Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T03:22:50.483Z Has data issue: false hasContentIssue false

Mixed convection non-axisymmetric Homann stagnation-point flow

Published online by Cambridge University Press:  05 January 2017

Y. Y. Lok
Affiliation:
Mathematics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang, Malaysia
J. H. Merkin*
Affiliation:
Department of Applied Mathematics, University of Leeds, LeedsLS2 9JT, UK
I. Pop
Affiliation:
Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca, Romania
*
Email address for correspondence: amtjhm@maths.leeds.ac.uk

Abstract

The steady mixed convection non-axisymmetric (Homann, Z. Angew. Math. Mech., vol. 16, 1936, pp. 153–164) stagnation-point flow over a vertical flat wall placed in a viscous and incompressible fluid is considered. A similarity solution is derived which involves the dimensionless parameters $\unicode[STIX]{x1D6FE}$, representing the shear-to-strain-rate ratio, and $\unicode[STIX]{x1D706}$, a mixed convection parameter. Forced convection, $\unicode[STIX]{x1D706}=0$, is treated first where solutions additional to those given previously by Weidman (J. Fluid Mech., vol. 702, 2012, pp. 460–469) are found arising from singularities as $\unicode[STIX]{x1D6FE}\rightarrow \pm 1$. Numerical solutions are obtained for representative values of both $\unicode[STIX]{x1D6FE}$ and $\unicode[STIX]{x1D706}$. Critical values $\unicode[STIX]{x1D706}_{c}$ of $\unicode[STIX]{x1D706}$ are seen in opposing flow and these are treated in detail. Asymptotic results for large $\unicode[STIX]{x1D706}$ and $\unicode[STIX]{x1D6FE}$ are derived.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bejan, A. 2013 Convection Heat Transfer, 4th edn. Wiley.Google Scholar
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Hemisphere.Google Scholar
Hiemenz, K. 1911 Die Grenzschicht an einem in der gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechn. J. 326, 321324.Google Scholar
Homann, F. 1936 Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel. Z. Angew. Math. Mech. 16, 153164.CrossRefGoogle Scholar
Kuiken, H. K. 1969 Free convection at low Prandtl number. J. Fluid Mech. 37, 785798.CrossRefGoogle Scholar
Merkin, J. H. 1989 Free convection on a heated vertical plate: the solution for small Prandtl number. J. Engng Maths 23, 273283.CrossRefGoogle Scholar
Merkin, J. H. & Mahmood, T. 1989 Mixed convection boundary layer similarity solutions: prescribed wall heat flux. Z. Angew. Math. Mech. 20, 5168.Google Scholar
Merkin, J. H. 1994 Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Intl J. Heat Fluid Flow 15, 392398.CrossRefGoogle Scholar
Merkin, J. H. & Pop, I. 2010 Natural convection boundary-layer flow in a porous medium with temperature dependent boundary conditions. Trans. Porous Med. 85, 397414.Google Scholar
Pop, I. & Ingham, D. B. 2001 Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon.Google Scholar
Revnic, C., Grosan, T., Merkin, J. H. & Pop, I. 2009 Mixed convection flow near an axisymmetric stagnation point on a vertical cylinder. J. Engng Maths 64, 113.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory. Springer.CrossRefGoogle Scholar
Shampine, L. F., Gladwell, I. & Thompson, S. 2003 Solving ODEs with Matlab. Cambridge University Press.CrossRefGoogle Scholar
Weidman, P. D. 2012 Non-axisymmetric Homann stagnation-point flow. J. Fluid Mech. 702, 460469.Google Scholar