Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:37:26.222Z Has data issue: false hasContentIssue false

Prevention of Candida biofilm formation over polystyrene by plasma polymerization technique

Published online by Cambridge University Press:  15 October 2020

Gizem Kaleli-Can
Affiliation:
Department of Biomedical Engineering, İzmir Democracy University, İzmir35140, Turkey
Elvan Hortaç-İştar
Affiliation:
Department of Medical Microbiology, Faculty of Medicine, Başkent University, Ankara06790, Turkey
Hatice Ferda Özgüzar
Affiliation:
Biomedical Engineering Division, Graduate School of Science and Technology, TOBB University of Economics and Technology, Ankara06560, Turkey
Mehmet Mutlu
Affiliation:
Department of Mechanical Engineering, Ostim Technical University, Ankara06374, Turkey
Hasan Cenk Mirza
Affiliation:
Department of Medical Microbiology, Faculty of Medicine, Başkent University, Ankara06790, Turkey
Ahmet Başustaoğlu
Affiliation:
Department of Medical Microbiology, Faculty of Medicine, Başkent University, Ankara06790, Turkey
Julide Sedef Göçmen*
Affiliation:
Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara06560, Turkey
*
Address all correspondence to Julide Sedef Göçmen at jgocmen@etu.edu.tr
Get access

Abstract

This work investigates the antifungal effect of plasma polymer films produced by low-pressure RF-generated plasma system using acrylic acid, 2–hydroxyethyl methacrylate, and diethyl phosphite (DEP). Unmodified and plasma-modified polystyrene (PS) microplate wells were tested by 30 biofilm-positive Candida spp. isolated from blood samples and two control strains using a quantitative plaque assay method. Regardless of the precursors and plasma parameters, biofilm formation was inhibited for all plasma-modified microplate wells. The most significant anti-biofilm effect was observed on PS modified by DEP at 90 W plasma power with the inhibition of all Candida species’ biofilm formation.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wisplinghoff, H., Bischoff, T., Tallent, S.M., Seifert, H., Wenzel, R.P., and Edmond, M.B.: Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 39, 309317 (2004).CrossRefGoogle ScholarPubMed
Sandven, P., Giercksky, K.E., NORGAS Group, and Norwegian Yeast Study Group: Yeast colonization in surgical patients with intra-abdominal perforations. Eur. J. Clin. Microbiol. Infect. Dis. 20, 475481 (2001).CrossRefGoogle ScholarPubMed
Welch, V., Petticrew, M., Tugwell, P., Moher, D., O'Neill, J., Waters, E., White, H., and PRISMA-Equity Bellagio group: PRISMA-Equity 2012 extension: reporting guidelines for systematic reviews with a focus on health equity. PLos Med. 9, e1001333 (2012).CrossRefGoogle ScholarPubMed
Beloin, C., Renard, S., Ghigo, J.M., and Lebeaux, D.: Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol. 18, 6168 (2014).CrossRefGoogle ScholarPubMed
Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P., and Hall-Stoodley, L.: Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740 (2017).CrossRefGoogle ScholarPubMed
Xiao, X., Zhao, W., Liang, J., Sauer, K., and Libera, M.: Self-defensive antimicrobial biomaterial surfaces. Colloids Surf. B 192, 110989 (2020).CrossRefGoogle ScholarPubMed
Yildirim, M.S., Hasanreisoğlu, U., Hasirci, N., and Sultan, N.: Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers. J. Oral Rehabil. 32, 518525 (2005).CrossRefGoogle ScholarPubMed
Anselme, K., Davidson, P., Popa, A.M., Giazzon, M., Liley, M., and Ploux, L.: The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 6, 38243846 (2010).CrossRefGoogle ScholarPubMed
Campoccia, D., Montanaro, L., and Arciola, C.R.: A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34, 85338554 (2013).CrossRefGoogle ScholarPubMed
Dewald, C., Lüdecke, C., Firkowska-Boden, I., Roth, M., Bossert, J., and Jandt, K.D.: Gold nanoparticle contact point density controls microbial adhesion on gold surfaces. Colloids Surf. B. 163, 201208 (2018).CrossRefGoogle ScholarPubMed
Lüdecke, C., Roth, M., Yu, W., Horn, U., Bossert, J., and Jandt, K.D.: Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf. B 145, 617625 (2016).CrossRefGoogle ScholarPubMed
Dauben, T.J., Dewald, C., Firkowska-Boden, I., Helbing, C., Peisker, H., Roth, M., Bossert, J., and Jandt, K.D.: Quantifying the relationship between surfaces’ nano-contact point density and adhesion force of Candida albicans. Colloids Surf. B 194, 111177 (2020).CrossRefGoogle ScholarPubMed
Kaleli-Can, G., Özgüzar, H.F., Kahriman, S., Türkal, M., Göçmen, J.S., Yurtçu, E., and Mutlu, M.: Improvement in antimicrobial properties of titanium by diethyl phosphite plasma-based surface modification. Mater. Today Commun. 25, 101565 (2020).CrossRefGoogle Scholar
Hawser, S.P. and Douglas, L.J.: Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 62, 915921 (1994).CrossRefGoogle ScholarPubMed
Yoshijima, Y., Murakami, K., Kayama, S., Liu, D., Hirota, K., Ichikawa, T., and Miyake, Y.: Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses 53, 221226 (2010).CrossRefGoogle ScholarPubMed
Lamont-Friedrich, S.J., Michl, T.D., Giles, C., Griesser, H.J., and Coad, B.R.: Chlorine-rich plasma polymer coating for the prevention of attachment of pathogenic fungal cells onto materials surfaces. J. Phys. D: Appl. Phys. 49, 294001 (2016).CrossRefGoogle Scholar
Richards, M.J., Edwards, J.R., Culver, D.H., and Gaynes, R.P.: And national nosocomial infections surveillance system: nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21, 510515 (2000).CrossRefGoogle ScholarPubMed
Blumberg, H.M., Jarvis, W.R., Soucie, J.M., Edwards, J.E., Patterson, J.E., Pfaller, M.A., and Wenzel, R.P.: Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. Clin. Infect. Dis. 33, 177186 (2001).CrossRefGoogle ScholarPubMed
Eggimann, P., Garbino, J., and Pittet, D.: Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685702 (2003).CrossRefGoogle ScholarPubMed
Shorr, A.F., Lazarus, D.R., Sherner, J.H., Jackson, W.L., Morrel, M., Fraser, V.J., and Kollef, M.H.: Do clinical features allow for accurate prediction of fungal pathogenesis in bloodstream infections? Potential implications of the increasing prevalence of non-albicans candidemia. Crit. Care Med. 35, 10771083 (2007).CrossRefGoogle ScholarPubMed
Healy, C.M., Campbell, J.R., Zaccaria, E., and Baker, C.J.: Fluconazole prophylaxis in extremely low birth weight neonates reduces invasive candidiasis mortality rates without emergence of fluconazole-resistant Candida species. Pediatrics 121, 703710 (2008).CrossRefGoogle ScholarPubMed
Lim, C.Y., Rosli, R., Seow, H.F., and Chong, P.P.: Candida and invasive candidiasis: back to basics. Eur. J. Clin. Microbiol. Infect. Dis. 31, 2131 (2012).CrossRefGoogle ScholarPubMed
Çökeliler, D., Caner, H., Zemek, J., Choukourov, A., Biederman, H., and Mutlu, M.: A plasma polymerization technique to overcome cerebrospinal fluid shunt infections. Biomed. Mater. 2, 39 (2007).CrossRefGoogle ScholarPubMed
Hortaç, E., Kaleli, G., Çökeliler, D., Yavuzdemir, Ş, Mutlu, M., Demirbilek Ekici, M., and Göçmen, J.S.: GSBL pozitif üropatojen Escherichia coli izolatlarının plazma polimerizasyon tekniği ve nanomalzemeler ile modifiye edilmiş (mikroplak) yüzeylerde biyofilm oluşumunun incelenmesi: deneysel model. Türk. mikrobiyol. Cem. derg. 45, 181187 (2015).Google Scholar
Göçmen, J.S., İştar, E.H., Çökeliler, D., Mutlu, M., Can, G.K., Alparslan, S., and Aycan, Ç: Kan ve El kültüründen İzole edilen koagülaz-negatif stafilokok İzolatlarının biyofilm oluşumunun plazma polimerizasyon tekniği ile kaplanmış mikroplaklarda İncelenmesi: deneysel model. FLORA 22, 166174 (2017).CrossRefGoogle Scholar
Akdogan, E., Demirbilek, M., Sen, Y., Onur, M.A., Azap, O.K., Sonmez, E., and Mutlu, M.: In vitro and in vivo bacterial antifouling properties of phosphite plasma-treated silicone. Surf. Innovations 7, 122132 (2019).CrossRefGoogle Scholar
Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., and Beachey, E.H.: Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 9961006 (1985).CrossRefGoogle ScholarPubMed
Stepanovic, S., Vukovic, D., Hola, V., Bonaventura, G.D., Djukic, S., Cirkovic, I., and Ruzicka, F.: Quantification of biofilm in microtitre plates: overview for assessment of biofilm production by staphylococci. APMIS 115, 891899 (2007).CrossRefGoogle Scholar
Kennedy, M.J. and Sandin, R.L.: Influence of growth conditions on Candida albicans adhesion, hydrophobicity and cell wall ultrastructure. J. Med. Vet. Mycol. 26, 7992 (1988).CrossRefGoogle ScholarPubMed
Jones, E., Oliphant, T., and Peterson, P.: SciPy: Open source scientific tools for Python (2001). https://scipy.org/.Google Scholar
Bodas, D.S., Desai, S.M., and Gangal, S.A.: Deposition of plasma-polymerized hydroxyethyl methacrylate (HEMA) on silicon in presence of argon plasma. Appl. Surf. Sci. 245, 186190 (2005).CrossRefGoogle Scholar
Veuillet, M., Ploux, L., Airoudj, A., Gourbeyre, Y., Gaudichet-Maurin, E., and Roucoules, V.: Macroscopic control of DMAHEMA and HEMA plasma polymerization to tune the surface mechanical properties of hydrogel-like coatings. Plasma Processes Polym. 14, 1600215 (2017).CrossRefGoogle Scholar
Yasuda, H. and Hsu, T.: Some aspects of plasma polymerization investigated by pulsed RF discharge. J. Polym. Sci. 15, 8197 (1977).Google Scholar
Lin, Y. and Yasuda, H.: Hydrocarbon barrier performance of plasma-surface-modified polyethylene. J. Appl. Polym. Sci. 60, 22272238 (1996).3.0.CO;2-2>CrossRefGoogle Scholar
Kelly, J.M., Short, R.D., and Alexander, M.R.: Experimental evidence of a relationship between monomer plasma residence time and carboxyl group retention in acrylic acid plasma polymers. Polymer 44, 31733176 (2003).CrossRefGoogle Scholar
Anders, A.: Fundamentals of pulsed plasmas for materials processing. Surf. Coat. Technol. 183, 301311 (2004).CrossRefGoogle Scholar
Ricciardi, S., Castagna, R., Severino, S.M., Ferrante, I., Frascella, F., Celasco, E., and Rivolo, P.: Surface functionalization by poly-acrylic acid plasma-polymerized films for microarray DNA diagnostics. Surf. Coat. Technol. 207, 389399 (2012).CrossRefGoogle Scholar
Ko, T.M. and Cooper, S.L.: Surface properties and platelet adhesion characteristics of acrylic acid and allylamine plasma-treated polyethylene. J. Appl. Polym. Sci. 47, 16011619 (1993).CrossRefGoogle Scholar
Desrousseaux, C., Sautou, V., Descamps, S., and Traoré, O.: Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J. Hosp. Infect. 85, 8793 (2013).CrossRefGoogle ScholarPubMed
Chouirfa, H., Bouloussa, H., Migonney, V., and Falentin-Daudré, C.: Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 83, 3754 (2019).CrossRefGoogle ScholarPubMed
Vohrer, U., Hegemann, D., and Oehr, C.: XPS, AES, and AFM as tools for study of optimized plasma functionalization. Anal. Bioanal. Chem. 375, 929934 (2003).CrossRefGoogle ScholarPubMed
Förch, R., Chifen, A.N., Bousquet, A., Khor, H.L., Jungblut, M., Chu, L.Q., and Knoll, W.: Recent and expected roles of plasma-polymerized films for biomedical applications. Chem. Vap. Deposition 13, 280294 (2007).CrossRefGoogle Scholar
Holly, F.J. and Refojo, M.F.: Wettability of hydrogels I. Poly (2-hydroxyethyl methacrylate). J. Biomed. Mater. Res. 9, 315326 (1975).CrossRefGoogle Scholar
Yasuda, H., Sharma, A.K., and Yasuda, T.: Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis. J. Polym. Sci. 19, 12851291 (1981).Google Scholar
Gengenbach, T.R., Vasic, Z.R., Chatelier, R.C., and Griesser, H.J.: Concurrent restructuring and oxidation of the surface of n-hexane plasma polymers during aging in air. Plasmas Polym. 1, 207228 (1996).CrossRefGoogle Scholar
Kim, J.H., Won, J., and Kang, Y.S.: Π-complexes of polystyrene with silver salts and their use as facilitated olefin transport membranes. J. Polym. Sci., Part B: Polym. Phys. 42, 22632269 (2004).CrossRefGoogle Scholar
Lee, D.K., Park, J.T., Roh, D.K., Min, B.R., and Kim, J.H.: Synthesis of crosslinked polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly (styrene sulfonic acid) triblock copolymer for electrolyte membranes. Macromol. Res. 17, 325331 (2009).CrossRefGoogle Scholar
Luo, H.L., Sheng, J., and Wan, Y.Z.: Plasma polymerization of styrene with carbon dioxide under glow discharge conditions. Appl. Surf. Sci. 253, 52035207 (2007).CrossRefGoogle Scholar
Siow, K.S., Britcher, L., Kumar, S., and Griesser, H.J.: Deposition and XPS and FTIR analysis of plasma polymer coatings containing phosphorus. Plasma Processes Polym. 11, 133141 (2014).CrossRefGoogle Scholar