A COSINE FUNCTIONAL EQUATION IN HILBERT SPACE

SVETOZAR KUREPA

Throughout this paper R denotes the set of all real numbers, $m(K)$ the Lebesgue measure of $K \subseteq R, H$ a Hilbert space, $L(H)$ the set of all linear continuous mappings of H into H, endowed with the usual structure of a Banach space.

We consider the mapping F of the set R into $L(H)$ such that

$$
\begin{equation*}
F(x+y)+F(x-y)=2 F(x) F(y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in R$. In (2) we have solved this equation under the assumption that H is of finite dimension. In this paper we prove that a weak measurability of F implies its weak continuity in the case of separable Hilbert space. In Theorem 2 we prove that every weakly continuous solution of (1) in the set of normal transformations has the form $F(x)=\cos (x N)$, where the normal transformation N does not depend on x.

We start with a preliminary lemma.
Lemma 1. Let K be a linear Lebesgue measurable set such that $0<m(K)<$ $+\infty$. There exists a number $a>0$ with the property that for every $x \in(-a, a)$ there are $s_{1}(x), s_{2}(x), s_{3}(x) \in K$ such that $s_{1}(x)=s_{2}(x)-x / 2=s_{3}(x)-x$.

Proof. Let $u(x)$ be the function defined on the set of all real numbers R by the equation $u(x)=m(K \cap(K-x / 2) \cap(K-x))$. If $\chi(t)$ denotes the characteristic function of the set K then

$$
\begin{aligned}
|u(x)-u(0)| & =\mid \int \chi(t)[\chi(t+x / 2) \chi(t+x)-\chi(t) \chi(t+x) \\
& +\chi(t) \chi(t+x)-\chi(t)] d t \mid \\
& \leqslant \int|\chi(t+x / 2)-\chi(t)| d t+\int|\chi(t+x)-\chi(t)| d t .
\end{aligned}
$$

Since the right side tends to zero as $x \rightarrow 0$ we find the function $u(x)$ continuous in $x=0$. Since $u(0)=m(K) \neq 0$, there exists a constant $a>0$ such that $u(x) \neq 0$ for all $x \in(-a, a)$. But $u(x) \neq 0$ implies $K \cap(K-x / 2) \cap$ $(K-x) \neq \phi$. Hence for each $x \in(-a, a)$ there are $s_{1}(x), s_{2}(x), s_{3}(x) \in K$ such that $s_{1}(x)=s_{2}(x)-x / 2=s_{3}(x)-x$ and hence Lemma 1 is proved.

Theorem 1. Let F be a mapping of R into $L(H)$ which satisfies (1) for every $x, y \in R$.

Suppose that: (1) there is an interval $I=[a, b] \subseteq R$ such that the restriction of F to I is weakly measurable;

[^0](2) if $F(x) f=0$, almost everywhere, then $f=0$; (3) H is a separable Hilbert space.

Then F is weakly continuous on R.
Proof. We divide the proof into three parts.

1. The function F is measurable on R. (1) implies:

$$
F\left(x-\frac{b-a}{2}\right)=2 F(x) F\left(\frac{b-a}{2}\right)-F\left(x+\frac{b-a}{2}\right) .
$$

When x runs through the interval $\left[a, \frac{1}{2}(a+b)\right]$ then $x+\frac{1}{2}(b-a)$ runs over the interval $\left[\frac{1}{2}(a+b), b\right]$. Since $F(y)$ is measurable on each of these intervals we find that $F(y)$ is measurable on the interval $\left[a-\frac{1}{2}(b-a), a\right]$. Thus, the measurability of the function F on the interval I implies the measurability of this function on the interval $I^{\prime}=\left[a-\frac{1}{2}(b-a), b\right]$. The way by which I^{\prime} is obtained from I enables us to deduce that the function F is measurable on the set $(-\infty, b)$. For $x=0$ (1) implies that F is an even function. Thus the function F is measurable on the set of all real numbers.
2. The function F is locally bounded. The separability of H implies immediately that $x \rightarrow\|F(x)\|$ is a measurable function, hence there is a measurable set $K \subset R$ of strictly positive measure such that $L=\sup \|F(x)\|$ $<+\infty,(x \in K)$. We assert that $\|F(x)\|$ is bounded on every finite interval. Since the function F is an even function we can, without loss of generality, assume that $K \subseteq[0,+\infty]$. If we put $x+y$ instead of y in (1) we get: $F(x)=2 F(x+y) F(y)-F(x+2 y)$. This implies:

$$
\begin{equation*}
\|F(x)\| \leqslant 2\|F(x+y)\| \cdot\|F(y)\|+\|F(x+2 y)\| . \tag{2}
\end{equation*}
$$

For $x=y$ (1) implies: $F(2 x)=2 F^{2}(x)-E$ and this gives:

$$
\begin{equation*}
\|F(2 x)\| \leqslant 2\|F(x)\|^{2}+1 \tag{3}
\end{equation*}
$$

From (2) and (3) we get:

$$
\begin{equation*}
\|F(x)\| \leqslant 2\|F(x+y)\| \cdot\|F(y)\|+2\left\|F\left(y+\frac{1}{2} x\right)\right\|^{2}+1 \tag{4}
\end{equation*}
$$

According to Lemma 1 there exists a number $a>0$ with the property that for every $x \in(0, a)$ a number y can be found such that $y, y+\frac{1}{2} x, y+x \in K$. If $x \in(0, a)$ and if y is the corresponding element of K then (4) implies: $\|F(x)\| \leqslant 4 L^{2}+1$ for every $x \in(0, a)$. Thus the function $\|F(x)\|$ is bounded on the interval $(0, a)$. This and (3) imply that $\|F(x)\|$ is bounded on the interval $(0,2 a)$. From this we infer that the function $\|F(x)\|$ is bounded on every finite interval of the type $(0, b),(b>0)$. Since F is an even function we have that it is bounded on every finite interval.
3. The function F is weakly continuous. Since the function $F(x)$ is measurable and locally bounded, the functional

$$
\begin{equation*}
\int_{a}^{b}(F(x) f, g) d x \tag{5}
\end{equation*}
$$

is a bounded linear function on H for any $a, b \in R$ and $g \in H$. There is, therefore, a unique element $g_{a b} \in H$ such that:

$$
\int_{a}^{b}(F(x) f, g) d x=\left(f, g_{a b}\right)
$$

for every $f \in H$. Let H^{\prime} denote the set of all $g_{a b}$. We assert that H^{\prime} is dense everywhere on H. In fact, let $h \in H, h \perp H^{\prime}$, that is, let

$$
\begin{equation*}
\int_{a}^{b}(F(x) h, g) d x=0 \tag{6}
\end{equation*}
$$

for all $g \in H$ and for all numbers a and b. For given, but arbitrary g, (6) implies:

$$
\begin{equation*}
(F(x) h, g)=0 \tag{7}
\end{equation*}
$$

for $x \notin S_{g}$ where $m S_{g}=0$. Let $A=\left\{g_{1}, g_{2}, g_{3}, \ldots,\right\}$ be a countable set dense in H and let

$$
S=\bigcup_{n=1}^{\infty} S_{g_{n}} .
$$

According to (7) we have

$$
\begin{equation*}
\left(F(x) h, g_{n}\right)=0 \tag{8}
\end{equation*}
$$

for all $x \notin S$. Since A is dense in H (8) implies $F(x) h=0$ for every $x \notin S$, that is, almost everywhere. The requirement of Theorem 1 implies $h=0$, that is, the set H^{\prime} is dense in H.

If we put $2 F(y) f$ instead of f in (5) and if we use (1) we find:

$$
\begin{equation*}
2\left(F(y) f, g_{a b}\right)=\int_{a+y}^{b+y}(F(x) f, g) d x+\int_{a-y}^{b-y}(F(x) f, g) d x \tag{9}
\end{equation*}
$$

If y_{k} tends to y_{0}, then (9) implies: $\left(F\left(y_{k}\right) f, h\right) \rightarrow\left(F\left(y_{0}\right) f, h\right)$ for every $h \in H^{\prime}$. Since the sequence $F\left(y_{k}\right) f$ is bounded and since H^{\prime} is dense in H we find

$$
\left(F\left(y_{k}\right) f, g\right) \rightarrow\left(F\left(y_{0}\right) f, g\right)
$$

for each pair $f, g \in H$, that is, $F\left(y_{k}\right)$ tends weakly to $F\left(y_{0}\right)$ whenever y_{k} tends to y_{0}. This proves that F is weakly continuous. Q.e.d.

Theorem 2. Let $N(x)$ be a mapping of R into $L(H)$ which satisfies (1) for every $x, y \in R$.

Suppose that: (1) $N(x)$ is a normal transformation for every $x \in R$; (2) if $N(x) f=0$, almost everywhere, then $f=0$; (3) $N(x)$ is weakly continuous.

Then a bounded self-adjoint transformation B and self-adjoint transformation A which commutes with B can be found in such a way that

$$
N(x)=\frac{1}{2}[\exp (i x N)+\exp (-i x N)]=\cos (x N)
$$

holds for all x where $N=A+i B$.

Proof. I. As in Theorem 1 we have

$$
\int_{a}^{b}(N(x) f, g) d x=\left(f, g_{a b}\right) .
$$

We assert that the set H^{\prime} of all $g_{a b}$ is dense in H. In fact if h is an element of H which is orthogonal on H^{\prime}, then (6) holds for all $a, b \in R$ and $g \in H$. The continuity of function ($N(x) f, g$) together with (6) imply (7) for every $x \in R$ and for every $g \in H$. From here we get $N(x) h=0$ for all x which implies $h=0$. Thus the set H^{\prime} is dense in H. Using (1) we obtain:

$$
\begin{aligned}
& \left(\frac{N(x)-E}{x} f, g_{a b}\right)=\frac{1}{2 x}\left[\int_{b}^{b+x}(N(u) f, g) d u+\int_{b}^{b-x}(N(u) f, g) d u\right. \\
& \left.-\int_{a}^{a+x}(N(u) f, g) d u-\int_{a}^{a-x}(N(u) f, g) d u\right]
\end{aligned}
$$

which implies:

$$
\lim _{x \rightarrow 0}\left(\frac{N(x)-E}{x} f, g_{a b}\right)=0
$$

for every $g_{a b} \in H^{\prime}$ and for every $f \in H$. From here it follows that the sequence

$$
\frac{N^{*}(x)-E}{x} h
$$

converges weakly to zero for every $h \in H^{\prime}$, when $x \rightarrow 0$. There exists, therefore, a number $M(h)$ such that:

$$
\left\|\left[N\left(2^{-n}\right)-E\right] h\right\| \leqslant 2^{-n} M(h)
$$

This implies that the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|\left[N\left(2^{-n}\right)-E\right] h\right\|^{2} \tag{10}
\end{equation*}
$$

is convergent for every $h \in H^{\prime}$.
II. The fact that $N(x)$ is an even function implies that $N(x)$ and $N^{N}(y)$ commute one with another for every couple of real numbers x and y. Now we consider the functional equation (1) only for x and y from the set

$$
G=\left\{r \mid r=2^{-l} k, l, k=0, \pm 1, \pm 2, \ldots,\right\}
$$

Since G is countable and since $N(r)$ and $N\left(r^{\prime}\right)\left(r, r^{\prime} \in G\right)$ commute we find (4, p. 67),

$$
\begin{equation*}
N(r)=\int_{R} f(\xi, r) E\left(\Delta_{\xi}\right) \tag{11}
\end{equation*}
$$

where $E(\Delta)$ is a real spectral measure and the function $f(\xi, r)$ is $E(\Delta)$-measurable and finite everywhere for every $r \in G$. If we put (11) in (1) we get:

$$
\begin{equation*}
f\left(\xi, r+r^{\prime}\right)+f\left(\xi, r^{\prime}-r\right)=2 f(\xi, r) f\left(\xi, r^{\prime}\right) \tag{12}
\end{equation*}
$$

for all $r, r^{\prime} \in G$ and for almost all ξ (G is countable!). Using (11) we can write (12) in the form:

$$
\lim _{n \rightarrow \infty} \int_{R} \sum_{k=1}^{n}\left|f\left(\xi, 2^{-n}\right)-1\right|^{2}\left\|E\left(\Delta_{\xi}\right) h\right\|^{2} .
$$

From the above it follows that the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|f\left(\xi, 2^{-n}\right)-1\right|^{2} \tag{13}
\end{equation*}
$$

is convergent almost everywhere with respect to the measure $\|E(\Delta) h\|^{2}$. Since the set H^{\prime} is dense in H the series (13) is convergent almost everywhere with respect to $E(\Delta)$. Thus

$$
\begin{equation*}
f\left(\xi, 2^{-n}\right) \rightarrow 1 \tag{14}
\end{equation*}
$$

almost everywhere with respect to $E(\Delta)$. It follows from (14) and (12) that

$$
\begin{equation*}
f(\xi, r)=\frac{1}{2}[\exp \operatorname{ir\phi }(\xi)+\exp (-i r \phi(\xi))] \tag{15}
\end{equation*}
$$

hold true almost everywhere in ξ and for all $r \in G$ (see (2, Lemma 4)). Here $\phi(\xi)$ is $E(\Delta)$-measurable and everywhere finite complex-valued function. Thus the transformations
(16) $N=\int_{R} \phi(\xi) E\left(\Delta_{\xi}\right), A=\int_{R}[\operatorname{Re\phi }(\xi)] E\left(\Delta_{\xi}\right)$ and $B=\int_{R}[\operatorname{Im} \phi(\xi)] E\left(\Delta_{\xi}\right)$
are defined. Since

$$
\|N(r)\|=\operatorname{ess} \sup |f(\xi, r)|<+\infty
$$

for every $r \in G$, we find:

$$
\text { ess sup }|\operatorname{Im} \phi(\xi)|<+\infty
$$

that is, the transformation B is bounded. Then (16), (15), and (11) imply:

$$
N(r)=\frac{1}{2}[\exp (i r N)+\exp (-i r N)]=\cos (r N)
$$

for every $r \in G$. By the weak continuity and the fact that the set G is dense on R we find: $N(x)=\cos (x N)$ for every $x \in R$.

Remark 1. If we consider a mapping $r \rightarrow N(r)$ of the set G in the set $L(H)$ such that:
(1) $N(r)$ is a normal transformation;
(2) $N\left(r+r^{\prime}\right)+N\left(r^{\prime}-r\right)=2 N(r) N\left(r^{\prime}\right)$ for all $r, r^{\prime} \in G$, and
(3) $\lim \left\|N\left(1 / 2^{n}\right)-E\right\|=0$
then $N(r)=\cos (r N)$, where normal transformation N does not depend on r. Indeed the representation (11) holds in this case too. Since $\|N(r)\|=$ ess sup $|f(\xi, r)|$ (14) also holds. This together with (11) leads to (12) and consequently to (15), from which $N(r)=\cos (r N)$ follows.

References

1. R. Phillips and E. Hille, Functional analysis and semigroups, Amer. Math. Sci. Coll. Pub. (1957).
2. S. Kurepa, A cosine functional equation in n-dimensional vector space, Glasnik mat. fiz. i astr., 13 (1958), 169-189.
3. -—— On the (C)-property of functions, Glasnik mat. fiz. i astr., 13 (1958), 33-38.
4. B. Sz. Nagy, Spektraldarstellung Linearer Transformationen des Hilberschen Raumes (Berlin, 1942).

Department of Mathematics, Zagreb

[^0]: Received December 28, 1958. Presented under the same title to the International Congress of Mathematicians, Edinburgh, 1958.

