Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-15T06:27:48.322Z Has data issue: false hasContentIssue false

Quaternary climatic events as conditioning factors of hydrogeologic characteristics and salinity in costal aquifers at northern Patagonia, Argentina

Published online by Cambridge University Press:  09 January 2024

Eleonora Carol*
Affiliation:
Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, 1900, Argentina
Santiago Perdomo
Affiliation:
Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional Noreste de Buenos Aires, Buenos Aires, 2700, Argentina
Carolina Tanjal
Affiliation:
Centro de Investigaciones Geológicas (CIG), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de La Plata, La Plata, 1900, Argentina
Nicolás Scivetti
Affiliation:
Instituto Patagónico de Geología y Paleontología (IPGP), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, 9120, Argentina
María del Pilar Alvarez
Affiliation:
Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, 9120, Argentina
*
Corresponding author: Eleonora Carol; Email: eleocarol@fcnym.unlp.edu.ar

Abstract

In arid and semiarid coastal areas, freshwater resources are scarce and are frequently affected by salinization processes. The aim of this work is to evaluate the influence of Late Quaternary climatic events on the hydrogeologic characteristics conditioning the distribution of fresh, brackish, and saline ground water in the Holocene and Pleistocene beach ridges in coastal aquifers of northern Patagonia. To achieve this, geologic, geomorphological, geophysical, hydrochemical, and isotopic studies were carried out, which allowed the identification of the hydrolithologic characteristics controlling groundwater salinity in a context of Quaternary geologic–geomorphological–climatic evolution. In Pleistocene beach ridges, it was recognized that the formation of calcretes in an arid period after Marine Isotope Stage (MIS) 5e conditioned the permeability of superficial sediments, strongly decreasing infiltration rates. During the Holocene, beach ridges were deposited and sea water entered the Pleistocene ridges. Subsequently, with the sea-level drop and wetter climatic conditions, rainwater began to infiltrate, recharging the aquifers and displacing seawater, allowing development of freshwater lenses. However, freshwater lenses only developed in Holocene ridges due to the lower permeability of Pleistocene ridges, which determines that in these geoforms, sea water cannot be displaced by rainwater, and therefore groundwater is brackish to saline.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd-Elaty, I., Polemio, M., 2023. Saltwater intrusion management at different coastal aquifers bed slopes considering sea level rise and reduction in fresh groundwater storage. Stochastic Environmental Research and Risk Assessment 37, 20832098.CrossRefGoogle Scholar
Allen, B.L., Hajek, B.F., 1989. Mineral occurrence in soil environments. Minerals in Soil Environments 1, 199278.Google Scholar
Alonso-Zarza, A., 2003. Palaeoenvironmental significance of palustrine and calcretes in the geological record. Earth Science Reviews 60, 261298.CrossRefGoogle Scholar
Alonso-Zarza, A.M., Wright, V.P., 2010. Calcretes. Developments in Sedimentology 61, 225267.CrossRefGoogle Scholar
Alvarez, M.P, Trovatto, M., Hernández, M., González, N., 2012. Groundwater flow model, recharge estimation and sustainability in an arid region of Patagonia, Argentina. Environmental Earth Sciences 66, 20972108CrossRefGoogle Scholar
[APHA] American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.Google Scholar
Appelo, C., Postma, D., 2005. Geochemistry, Groundwater and Pollution. CRC Press, London.Google Scholar
Bouza, P.J., 2012. Génesis de las acumulaciones de carbonatos en Aridisoles Nordpatagónicos: su significado paleopedológico. Revista de la Asociación Geológica Argentina 69, 298313.Google Scholar
Bouza, P.J., 2014. Paleosuelos en Cordones litorales de la formación Caleta Valdés, pleistoceno superior, noreste de Chubut. Revista de la Asociación Geológica Argentina 71(1), 110.Google Scholar
Carol, E., Cellone, F., Tanjal, C., Galliari, M.J., 2022. Role of the geologic-geomorphic setting of the Río de la Plata estuary coastal landscape in controlling freshwater lenses shape and distribution. Journal of South American Earth Sciences 116, 103832.CrossRefGoogle Scholar
Carol, E., Kruse, E., 2012. Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary, Argentina. Journal of South American Earth Sciences 37, 113121.CrossRefGoogle Scholar
Carol, E., Perdomo, S., Álvarez, M.P., Tanjal, C., Bouza, P., 2021b. Hydrochemical, isotopic, and geophysical studies applied to the evaluation of groundwater salinization processes in Quaternary beach ridges in a semiarid coastal area of northern Patagonia, Argentina. Water 13, 3509.CrossRefGoogle Scholar
Carol, E.S., Alvarez, M.P., Tanjal, C., Bouza, P.J., 2021a. Factors controlling groundwater salinization processes in coastal aquifers in semiarid environments of north Patagonia, Argentina. Journal of South American Earth Sciences 110, 103356.CrossRefGoogle Scholar
Cendón, D.I., Ayora, C., Pueyo, J.J., Taberner, C., Blanc-Valleron, M.M., 2008. The chemical and hydrological evolution of the Mulhouse potash basin (France): are “marine” ancient evaporites always representative of synchronous seawater chemistry? Chemical Geology 252, 109124.CrossRefGoogle Scholar
Cerling, T., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. Climate change in continental isotopic records. Geophysical Monograph 78, 217231.Google Scholar
Chang, S.W., Clement, T.P., Simpson, M.J., Lee, K.K., 2011. Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources 34, 12831291.CrossRefGoogle Scholar
Chowdary, V.M., Rao, M.D., Jaiswal, C.S., 2006. Study of infiltration process under different experimental conditions. Agricultural Water Management 83, 6978.CrossRefGoogle Scholar
Colombani, N., Osti, A., Volta, G., Mastrocicco, M., 2016. Impact of climate change on salinization of coastal water resources. Water Resources Management 30, 24832496.CrossRefGoogle Scholar
Druhan, J.L., Hogan, J.F., Eastoe, C.J., Hibbs, B.J., Hutchison, W.R., 2008. Hydrogeologic controls on groundwater recharge and salinization: a geochemical analysis of the northern Hueco Bolson aquifer, Texas, USA. Hydrogeology Journal 16, 281296.CrossRefGoogle Scholar
Durand, N., Monger, H.C., Canti, M.G., 2010. Calcium carbonate features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam. pp. 149194. https://doi.org/10.1016/C2009-0-18081-9.CrossRefGoogle Scholar
Edmunds, W.M., 2009. Palaeoclimate and groundwater evolution in Africa—implications for adaptation and management. Hydrological Sciences Journal 54, 781792.CrossRefGoogle Scholar
Fucks, E., Charó, M., Pisano, F., 2012. Aspectos estratigráficos y geomorfológicos del sector oriental patagónico bonaerense. Revista de la Sociedad Geológica de España 25, 2944.Google Scholar
Galliari, J., Santucci, L., Misseri, L., Carol, E., Alvarez, M.P., 2021. Processes controlling groundwater salinity in coastal wetlands of the southern edge of South America. Science of the Total Environment 754, 141951.CrossRefGoogle ScholarPubMed
Geriesh, M.H., Balke, K.D., El-Rayes, A.E., Mansour, B.M., 2015. Implications of climate change on the groundwater flow regime and geochemistry of the Nile Delta, Egypt. Journal of Coastal Conservation 19, 589608.CrossRefGoogle Scholar
Giambastiani, B.M.S., Colombani, N., Mastrocicco, M., Fidelibus, M.D., 2013. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): hydrology, hydrochemistry and evolution of the system. Journal of Hydrology 501, 3544.CrossRefGoogle Scholar
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 170, 10881090.CrossRefGoogle ScholarPubMed
Gocke, M., Pustovoytov, K., Kühn, P., Wiesenberg, G., Löscher, M., Kuzyakov, Y., 2011. Carbonate rhizoliths in loess and their implications for paleo environmental reconstruction revealed by isotopic composition: δ13C, 14C. Chemical Geology 283, 251260.CrossRefGoogle Scholar
Gonfiantini, R., 1978. Standards for stable isotope measurements in natural compounds. Nature 271, 534536.CrossRefGoogle Scholar
Han, D., Song, X., Currell, M. J., Cao, G., Zhang, Y., Kang, Y., 2011. A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation. Journal of Hydrology 405, 217234.CrossRefGoogle Scholar
Hearty, P.J., Hollin, J.T., Neumann, A.C., O'Leary, M.J., McCulloch, M., 2007. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quaternary Science Reviews 26, 20902112.CrossRefGoogle Scholar
Hillel, D., Baker, R.A.S., 1988. A descriptive theory of fingering during infiltration into layered soils. Soil Science 146, 5156.CrossRefGoogle Scholar
Hu, W., Wang, Y.Q., Li, H.J., Huang, M.B., Hou, M.T., Li, Z., She, D.L., Si, B.C., 2019. Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. Journal of Hydrology 578, 124042.CrossRefGoogle Scholar
[IGN] Instituto Geográfico Nacional, 2020. Los Modelos Digitales de Elevaciones (MDE) y Modelos Digitales de Terreno. https://www.ign.gob.ar/NuestrasActividades/Geodesia/ModeloDigitalElevaciones/Introduccion, accessed February 2023.Google Scholar
[INDEC] Instituto Nacional de Estadística y Censos, 2022. Censo 2022. https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-165, accessed February 2023.Google Scholar
Isla, F., 1998. Holocene coastal evolution in Buenos Aires Province, Argentina. Quaternary of South America and Antarctic Peninsula 4, 137157.Google Scholar
Johansen, H., 1975. An interactive computer/graphic-display-terminal system for interpretation of resistivity soundings. Geophysical Prospecting 23, 449458.CrossRefGoogle Scholar
Kammoun, S., Trabelsi, R., Re, V., Zouari, K., 2021. Coastal aquifer salinization in semi-arid regions: the case of Grombalia (Tunisia). Water 13, 129.CrossRefGoogle Scholar
Lucas, Y., Schmitt, A.D., Chabaux, F., Clément, A., Fritz, B., Elsass, P., Durand, S., 2010. Geochemical tracing and hydrogeochemical modelling of water–rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France). Applied Geochemistry 25, 16441663.CrossRefGoogle Scholar
Maillet, R., 1947. The fundamental equations of electrical prospecting. Geophysics 12, 529556.CrossRefGoogle Scholar
Martínez, D.E., Quiroz, O.M., Dapeña, C., Glok-Galli, M., Massone, H.E., Ferrante, A., 2011. Caracterización isotópica e hidroquímica de las precipitaciones en el sector sur de Tandilia. In: VII Congreso Argentino de Hidrogeología y V Seminario Hispano- Latinoamericano Sobre Temas Actuales de la Hidrología Subterránea. Calidad y Contaminación de Agua Subterránea. Salta, Argentina, pp. 369376.Google Scholar
Mastrocicco, M., Colombani, N., 2021. The issue of groundwater salinization in coastal areas of the Mediterranean region: a review. Water 13, 90.CrossRefGoogle Scholar
Merchán, D., Causapé, J., Abrahão, R., García-Garizábal, I., 2015. Assessment of a newly implemented irrigated area (Lerma Basin, Spain) over a 10-year period. II: Salts and nitrate exported. Agricultural Water Management 158, 288296.CrossRefGoogle Scholar
Moore, W., Joye, S., 2021. Saltwater intrusion and submarine groundwater discharge: acceleration of biogeochemical reactions in changing coastal aquifers. Frontiers in Earth Science 9, 600710.CrossRefGoogle Scholar
Pedoja, K., Regard, V., Husson, L., Martinod, J., Guillaume, B., Fucks, E., Iglesias, M., Weill, P., 2011. Uplift of Quaternary shorelines in eastern Patagonia: Darwin revisited. Geomorphology 127, 121142.CrossRefGoogle Scholar
Perrin, J., Parker, B.L., Cherry, J.A., 2011. Assessing the flow regime in a contaminated fractured and karstic dolostone aquifer supplying municipal water. Journal of Hydrology 400, 396410.CrossRefGoogle Scholar
Pfeiffer, M., Aburto, F., Le Roux, J.P., Kemnitz, H., Sedov, S., Solleiro-Rebolledo, E., Seguel, O., 2012. Development of a Pleistocene calcrete over a sequence of marine terraces at Tongoy (north-central Chile) and its paleoenvironmental implications. Catena 97, 104118.CrossRefGoogle Scholar
Pfeiffer, M., Le Roux, J.P., Solleiro-Rebolledo, E., Kemnitz, H., Sedov, S., Seguel, O., 2011. Preservation of beach ridges due to pedogenic calcrete development in the Tongoy palaeobay, north-central Chile. Geomorphology 132, 234248.CrossRefGoogle Scholar
Rabenhorst, M., Wilding, L., West, L., 1984. Identification of pedogenic carbonates using stable carbon isotope and microfabric analyses. Soil Science Society of America Journal 48, 125132.CrossRefGoogle Scholar
Samani, Z., Cheraghi, A., Willardson, L., 1989. Water movement in horizontally layered soils. Journal of Irrigation and Drainage Engineering 115, 449456.CrossRefGoogle Scholar
Sánchez-Martos, F., Pulido-Bosch, A., Molina-Sánchez, L., Vallejos-Izquierdo, A., 2002. Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, southeast Spain). Science of the Total Environment 297, 4358.CrossRefGoogle ScholarPubMed
Santucci, L., Carol, E., Kruse, E., 2016. Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina). Science of the Total Environment 566, 16401648.CrossRefGoogle Scholar
Santucci, L., Carol, E., Kruse, E., 2017. Quaternary marine ingressions as indicated by hydrogeochemical evidence in the semi-confined aquifer of the littoral of the Río de la Plata, Argentina. Quaternary Research 88, 160167.CrossRefGoogle Scholar
Schellmann, G., Radtke, U., 2010. Timing and magnitude of Holocene sea-level changes along the middle and south Patagonian Atlantic coast derived from beach ridge systems, littoral terraces and valley-mouth terraces. Earth-Science Reviews 103, 130.CrossRefGoogle Scholar
Schnack, E., Isla, F., De Francesco, F., Fucks, E., 2005. Estratigrafía del Cuaternario marino tardío en la provincia de Buenos Aires. In: Geología y Recursos Minerales de la provincia de Buenos Aires, Relatorio. EDULP, La Plata, pp. 159182.Google Scholar
Shrestha, S., Bach, T.V., Pandey, V.P., 2016. Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science & Policy 61, 113.CrossRefGoogle Scholar
Sola, F., Vallejos, A., Daniele, L., Pulido-Bosch, A., 2014. Identification of a Holocene aquifer–lagoon system using hydrogeochemical data. Quaternary Research 82, 121131.CrossRefGoogle Scholar
Stuart, D.M., Dixon, R.M., 1973. Water movement and caliche formation in layered arid and semiarid soils. Soil Science Society of America Journal 37, 323324.CrossRefGoogle Scholar
Tanner, L.H., 2010. Continental carbonates as indicators of paleoclimate. Developments in Sedimentology 62, 179214.CrossRefGoogle Scholar
Trebino, L., 1987. Geomorfología y evolución de la costa en los alrededores del pueblo de San Blas, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 42, 922.Google Scholar
Wang, Y., Jiao, J.J., 2012. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. Journal of Hydrology 438, 112124.CrossRefGoogle Scholar
Werner, A.D., Simmons, C.T., 2009. Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 47, 197204.CrossRefGoogle ScholarPubMed
Wright, V.P., Tucker, M.E. (Eds.), 1991. Calcretes: an introduction. In: Calcretes. International Association of Sedimentologists Reprint Series, Vol. 2. Blackwell Scientific, Oxford, pp. 122.CrossRefGoogle Scholar
Yaalon, D.H., 1997. Soils in the Mediterranean region: what makes them different? Catena 28, 157169.CrossRefGoogle Scholar
Zohdy, R.A.A., 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics 54, 245253.CrossRefGoogle Scholar