reference Reumer, Mens and Post2017). Recently, Watmore and Prothero (Reference Watmore and Prothero2023) described a 25 cm long macropredatory physeteroid tooth from California. Other extinct physeteroids with smaller teeth (physeterids and kogiids) were mostly piscivorous, fed on benthic prey or predated on cephalopods through suction feeding (Benites-Palomino et al., Reference Benites-Palomino, Vélez-Juarbe, Salas-Gismond and Urbina2020; Collareta et al., Reference Collareta, Lambert, de Muizon, Benites Palomino, Urbina and Bianucci2020; Benites-Palomino et al., Reference Benites-Palomino, Vélez-Juarbe, Collareta, Ochoa, Altamirano, Carré, Laime, Urbina and Salas-Gismondi2021). All physeteroids are characterized by their remarkable skull structure, which makes room for a supracranial basin containing the spermaceti organ, which plays a role in echolocation (Cranford et al., Reference Cranford, Amundin and Norris1996; Paolucci et al., Reference Paolucci, Buono, Fernández, Marx and Cuitiño2020).

The stem physeteroid genus Scaldicetus du Bus, Reference du Bus1867 is mainly based on isolated teeth, which is considered material of limited diagnostic value (Bianucci & Landini, Reference Bianucci and Landini2006; Toscano et al., Reference Toscano, Abad, Ruiz, Muñiz, Álvarez, García and Caro2013; Marra et al., Reference Marra, Carone and Bianucci2016; Lambert et al., Reference Lambert, Bianucci and de Muizon2017; Reumer et al., Reference Reumer, Mens and Post2017; Bosselaers & Van Nieulande, Reference Bosselaers and Van Nieulande2018). However, studies on physeteroid dentition of the last three decades do show characterizing features in size and morphology for different physeteroid species (Hirota & Barnes, Reference Hirota and Barnes1994; Kazár, Reference Kazár2002; Bianucci et al., Reference Bianucci, Landini and Varola2004; Bianucci & Landini, Reference Bianucci and Landini2006; Kimura et al., Reference Kimura, Hasegawa and Barnes2006; Bloodworth & Odell, Reference Bloodworth and Odell2008; Lambert, Reference Lambert2008; Boersma & Pyenson, Reference Boersma and Pyenson2015; Lambert et al., Reference Lambert, Bianucci and de Muizon2017; Collareta et al., Reference Collareta, Fulgosi and Bianucci2019; Benites-Palomino et al., Reference Benites-Palomino, Vélez-Juarbe, Salas-Gismond and Urbina2020; Lambert et al., Reference Lambert, de Muizon, Urbina and Bianucci2020; Kimura & Hasegawa, Reference Kimura and Hasegawa2022; Peri et al., Reference Peri, Collareta, Aringhieri, Caramella, Foresi and Bianucci2022). The genus Scaldicetus was introduced by du Bus (Reference du Bus1867) based on 45 large physeteroid teeth with rugose enamel-capped crowns from the Upper Miocene of Borgerhout, Antwerp, Belgium. Solely based on the dentition du Bus erected the species Scaldicetus caretti. Following this classification, multiple large enamel-capped sperm whale teeth have been assigned to the genus Scaldicetus (Table 2). However, Bianucci & Landini (Reference Bianucci and Landini2006) regarded the genus unutilizable due to the low diagnostic value of isolated physeteroid teeth and they restricted the generic and specific name only to the lectotype of S. caretti (IRSNB M. 512) from Borgerhout. Lambert & Bianucci (Reference Lambert and Bianucci2019) confirmed this conclusion and referred to other isolated physeteroid teeth as Physeteroidea indet. Recently, teeth comparable to the type material of S. caretti that were collected from the Westerschelde estuary, the Netherlands, were tentatively attributed to the genus Zygophyseter Bianucci & Landini, Reference Bianucci and Landini2006 by Reumer et al. (Reference Reumer, Mens and Post2017). Despite the conclusions of Bianucci & Landini (Reference Bianucci and Landini2006), several physeteroid findings from across the globe are still attributed to the unutilized Scaldicetus genus.

Here we report a large, well-preserved isolated physeteroid tooth similar to the teeth of the type material of Scaldicetus caretti (as defined by Bianucci & Landini, Reference Bianucci and Landini2006 and Lambert & Bianucci, Reference Lambert and Bianucci2019) and resembling Zygophyseter varolai (Bianucci & Landini, Reference Bianucci and Landini2006). It was found in Miocene deposits at Liessel, Noord-Brabant province, the Netherlands. We also provide a list of modern classifications of Scaldicetus species/specimens to ensure future adherence to the restrictions set by Bianucci & Landini (Reference Bianucci and Landini2006).

Methods and materials

The Miocene physeteroid tooth from Liessel is in the collection of the Oertijdmuseum in Boxtel (MAB13159). The specimen was impregnated using methyl-methacrylate copolymer dissolved in acetone. Measurements were taken with digital callipers and compared to other physeteroid teeth based on descriptions in the literature.

Systematic palaeontology

Order Cetacea Brisson, Reference Brisson1762

Suborder Odontoceti Flower, Reference Flower1867

Superfamily Physeteroidea Gray, Reference Gray1821

Physeteroidea indet. cf. Scaldicetus caretti

Locality and stratigraphy

MAB13159 was recovered ex situ at Liessel near Eindhoven, Noord-Brabant Province, the Netherlands (Fig. 1). It was dredged by the sand-lime brick factory Hoogdonk and discovered on the sand deposit area. Here terrestrial sediment from the Pleistocene and Pliocene and marine sediment from the Upper Miocene is extracted (Peters, Reference Peters2009; Bisconti et al., Reference Bisconti, Munsterman, Fraaije, Bosselaers and Post2020).

Figure 1. Locality of MAB13159. (A) Map of The Netherlands where the red star indicates the Liessel section. (B) Map of Liessel and surroundings where the red star indicates the exact locality of the discovery: sand-lime brick factory Hoogdonk.

Description

MAB13159 (Fig. 2) is heavily mineralized and has a total length of 227 mm. The tooth is distally curved and thickened, in contrast to the relatively flat mesial side (Fig. 2). The lingual/labial side of an isolated physeteroid tooth cannot be determined. The crown is 41.3 mm long and makes up about 18 per cent of the total tooth length. It has a conical shape with a subcircular cross-section. A small part of the apex of the crown is missing due to erosion. The crown is covered in a thick layer of enamel revealing natural wear with a striped (crenulated) pattern showing longitudinal ridges and grooves of approximately 1 mm in width. The margin of the enamel is irregular, but on the mesial side this margin is well-preserved, giving an indication of the actual base of the crown (Fig. 3). At the base of the crown, the mesiodistal diameter measures 31.7 mm and the labiolingual diameter 32.2 mm. Here the enamel forms a continuous surface with the cement of the root.

Figure 2. Different views of tooth. (A) Lingual or labial view with the gingival collar represented with orange dotted lines, the folding indicated by the white arrow. The white rectangle displays the position of Fig. 3. (B) Distal view with the upper boundary of the gingival collar represented with an orange dotted line. (C) Labial or lingual  view. (D) Mesial view.

The robust root has a maximum mesiodistal diameter of 74.2 mm and slightly smaller maximum labiolingual diameter of 67.5 mm. It is subcircular in cross-section throughout the root. The maximum diameter is positioned at about mid-length of the tooth. Approaching the crown, the diameter becomes quickly more slender, with a crown diameter/maximum root diameter ratio of 0.43. A distal view of the root clearly shows the upper boundary of the gingival collar at about 70 mm below the apex of the crown (measured along the curvature of the tooth) (Fig. 2B). Although the lower boundary is much harder to distinguish, it appears to have been located at mid-length of the tooth about 20 mm below the upper boundary (Fig. 2A). Anteriorly, the same gingival boundary runs more diagonally, leading to a folding of the gingival collar (Fig. 2A and B). This corresponds to the occlusion of the opposite teeth, indicating the presence of dentition in both the maxilla and mandible (Bianucci & Landini, Reference Bianucci and Landini2006). However, it is impossible to establish whether the isolated tooth was positioned in the upper or lower jaw. The end of the root is damaged. At the apex of the root, the pulp cavity is present. The pulp cavity has an average diameter of 18.8 mm. This is relatively small and indicates that the tooth belonged to an older individual (Bosselaers & Van Nieulande, Reference Bosselaers and Van Nieulande2018).

Figure 3. Close-up of the mesial side of the crown.

Discussion

MAB13159

The combined presence of several morphological features including the large size of the tooth, the wide and robust root, a thick crenulated enamel cap and the folding of the gingival collar indicates MAB13159 belonged with great certainty to a physeteroid with a macroraptorial feeding strategy (Bianucci & Landini, Reference Bianucci and Landini2006; Gol’din & Marareskul, Reference Gol’din and Marareskul2013; Reumer et al., Reference Reumer, Mens and Post2017; Bosselaers & Van Nieulande, Reference Bosselaers and Van Nieulande2018). According to the most recent phylogenetic analysis of Peri et al. (Reference Peri, Collareta, Aringhieri, Caramella, Foresi and Bianucci2022), the macroraptorial sperm whales are identified as a polyphyletic group comprised of the stem physeteroids Brygmophyseter shigensis (Kimura et al., Reference Kimura, Hasegawa and Barnes2006), Zygophyseter varolai (Bianucci & Landini, Reference Bianucci and Landini2006), Acrophyseter robustus (Lambert et al., Reference Lambert, Bianucci and de Muizon2017), Acrophyseter deinodon (Lambert et al., Reference Lambert, Bianucci and de Muizon2008), Acrophyseter sp. (Lambert et al., Reference Lambert, Bianucci and de Muizon2017) and the crown physeteroid Livyatan melvillei (Lambert et al., Reference Lambert, Bianucci, Post, de Muizon, Salas-Gismondi, Urbina and Reumer2010b). In size and morphology, the lectotype of Scaldicetus caretti is very comparable with the general characteristics of a macroraptorial physeteroid tooth indicating the inclusion of the S. caretti type material in the macroraptorial sperm whales too (Reumer et al., Reference Reumer, Mens and Post2017).

Recently described Dutch discoveries (both from the Westerschelde) include NMR999100010227 and NMR999100010228 identified as cf. Zygophyseter sp. (Reumer et al., Reference Reumer, Mens and Post2017) and the massive tooth described by Bosselaers & Van Nieulande (Reference Bosselaers and Van Nieulande2018) tentatively classified as a Physeteroidea tooth. Other stem physeteroid discoveries from the North Sea area include the Scaldicetus caretti type material (du Bus, Reference du Bus1867), ‘Scaldicetus grandis’ (du Bus, Reference du Bus1872), Eudelphis mortezelensis (du Bus, Reference du Bus1872), Hoplocetus borgerhoutensis (du Bus, Reference du Bus1872) and Hoplocetus ritzi (Hampe, Reference Hampe2006). Following the reasoning of Bianucci & Landini (Reference Bianucci and Landini2006) and Lambert & Bianucci (Reference Lambert and Bianucci2019), the solely tooth-based genus Hoplocetus (Gervais, Reference Gervais1848-Reference Gervais1852) can also be regarded unutilizable. However, a complete revision of Hoplocetus is beyond the scope of this paper.

The sizes of both cf. Zygophyseter sp. teeth (NMR999100010227 and NMR999100010228) are very comparable with MAB13159 (Table 1). NMR999100010228 is heavily damaged, which precludes precise comparisons with MAB13159 (Reumer et al., Reference Reumer, Mens and Post2017: Fig. 2). The largest difference in dimensions between the specimens is present in the crown. The crown of the better preserved anterior positioned NMR999100010227 is smaller in length and diameter. The crown length/total length ratio of the tooth is smaller as well. Although this ratio from MAB13159 is approximately 18 per cent, the crown of NMR999100010227 makes up about 9–16 per cent of the total tooth length. In addition to this, NMR999100010227 has a crown diameter/maximum root diameter ratio of 32 per cent (Reumer et al., Reference Reumer, Mens and Post2017), while MAB13159’s ratio is higher with a ratio of 43 per cent. This means that approaching the crown from the greatest diameter of the tooth NMR999100010227 narrows much more compared to MAB13159. Zygophyseter varolai has a difference in crown length/total length ratio as well (Varola et al., Reference Varola, Landini and Pilleri1988). The anterior Zygophyseter varolai teeth show a ratio of approximately 12 per cent, which is smaller compared to the ratio of MAB13159. In addition to this, the overall size of the Z. varolai teeth is smaller than that of NMR999100010227 and MAB13159, with a mean total tooth length of 176 mm and a maximum mesiodistal diameter of 52 mm (Varola et al., Reference Varola, Landini and Pilleri1988: Table II). The morphology of both NMR999100010227 and Zygophyseter varolai are relatively similar to MAB13159, as well (Varola et al., Reference Varola, Landini and Pilleri1988: pl. 1; Reumer et al., Reference Reumer, Mens and Post2017: Fig. 1). However, some characteristic differences are noteworthy. The anterior teeth of Zygophyseter varolai possess a strong curvature of the external root and both NMR999100010227 and Z. varolai have their largest diameter at two-thirds of the height of the tooth. This differs from MAB13159 which has a relatively straight root with a moderately curved upper part and the largest horizontal extension at mid-height of the tooth. Other than the difference in root curvature and largest diameter, both NMR999100010227 and NMR999100010228 and the anterior teeth of Z. varolai are to some extent similar in size (Table 1) and morphology.

Table 1. Measurements of various physeteroid teeth in millimetres with the size range between brackets

3 Bosselaers & Van Nieulande (Reference Bosselaers and Van Nieulande2018).

4 Based on Table 1 in Lambert & Bianucci (Reference Lambert and Bianucci2019).

5 Based on Figure 16 in Hampe (Reference Hampe2006).

6 Based on the teeth description and Figure 6 in Lambert (Reference Lambert2008).

7 du Bus (Reference du Bus1872).

8 Hampe (Reference Hampe2006).

The massive tooth from the Westerschelde described by Bosselaers & Van Nieulande (Reference Bosselaers and Van Nieulande2018) has not enough distinguishable features due to bioerosion for meaningful comparisons to be made with the present specimen. In size, the tooth is similar to the enormous teeth of Livyatan melvillei from Peru (Lambert et al., Reference Lambert, Bianucci, Post, de Muizon, Salas-Gismondi, Urbina and Reumer2010b). Other fossil stem physeteroid teeth from the North Sea basin like ‘Scaldicetus grandis’ (Abel, Reference Abel1905: Figs. 3 & 4; Hampe, Reference Hampe2006: Fig. 16), Eudelphis mortezelensis (Lambert, Reference Lambert2008: Fig. 6), Hoplocetus ritzi (Hampe, Reference Hampe2006: Figs. 3–5 & Table 1) and Hoplocetus borgerhoutensis (Van Beneden & Gervais, Reference Van Beneden and Gervais1868Reference Van Beneden and Gervais1879: pl. XX: Fig. 28) are very different in morphology and smaller in size when compared to MAB13159 (Table 1).

Just like NMR999100010227 and NMR999100010228, MAB13159 shows resemblance to Scaldicetus caretti dentition (Reumer et al., Reference Reumer, Mens and Post2017). MAB13159 even seems to be almost identical in size and shape to some teeth of the lectotype of S. caretti (Lambert & Bianucci, Reference Lambert and Bianucci2019: Fig. 1 & Table 1). Aside from Zygophyseter varolai and NMR999100010227, teeth of S. caretti are relatively straight with a moderately curved external root and have their largest diameter at mid-height, just like MAB13159. This indicates MAB13159 could belong to the same species as the Scaldicetus caretti type material. Despite the restrictions of Bianucci & Landini (Reference Bianucci and Landini2006), Scaldicetus caretti is still a valid species with an existing type series. Therefore, we here assign MAB13159 to Physeteroidea indet. cf. Scaldicetus caretti. This indicates probable conspecificity of MAB13159 and the type material of S. caretti, within an undetermined taxonomic unit inside the Physeteroidea. The better preserved NMR999100010227 shows morphological similarity with Zygophyseter varolai and seems justly attributed to Physeteroidea indet. cf. Zygophyseter sp. However, the heavily damaged NMR999100010228 has little comparable features. Therefore, we would cautiously suggest to just refer to NMR999100010228 as Physeteroidea indet. to prevent using Zygophyseter as a wastebasket genus. Overall, the dentition of the type material of S. caretti is quite similar to the teeth of Z. varolai.

Most findings of the superfamily Physeteroidea are of Middle and Late Miocene age. All recorded marine fossils from Liessel originate from Upper Miocene strata (Peters, Reference Peters2009; Jagt et al., Reference Jagt, Fraaije and Van Bakel2009; Bisconti et al., Reference Bisconti, Munsterman, Fraaije, Bosselaers and Post2020; Peters et al., Reference Peters, Munsterman and Post2021). The lectotype of Scaldicetus caretti is considered to be of Tortonian age (early Late Miocene, c. 11.6–7.2 Ma) (Lambert & Bianucci, Reference Lambert and Bianucci2019). The other stem physeteroid Zygophyseter varolai dates back to approximately 10.5–8.14 Ma (Bianucci & Landini, Reference Bianucci and Landini2006). These considerations make a Late Miocene age for MAB13159 likely.

Derived from the vertical root and chipping fractures in the Scaldicetus caretti type material and the estimation of the bite force of Zygophyseter varolai, both sperm whale species probably fed on other marine vertebrates and likely occupied an ecological niche comparable to that of the recent killer whale (Orcinus orca Linnaeus, Reference Linnaeus1758). The thick and crenulated enamel and thick cementum layer of both extinct sperm whales indicate a diet probably even more macroraptorial than that of O. orca (Bianucci & Landini, Reference Bianucci and Landini2006; Toscano et al., Reference Toscano, Abad, Ruiz, Muñiz, Álvarez, García and Caro2013; Lambert & Bianucci, Reference Lambert and Bianucci2019; Peri et al., Reference Peri, Falkingham, Collareta and Bianucci2021).

Some remarks on Scaldicetus species/specimens

Both mentions of the taxonomic restriction of Scaldicetus to the lectotype by Bianucci & Landini (Reference Bianucci and Landini2006) and Lambert & Bianucci (Reference Lambert and Bianucci2019) risking being overlooked, we consider it useful to list the only valid Scaldicetus taxon, the taxa previously attributed to Scaldicetus and the invalid species and incorrectly named specimens assigned to Scaldicetus (Table 2).

Table 2. Overview of all recorded Scaldicetus species and specimens

1 du Bus (Reference du Bus1872) originally named the holotype (IRSNB M.523) E. mortezelensis, after which Abel (Reference Abel1905) referred to the specimen as S. mortselensis. Lambert (Reference Lambert2008) restored the original name.

2 Also referred to as Scaldicetus bellunensis (Pilleri, Reference Pilleri1985; Pilleri, Reference Pilleri1986c).

3 Solely based on remains of a maxillary and mandible and some isolated teeth (Dal Piaz, Reference Dal Piaz1916: pl. I).

4 The holotype of S. grandis (IRSNB M.518) was referred to as Paleodelphis grandis (du Bus, Reference du Bus1872).

5 Originally named Physodon leccense (Gervais, Reference Gervais1872), but the location of the holotype is unknown (Pilleri, Reference Pilleri1986b, Reference Pilleri1986c).

6 Originally named Hoplocetus minor (Portis, Reference Portis1885).

7 Chapman (Reference Chapman1917) mentioned a Balcombian (Middle Miocene) or Oligocene age for S. lodgei.

8 The possibility cannot be excluded that the single tooth described as S. perpinguis is in fact the tusk of a ziphiid (Lambert et al., Reference Lambert, Bianucci and Post2010a: Fig. 3).

9 Originally referred to as Physeteroidea gen. et sp. indet. (Hasegawa et al., Reference Hasegawa, Takakuwa and Nakajima2001).

In line with the conclusions of Bianucci & Landini (Reference Bianucci and Landini2006) and Lambert & Bianucci (Reference Lambert and Bianucci2019), former Scaldicetus species outside of the type material of Scaldicetus caretti solely defined by large isolated teeth are referred to as Physeteroidea indet. The specimens described by Hasegawa et al. (Reference Hasegawa, Takakuwa and Nakajima2001), Estevens & Antunes (Reference Estevens and Antunes2004), Kimura et al. (Reference Kimura, Hasegawa and Barnes2006) and Toscano et al. (Reference Toscano, Abad, Ruiz, Muñiz, Álvarez, García and Caro2013) all have been assigned to Scaldicetus, because these authors consider Scaldicetus to be a wastebasket genus for large enamel-capped physeteroid teeth or other less complete physeteroid fossils such as dentaries. We would suggest to formally refer to these and future isolated dental specimens as Physeteroidea indet. Kimura et al. (Reference Kimura, Hasegawa and Barnes2006) wrote in their paper: ‘The size and general shape of the teeth GMNH-PV-581 and INM-4-012885 are also similar to the teeth of the holotype of B. shigensis, and there are no substantial morphological differences between all of these specimens’ (p. 8). In addition to this, both specimens and B. shigensis were found in Middle/Upper Miocene deposits. Therefore, we would cautiously suggest to classify GMNH-PV-581 and INM-4-012885 as Physeteroidea indet. aff. Brygmophyseter shigensis. This indicates that both specimens have affinity to B. shigensis, but are not from the same species and probably belonged to a close relative.

Conclusions

MAB13159 belonged to a macroraptorial sperm whale with a Late Miocene age. Based on the great resemblance to the type series of Scaldicetus caretti, we prefer to assign this physeteroid tooth to Physeteroidea indet. cf. Scaldicetus caretti.

Acknowledgements

We like to thank the reviewers Mark Bosselaers, Giovanni Bianucci and a third anonymous reviewer for their helpful comments that greatly improved the quality of the manuscript. Furthermore, we like to thank Maite Philippa for her help with making the pictures of the tooth and Bram Langeveld from the National History Museum Rotterdam for providing literature.

References

Abel, O., 1905. Les odontocètes du Boldérien (Miocène supérieur) d’Anvers. Polleunis & Ceuterick, imprimeurs (Brussels): 155 pp.CrossRefGoogle Scholar
Benites-Palomino, A., Vélez-Juarbe, J., Collareta, A., Ochoa, D., Altamirano, A., Carré, M., Laime, M.J., Urbina, M. & Salas-Gismondi, R., 2021. Nasal compartmentalization in Kogiidae (Cetacea, Physeteroidea): insights from a new late Miocene dwarf sperm whale from the Pisco Formation. Papers in Palaeontology 7: 15071524.CrossRefGoogle Scholar
Benites-Palomino, A., Vélez-Juarbe, J., Salas-Gismond, R. & Urbina, M., 2020. Scaphokogia totajpe, sp. nov., a new bulky-faced pygmy sperm whale (Kogiidae) from the late Miocene of Peru. Journal of Vertebrate Paleontology 39(6): e1728538. DOI: 10.1080/02724634.2019.1728538.CrossRefGoogle Scholar
Bianucci, G. & Landini, W., 2006. Killer sperm whale: a new basal physeteroid (Mammalia, Cetacea) from the Late Miocene of Italy. Zoological Journal of the Linnean Society 148: 103131.CrossRefGoogle Scholar
Bianucci, G., Landini, W. & Varola, A., 2004. First discovery of the Miocene northern Atlantic sperm whale Orycterocetus in the Mediterranean. Geobios 37: 569573.CrossRefGoogle Scholar
Bisconti, M. & Damarco, P., 2022. The paleontological and cultural heritage of the fossil cetaceans from the Pliocene of Valleandona. In: Marramà, G. & Carnevale, G. (eds): Paleodays 2022, XXII Edizione delle Giornate di Paleontologia della Società Paleontologica Italiana: 167186.Google Scholar
Bisconti, M., Munsterman, D.K., Fraaije, R.H.B., Bosselaers, M.E.J. & Post, K., 2020. A new species of rorqual whale (Cetacea, Mysticeti, Balaenopteridae) from the Late Miocene of the Southern North Sea Basin and the role of the North Atlantic in the paleobiogeography of Archaebalaenoptera . PeerJ 8: e8315. DOI: 10.7717/peerj.8315.CrossRefGoogle ScholarPubMed
Bloodworth, B.E. & Odell, D.K., 2008. Kogia breviceps (Cetacea: Kogiidae). Mammalian Species 819: 112.CrossRefGoogle Scholar
Boersma, A.T. & Pyenson, N.D., 2015. Albicetus oxymycterus, a New Generic Name and Redescription of a Basal Physeteroid (Mammalia, Cetacea) from the Miocene of California, and the Evolution of Body Size in Sperm Whales. PLOS ONE 10(12): e0135551. DOI: 10.1371/journal.pone.0135551.CrossRefGoogle ScholarPubMed
Bosselaers, M. & Van Nieulande, F., 2018. Een reuzenroofpotvis uit de Westerschelde. Cranium 35: 1217.Google Scholar
Brisson, M.J., 1762. Regnum Animale in classes IX. distributum, sive synopsis methodical. Theodorum Haak (Leiden): 296 pp.Google Scholar
Chapman, F., 1912. On the occurrence of Scaldicetus in Victoria. Record of the Geological Survey of Victoria 3: 236238.Google Scholar
Chapman, F., 1917. New or little-known Victorian fossils in the National Museum. Part XXI. Some Tertiary cetacean remains. Proceedings of the Royal Society of Victoria 30: 3243.Google Scholar
Cigala-Fulgosi, F. & Pilleri, G., 1985. The lower Serravallian cetacean fauna of Visiano (Northern Apennines, Parma, Italy). Investigations on Cetacea 17: 55113.Google Scholar
Collareta, A., Fulgosi, F. & Bianucci, G., 2019. A new kogiid sperm whale from northern Italy supports psychrospheric conditions in the early Pliocene Mediterranean Sea. Acta Palaeontologica Polonica 64: 609626.CrossRefGoogle Scholar
Collareta, A., Lambert, O., de Muizon, C., Benites Palomino, A.M., Urbina, M. & Bianucci, G., 2020. A new physeteroid from the late Miocene of Peru expands the diversity of extinct dwarf and pygmy sperm whales (Cetacea: Odontoceti: Kogiidae). Comptes Rendus Palevol 19: 79100.Google Scholar
Cranford, T.W., Amundin, M. & Norris, K.S., 1996. Functional morphology and homology in the odontocete nasal complex: implications for sound generation. Journal of Morphology 228(3): 223285.3.0.CO;2-3>CrossRefGoogle Scholar
Dal Piaz, G., 1916. Gli Odontoceti del Miocene Bellunense. Parte Nona: Scaldicetus bolzanensis . Memorie dell’Istituto Geologico della Università di Padova 4: 8792.Google Scholar
de Blainville, H., 1838. Sur les cachalots. Annales françaises et étrangères d’anatomie et physiologie 2: 335337.Google Scholar
du Bus, B.A.L., 1867. Sur quelques Mammifères du Crag d’Anvers. Bulletins de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 24: 562577.Google Scholar
du Bus, B.A.L., 1872. Mammifères nouveaux du Crag d’Anvers. Bulletins de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 34: 491509.Google Scholar
Estevens, M. & Antunes, M.T., 2004. Fragmentary remains of Odontocetes (Cetacea, Mammalia) from the Miocene of the Lower Tagus Basin (Portugal). Spanish Journal of Palaeontology 19: 93108.CrossRefGoogle Scholar
Flower, W.H., 1867. Description of the skeleton of Inia geoffrensis and the skull of Pontoporia blainvillii, with remarks on the systematic position of these animals in the Order Cetacea. Transactions of the Zoological Society of London 6: 87116.CrossRefGoogle Scholar
Fordyce, R.E., 1982. A review of the Australian fossil Cetacea. Memoirs of the National Museum of Victoria 43: 4358.CrossRefGoogle Scholar
Geisler, J.H., McGowen, M.R., Yang, G. & Gatesy, J., 2011. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology 11(112): 33. DOI: 10.1186/1471-2148-11-112.CrossRefGoogle ScholarPubMed
Gervais, P., 1848-1852. Zoologie et Paléontologie Françaises (animaux vertébrés) ou nouvelles recherches sur les animaux vivants et fossiles de la France. A. Betrand (Paris): 271 pp.Google Scholar
Gervais, P., 1872. Coup d’œil sur les Mammifères fossiles de l’Italie. Bulletin de la Société Géologique de France 2me série 29: 92102.Google Scholar
Gol’din, P. & Marareskul, V., 2013. Miocene Toothed Whales (Cetacea, Odontoceti) from the Dniester Valley: The First Record of Sperm Whales (Physeteroidea) from The Eastern Europe. Vestnik Zoologii 47(5): 409414.CrossRefGoogle Scholar
Gray, J.E., 1821. On the natural arrangement of vertebrose animals. The London Medical Repository 15: 296310.Google Scholar
Hampe, O., 2006. Middle/late Miocene hoplocetine sperm whale remains (Odontoceti: Physeteridae) of North Germany with an emended classification of the Hoplocetinae. Fossil Record 9(1): 6186.CrossRefGoogle Scholar
Hasegawa, Y., Kimura, T. & Koda, Y., 2006. Fossil physeterid from the Miocene Urizura Formation, Taga Group, Ibaraki, Japan. Bulletin of Gunma Museum of Natural History 10: 2536, (in Japanese, with English abstract).Google Scholar
Hasegawa, Y., Takakuwa, Y. & Nakajima, H., 2001. First discovery of Physeterid fossil from the Haraichi Formation (Middle Miocene), Tomioka Group, Gunma, Japan. Bulletin of Gunma Museum of Natural History 5: 3138, (in Japanese, with English abstract).Google Scholar
Hirota, K. & Barnes, L.G., 1994. A new species of Middle Miocene sperm whale of the genus Scaldicetus (Cetacea; Physeteridae) from Shiga-mura, Japan. Island Arc 3: 453472.CrossRefGoogle Scholar
Jagt, J.W.M., Fraaije, R.H.B. & Van Bakel, B.W.M., 2009. A late Miocene astropectinid (Echinodermata, Asteroidea) and associated ichnofossils from Liessel, province of Noord-Brabant, the Netherlands. Netherlands Journal of Geosciences 88: 127131.CrossRefGoogle Scholar
Kazár, E., 2002. Revised phylogeny of the Physeteridae (Mammalia: Cetacea) in the light of Placoziphius Van Beneden, 1869 and Aulophyseter Kellogg, 1927. Bulletin de l’Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre 72: 151170.Google Scholar
Kimura, T., Hasegawa, Y. & Barnes, L., 2006. Fossil sperm whales (Cetacea, Physeteridae) from Gunma and Ibaraki prefectures, Japan; with observations on the Miocene fossil sperm whale Scaldicetus shigensis Hirota and Barnes, 1995. Bulletin of the Gunma Museum of Natural History 10: 123.Google Scholar
Kimura, T. & Hasegawa, Y., 2022. A new physeteroid from the Lower Miocene of Japan. Paleontological Research 26(1): 87101.CrossRefGoogle Scholar
Kimura, T., Takakuwa, Y. & Hasegawa, Y., 2003. Cetacean fossils in the Nakajima collection. Bulletin of the Gunma Museum of Natural History 7: 1933, (in Japanese, with English abstract).Google Scholar
Lambert, O., 2008. Sperm whales from the Miocene of the North Sea: a re-appraisal. Bulletin de l’Institut Royal Des Sciences Naturelles de Belqique, Sciences de La Terre 78: 277316.Google Scholar
Lambert, O. & Bianucci, G., 2019. How to break a sperm whale’s teeth: dental damage in a large Miocene physeteroid from the North Sea basin. Journal of Vertebrate Paleontology 39(4): e1660987. DOI: 10.1080/02724634.2019.1660987.CrossRefGoogle Scholar
Lambert, O., Bianucci, G. & de Muizon, C., 2008. A new stem-sperm whale (Cetacea, Odontoceti, Physeteroidea) from the Latest Miocene of Peru. Académie des sciences 7(6): 361369.Google Scholar
Lambert, O., Bianucci, G. & de Muizon, C., 2017. Macroraptorial sperm whales (Cetacea, Odontoceti, Physeteroidea) from the Miocene of Peru. Zoological Journal of the Linnean Society 179: 404474.Google Scholar
Lambert, O., Bianucci, G. & Post, K., 2010a. Tusk-bearing beaked whales from the Miocene of Peru: sexual dimorphism in fossil ziphiids? Journal of Mammalogy 91(1): 1926.CrossRefGoogle Scholar
Lambert, O., Bianucci, G., Post, K., de Muizon, C., Salas-Gismondi, R., Urbina, M. & Reumer, J., 2010b. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466(7302): 105108.CrossRefGoogle ScholarPubMed
Lambert, O., de Muizon, C., Urbina, M. & Bianucci, G., 2020. A new longirostrine sperm whale (Cetacea, Physeteroidea) from the lower Miocene of the Pisco Basin (southern coast of Peru). Journal of Systematic Palaeontology 18(20): 17071742.CrossRefGoogle Scholar
Linnaeus, C., 1758. Systema naturae, per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae (Stockholm): 824.Google Scholar
Marra, A., Carone, G. & Bianucci, G., 2016. Sperm whale teeth from the late Miocene of Cessaniti (Southern Italy). Bollettino della Società Paleontologica Italiana 55: 223225.Google Scholar
Mchedlidze, G.A., 1970. Some general characteristics of the evolution of cetaceans, part 1. Akademia Nauk Gruzinskoi S.S.R. Institut Paleobiologii (Tbilisi): 112 pp.Google Scholar
Menesini, E. & Tavani, G., 1968. Resti de Scaldicetus (Cetacea) nel Miocene della Puglia. Bolletino della Società Paleontologica Italiana 7: 8793.Google Scholar
Owen, R., 1866. On some Indian Cetacea collected by Walter Elliot, Esq. Transactions of the Zoological Society of London 6: 1747.CrossRefGoogle Scholar
Paolucci, F., Buono, M.R., Fernández, M.S., Marx, F.G. & Cuitiño, J.I., 2020. Diaphorocetus poucheti (Cetacea, Odontoceti, Physeteroidea) from Patagonia, Argentina: one of the earliest sperm whales. Journal of Systematic Palaeontology 18: 335355.CrossRefGoogle Scholar
Peri, E., Collareta, A., Aringhieri, G., Caramella, D., Foresi, L.M. & Bianucci, G., 2022. A new physeteroid cetacean from the Lower Miocene of southern Italy: CT imaging, retrodeformation, systematics and palaeobiology of a sperm whale from the Pietra leccese. Bollettino della Società Paleontologica Italiana 61: 187206.Google Scholar
Peri, E., Falkingham, P., Collareta, A. & Bianucci, G., 2021. Biting in the Miocene seas: estimation of the bite force of the macroraptorial sperm whale Zygophyseter varolai using finite element analysis. Historical Biology 34: 19161927.CrossRefGoogle Scholar
Peters, N., 2009. Brabant tussen walvissen en mastodonten. Nationaal Beiaard- en Natuurmuseum (Asten). Oertijdmuseum De Groene Poort (Boxtel): 110 pp.Google Scholar
Peters, N., Munsterman, D. & Post, K., 2021. A late Miocene balaenopterid petrotympanic from Liessel (The Netherlands). Cainozoic Research 21: 165172.Google Scholar
Pilleri, G., 1980. The fossil odontocetes (Cetacea) in the Museum of Paleontology of the University of Turin. Investigations on Cetacea 11: 3953.Google Scholar
Pilleri, G., 1985. The Miocene Cetacea of the Belluno Sandstones (Eastern Southern Alps). Memorie di Scienze Geologiche 37: 187.Google Scholar
Pilleri, G., 1986a. The Cetacea of the Western Paratethys (Upper Marine Molasse of Baltringen). Brain Anatomy Institute (Berne): 70 pp.Google Scholar
Pilleri, G., 1986b. The Miocene Cetacea of the Pietra Leccese. Brain Anatomy Institute (Berne): 27 pp.Google Scholar
Pilleri, G., 1986c. The Oligo-Miocene Cetacea of the Italian waters with a bibliography of the fossil Cetacea of Italy (1670-1986). Brain Anatomy Institute (Berne): 81 pp.Google Scholar
Pilleri, G. & Pilleri, O., 1982. Catalogue of the fossil odontocetes (Cetacea) in the Bologna Giovanni Capellini Museum of Palaeontology with description of a new species of Hoplocetus (Physeteridae). Memorie di Scienze Geologiche 35: 293317.Google Scholar
Portis, A., 1885. Catalogo descrittivo dei Talassoterii rinvenuti nei terreni terziarii del Piemonte e della Liguria. E. Loescher (Torino): 121 pp.CrossRefGoogle Scholar
Reumer, J.W.F., Mens, T.H. & Post, K., 2017. New finds of giant raptorial sperm whale teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (province of Zeeland, the Netherlands). Deinsea 17: 3238.Google Scholar
Toscano, A., Abad, M., Ruiz, F., Muñiz, F., Álvarez, G., García, E.X.-M. & Caro, J.A., 2013. Nuevos restos de Scaldicetus (Cetacea, Odontoceti, Physeteridae) del Mioceno superior, sector occidental de la Cuenca del Guadalquivir (sur de España). Revista mexicana de ciencias geológicas 30: 436445.Google Scholar
Van Beneden, P.J. & Gervais, P., 1868-1879. Ostéographie des Cétacés vivants et fossiles comprenant la description et l’Iconographie du squelette et du système dentaire de ces animaux ainsi que des documents relatifs a leur histoire naturelle. A. Betrand (Paris): 634 pp.Google Scholar
Varola, A., Landini, W. & Pilleri, G., 1988. A new Scaldicetus (Cetacea: Physeteridae) from the Pietra Leccese. Late Miocene. Investigations on Cetacea 21: 1638.Google Scholar
Watmore, K.I. & Prothero, D.R. Gigantic macroraptorial sperm whale tooth (cf. Livyatan) from the Miocene of Orange County, California, 2023. bioRxiv, in press. doi: 10.1101/2023.01.25.525567.CrossRefGoogle Scholar
Werth, A.J., 2004. Functional morphology of the sperm whale tongue, with reference to suction feeding. Aquatic Mammals 30: 405418.CrossRefGoogle Scholar
Werth, A.J., 2006. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. Journal of Mammalogy 87: 579588.CrossRefGoogle Scholar
Figure 0

Figure 1. Locality of MAB13159. (A) Map of The Netherlands where the red star indicates the Liessel section. (B) Map of Liessel and surroundings where the red star indicates the exact locality of the discovery: sand-lime brick factory Hoogdonk.

Figure 1

Figure 2. Different views of tooth. (A) Lingual or labial view with the gingival collar represented with orange dotted lines, the folding indicated by the white arrow. The white rectangle displays the position of Fig. 3. (B) Distal view with the upper boundary of the gingival collar represented with an orange dotted line. (C) Labial or lingual  view. (D) Mesial view.

Figure 2

Figure 3. Close-up of the mesial side of the crown.

Figure 3

Table 1. Measurements of various physeteroid teeth in millimetres with the size range between brackets

Figure 4

Table 2. Overview of all recorded Scaldicetus species and specimens