Hostname: page-component-6d856f89d9-fb4gq Total loading time: 0 Render date: 2024-07-16T08:31:03.315Z Has data issue: false hasContentIssue false

Semiquantitative Chemical Analysis of Asbestos Fibers and Clay Minerals with an Analytical Electron Microscope

Published online by Cambridge University Press:  01 July 2024

Hisato Hayashi
Affiliation:
Research Institute of Underground Resources, Mining College, Akita University, Akita 010, Japan
Saburo Aita
Affiliation:
Application Department, JEOL Ltd., Nakagami, Akishima 196, Japan
Mikio Suzuki
Affiliation:
Application Department, JEOL Ltd., Nakagami, Akishima 196, Japan

Abstract

By using a transmission electron microscope equipped with an energy dispersive spectrometer, it was possible to detect the morphological, structural, and chemical characteristics of individual asbestos fibers and clay minerals without any realignment of the equipment. A rapid and convenient procedure for semiquantitative analysis is proposed. Analyses are given for 21 hydrous silicates, asbestos and clay minerals, by both ordinary chemical and energy dispersive methods. The energy dispersive results were comparable to those obtained by chemical analysis. Application of this procedure to asbestos fibers proved this method to be practical and valid for characterization of asbestos in environmental and tissue samples.

Резюме

Резюме

С помощью трансмиссионного электронного микроскопа, оборудованного рассеивающим энергию спектрометром, стало возможным определять морфологические, структурные и химические характеристики отдельных асбестовых волокон и глинистых минералов без повторной центровки оборудования. Приводятся данные анализов 21 водных силикатов, асбестов и глинистых минералов, полученных с помощью обычных химических и рассеивающих энергию методов. Результаты использования рассеивающих энергию методов были сопостовимы с результатами химических анализов. Применение этой процедуры для изучения асбестовых волокон доказало его практичность и пригодность для получения характеристики асбестов в природных и тканевых образцах.

Kurzreferat

Kurzreferat

Indem ein Transmission-Elektronen-Mikroskop, ausgestattet mit einem Energie-Streuungsspektrometer, benutzt wurde, war es möglich, die mor -phologischen, strukturellen und chemischen Eigenschaften von einzelnen Asbestfasern und Tonmineralien zu ermitteln, ohne die Apparatur wieder zu eichen. Eine schnelle und bequeme Methode für semi-quantitative Analyse wird vogeschlagen. Analysenresultate, erhalten durch allgemeine, chemische und Energie-Streuungsmethoden, für 21 wasserhaltige Silikate, Asbest und Tonmineralien sind angegeben. Die Resultate der Energie-Streuungsmethode waren vergleichbar mit denen, erhalten durch chemische Analyse. Anwendung dieser Prozedur auf Asbestfasern, hat bewiesen, daß diese Methode praktisch und brauchbar für die Charakterisierung von Asbest in Umwelt-und Gewebeproben ist.

Résumé

Résumé

Par l'emploi d'un microscope électronique à transmission équippé d’ un spectromètre dispersant l’énergie, il a été possible de détecter les caractéristiques morphologiques, structurales et chimiques de fibres d'asbeste individuelles et de minéraux argileux sans réaligner l’équipement. Un procédé rapide et commode pour l'analyse semi-quantitative est proposé. Des analyses sont données pour 21 silicates hydratées, asbestes et mineraux argileux, à la fois par des méthodes chimiques ordinaires et des méthodes dispersant l’énergie. Les résultats des méthodes dispersant l’énergie sont comparables à ceux obtenus par analyse chimique. L'application de ce procédé aux fibres d'asbeste prouvent que cette méthode est pratique et valable pour la caractérisation d'asbeste dans les échantillons de tissu et du milieu ambiant.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chandler, J. A. and Morton, M. S. (1976) Determination of elemental area concentration in ultrathin specimen by X-ray microanalysis and atomic absorption spectrometry: Anal. Chem. 48, 13161318.CrossRefGoogle Scholar
Henderson, W. J., Chandler, J. A., Blundell, G., Griffiths, C. and Davies, J. (1973) The application of analytical electron microscopy to the study of diseased biological tissue: J. Microsc. 99, 183192.CrossRefGoogle Scholar
Kramer, J. R. (1976) Fibrous cummingtonite in Lake Superior: Can. Mineral. 14, 9198.Google Scholar
Langer, A. M., Selikoff, I. J. and Sastre, A. (1971) Chrysotile asbestos in the lungs of persons in New York City: Arch. Environ. Health 22, 348361.CrossRefGoogle ScholarPubMed
Langer, A. M., Mackler, A. D. and Pooley, F. D. (1974) Electron microscopical investigation of asbestos fibers: Environ. Health Perspect. 9, 6380.CrossRefGoogle ScholarPubMed
Marshall, D. J. and Hall, T. A. (1968) Electron-probe X-ray microanalysis of thin films: Br. J. Appl. Phys. Ser. 2, 1, 16511656.Google Scholar
Namae, T. (1975) A method of quantitative analysis for thin specimens by energy dispersive spectrometer fitted to transmission electron microscope: J. Electron Microsc. 24, 16.Google Scholar
Nicholson, W. J. (1974) Analysis of amphibole asbestiform fibers in municipal water supplies: Environ. Health Perspect. 9, 165172.Google ScholarPubMed
Pooley, F. D. (1972) Electron microscope characteristics of inhaled chrysotile asbestos fibre: Br. J. Ind. Med. 29, 146153.Google ScholarPubMed
Pooley, F. D. (1976) An examination of the fibrous mineral content of asbestos lung tissue from the Canadian chrysotile mining industry: Environ. Res. 12, 281298.CrossRefGoogle ScholarPubMed
Rubin, I. B. and Maggiore, C. J. (1974) Elemental analysis of asbestos fibers by means of electron probe technique: Environ. Health Perspect. 9, 8194.CrossRefGoogle Scholar
Selikoff, I. J. (1972) Carcinogenicity of amosite asbestos: Arch. Environ. Health 25, 183188.CrossRefGoogle ScholarPubMed
Waldl, E., Walfermann, H., Ruscovic, N. and Warlimont, H. (1975) High-accuracy, empirical method of quantitative electron microprobe analysis using an energy dispersive system: Anal. Chem. 47, 10171019.CrossRefGoogle Scholar