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Central Sequence Algebras of a Purely
Infinite Simple C

∗-algebra

Akitaka Kishimoto

Abstract. We are concerned with a unital separable nuclear purely infinite simple C∗-algebra A sat-

isfying UCT with a Rohlin flow, as a continuation of [12]. Our first result (which is independent of

the Rohlin flow) is to characterize when two central projections in A are equivalent by a central partial

isometry. Our second result shows that the K-theory of the central sequence algebra A′ ∩ Aω (for

an ω ∈ βN \ N) and its fixed point algebra under the flow are the same (incorporating the previous

result). We will also complete and supplement the characterization result of the Rohlin property for

flows stated in [12].

1 Introduction

When A is a unital separable nuclear purely infinite simple C∗-algebra, Kirchberg

and Phillips showed in [8] that A ′ ∩ Aω is purely infinite and simple, where Aω is

the ultrapower of A for an ω ∈ βN \ N (see the definition below). If α is a flow (or

continuous action of R) on A, α induces a non-continuous action of R on Aω and

we can take the α-continuous part Aω
α of Aω . When α has the Rohlin property, we

have shown in [12] that the α-fixed point algebra (A ′ ∩ Aω
α)α is again purely infi-

nite and simple and the embedding (A ′ ∩ Aω
α)α ⊂ A ′ ∩ Aω induces an isomorphism

K0((A ′ ∩ Aω
α)α) ∼= K0(A ′ ∩ Aω). We will continue to study these objects. First we

characterize when two projections in A ′∩Aω (or hence in (A ′∩Aω
α)α) are equivalent.

Second we will show that the embedding (A ′ ∩ Aω
α)α ⊂ A ′ ∩ Aω also induces an iso-

morphism K1((A ′ ∩ Aω
α)α) ∼= K1(A ′ ∩ Aω). Finally we will complete the proof of the

main result of [12], which is an attempt to characterize the Rohlin property for flows.

The result includes that α has the Rohlin property if and only if the crossed product

A×α R is purely infinite and simple and the dual flow α̂ has the Rohlin property. See

4.6 for details. We will also show that the trivial flow is obtained as a limit of cocycle

perturbations of a Rohlin flow. In particular the Rohlin flow has a cocycle perturba-

tion whose fixed point algebra contains the image of a unital endomorphism.

We recall ultrapowers of a C∗-algebra A. We denote by ℓ∞(A) the C∗-algebra of

bounded sequences x = (xn)∞n=1 in A. For a free ultrafilter ω ∈ βN \ N, we define

cω(A) =
{

x ∈ ℓ∞(A)
∣

∣ lim
n→ω

‖xn‖ = 0
}

,

which is a closed ideal of ℓ∞(A) and set Aω
= ℓ∞(A)/cω(A). We embed A into Aω as

constant sequences. It is known [8] that if A is a unital separable nuclear purely infi-

nite simple C∗-algebra, then A ′∩Aω is a unital purely infinite simple C∗-algebra. For
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each projection e ∈ Aω we can choose a sequence (en) in P(A), the set of projections

in A, such that (en) represents e, which will sometimes be denoted by e = (en).

We denote by U(A) the group of unitaries of A (or A+C1 if A is non-unital) and by

P(A) the set of projections in A as above. If e, p ∈ P(A) almost commute with each

other, then ep is close to a projection, whose (Murray-von Neumann) equivalence

class is denoted by [ep]0. If e ∈ P(A) almost commutes with u ∈ U(A), then eu+1−e

is close to a unitary, whose equivalence class (i.e., homotopy class in U(A)) is denoted

by [eu]1. Our first result, which is independent of flows, is as follows.

Corollary 1.1 Let A be a unital separable nuclear purely infinite simple C∗-algebra

satisfying the Universal Coefficient Theorem and let ω ∈ βN \ N.

Let e0, e1 ∈ P(Aω ∩ A ′) and let (eσ,n) be a sequence in P(A) representing eσ . Then

e0 and e1 are equivalent if and only if for any finite subsets P ⊂ P(A) and U ⊂ U(A)

there is an Ω ∈ ω such that for any n ∈ Ω, it follows that [eσ,n, p] ≈ 0 and [eσ, u] ≈ 0

and

[e0,n p]0 = [e1,n p]0, [e0,nu]1 = [e1,nu]1

for all p ∈ P and u ∈ U.

This will follow from Theorem 2.1 of Section 2.

If α is a flow on A, we can define an action α of R on ℓ∞(A) by t 7→ αt ((xn)) =

(αt (xn)). We set ℓ∞α (A) = {x ∈ ℓ∞(A)| t 7→ αt (x) is continuous}, which is the

maximal C∗-subalgebra of ℓ∞(A) on which α is strongly continuous. For an ω ∈
βN \ N, we set Aω

α = ℓ∞α (A)
/

cω(A) ∩ ℓ∞α (A). Note that α induces a flow on Aω
α,

which we will denote by α. The flow α leaves A ′ ∩ Aω
α invariant; the C∗-subalgebra

of α-invariant elements there will be denoted by (A ′ ∩ Aω
α)α.

Corollary 1.2 Let A be a unital separable nuclear purely infinite simple C∗-algebra

satisfying the Universal Coefficient Theorem and let ω ∈ βN \ N. Let α be a Rohlin

flow on A. Then the embedding (A ′ ∩ Aω
α)α ⊂ A ′ ∩ Aω induces an isomorphism

K∗

(

(A ′ ∩ Aω
α)α

)

∼= K∗(A ′ ∩ Aω) for ∗ = 0, 1.

For ∗ = 0 this is shown in [12]. The case for ∗ = 1 will follow from 4.2 and 4.4.

2 Projections

We choose a small δ0 > 0 satisfying: If e, f are projections in the C∗-algebra A such

that ‖[e, f ]‖ < δ0 then χ[1/2,∞)(e f e) defines a projection whose equivalence class is

denoted by [e f ]0, where χC is the characteristic function of C ⊂ R. Furthermore if

e ∈ P(A) and u ∈ U(A) are such that ‖[e, u]‖ < δ0, then ue + 1 − e is invertible,

whose equivalence class is denoted by [ue]1.

Theorem 2.1 Let A be a separable nuclear purely infinite simple C∗-algebra satisfying

the Universal Coefficient Theorem.

For any finite subset F of A and ǫ > 0, there exist a finite subset P of P(A), a finite

subset U of U(A), a finite subset G of A, and δ ∈ (0, δ0) satisfying: For any pair e0, e1 in

P(A) \ {0} such that

‖[eσ, x]‖ < δ, x ∈ P ∪ U ∪ G
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for σ = 0, 1 and

[pe0]0 = [pe1]0, p ∈ P,

[ue0]1 = [ue1]1, u ∈ U,

there is a partial isometry v ∈ A such that v∗v = e0, vv∗ = e1, and

‖[v, x]‖ < ǫ, x ∈ F.

Remark 2.2 If K0(A) is finitely generated, we may take a fixed finite set

{p1, p2, . . . , pn} for P in the above theorem, by enlarging G if necessary, such that

{[p1], [p2], . . . , [pn]} generates K0(A). To see this we first note that any projection

in A can be expressed in terms of q ∈ P(A) with [q] = 0 and q ∈ P(A) with

[q] = [pi] for some i. If [q] = 0, then there are partial isometries u, v ∈ A such

that u∗u = q = v∗v and uu∗ + vv∗ = q. Hence if [eσ, u] ≈ 0 and [eσ, v] ≈ 0,

then it follows that [eσq] = [eσuu∗] + [eσvv∗] = 2[eσq], i.e., [e0q] = 0 = [e1q]. If

[q] = [pi], then there is a partial isometry u ∈ A such that u∗u = q and uu∗
= pi .

Hence if [eσ, u] ≈ 0, then [eσq] = [eσ pi], i.e., [e0q] = [e0 pi] = [e1 pi] = [e1q].

Thus, if q ∈ P(A) and if eσ almost commutes with some finite set of elements asso-

ciated with q as above, we can conclude that the equality [e0q] = [e1q] follows from

the conditions [e0 pi] = [e1 pi] for i = 1, . . . , n. The same remark applies to U.

Remark 2.3 We show that the conditions concerning P and U are necessary in the

above theorem.

Assume that K0(A) = Z and [1A] = 0. Let e0 and e1 be non-zero projections in

the Cuntz algebra O∞ such that [e0] = 0 and [e1] = 1. Then 1A ⊗ eσ is a projection

in A ⊗ O∞
∼= A such that [1A ⊗ eσ] = 0. If p is a projection in A such that [p] = 1,

then

[p ⊗ e0] = 0, [p ⊗ e1] = 1.

This implies that if v ∈ A ⊗ O∞ satisfies that v∗v = 1 ⊗ e0 and vv∗ = 1 ⊗ e1, then

‖[v, p ⊗ 1]‖ ≥ 1. Hence this shows that however central 1 ⊗ eσ is for σ = 0, 1,

we cannot choose a partial isometry v ∈ A ⊗ O∞ with initial projection 1 ⊗ e0

and final projection 1 ⊗ e1, almost commuting with this particular p. The above

assertion is shown as follows. If ‖[v, p ⊗ 1]‖ < 1, then ‖v(p ⊗ e0)v∗ − p ⊗ e1‖ ≤
‖[v, p ⊗ 1](1 ⊗ e0)v∗‖ = ‖[v, p ⊗ 1]‖ < 1, which implies that p ⊗ e0 and p ⊗ e1 are

mutually equivalent, a contradiction.

Assume that K0(A) = 0 and K1(A) = Z. Let e0 and e1 be non-zero projections in

O∞ such that [e0] = 0 and [e1] = 1. Then 1⊗ eσ is a projection in A⊗O∞
∼= A such

that [1 ⊗ eσ] = 0. Let u be a unitary in A such that [u] = 1. Then [u ⊗ e0] = 0 and

[u ⊗ e1] = [u ⊗ 1] = 1. This implies that if v ∈ A ⊗ O∞ satisfies that v∗v = 1 ⊗ e0

and vv∗ = 1⊗ e1, then ‖[v, u⊗1]‖ ≥ 2. Because if ‖[v, u⊗1]‖ < 2, then v∗(u⊗ e1)v

and u ⊗ e0 would be equivalent as unitaries in (1 ⊗ e0)A ⊗ O∞(1 ⊗ e0), which is a

contradiction.

By the uniqueness theorem proved in [8, 9] a unital separable nuclear purely in-

finite simple C∗-algebra with UCT is obtained as an inductive limit of finite direct

https://doi.org/10.4153/CJM-2004-054-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-054-0


1240 Akitaka Kishimoto

sums of a C∗-algebra of the form O ⊗ C∗(z), where O is a corner of a Cuntz algebra

and C∗(z) is the C∗-algebra generated by a unitary z with full spectrum (see [2]);

we may further assume that the connecting maps are all injective. The above result

is shown for (a corner of) the Cuntz algebra On with n < ∞ in [10, 3.5], where

P = {1} and U = Ø suffice. The following lemma, as a generalization of this result,

is a special case of the above theorem.

Lemma 2.4 The above theorem is valid for a corner of a Cuntz algebra, where U = Ø

suffices.

Proof A corner of a Cuntz algebra can be given as e(B ×α Z)e, where B is a stable

AF C∗-algebra with K0(B) ⊂ R, e is a projection in B, and α is an automorphism of B

which does not preserve the trace τ , where τ is defined by τ (p) = [p] for p ∈ P(A).

We may suppose that τα(e) < τ (e).

We may suppose that there is an increasing sequence (Bn) of finite-dimensional

C∗-subalgebras of B with dense union such that α(Bn) ⊂ Bn+1, Bn ⊂ α(Bn+1), e ∈ B1,

α(e) ∈ B1, α(e) ≤ e, α(e) has central support e in eB1e, and any direct summand of

Bn has a copy in any direct summand in Bn+1 for any n. Note that A = e(B ×α Z)e

is a unital separable nuclear purely infinite simple C∗-algebra with K1(A) = 0 [15].

Note also that α has the Rohlin property and is determined up to cocycle conjugacy

by the number τ (α(e))/τ (e) [6, 3].

Let U denote the canonical unitary multiplier of B ×α Z implementing α and let

S = U e ∈ A. Then A is generated by the isometry S and the AF C∗-subalgebra eBe.

We define an endomorphism λ of A by λ(x) = SxS∗, x ∈ A. Let n ≥ 2. Since

A∩ (eBne) ′ = e(B×α Z∩B ′
n)e, we have, for any x ∈ A∩ (eBne) ′, an x̂ ∈ (B×α Z)∩B ′

n

such that x̂e = x, from which U x̂U ∗α(e) = λ(x). Since U x̂∗U ∗ ∈ B ′
n−1, we have

that λ(x) ∈ (A ∩ (eBn−1e) ′)α(e). Thus, by using the fact that the multiplication

by α(e) on A ∩ (eB1e) ′ is an isomorphism and that B1 ⊂ α(B2), we define a unital

homomorphism λ̃ of A ∩ B ′
2 into A ∩ B ′

1 by λ̃(x)α(e) = λ(x), where A ∩ B ′
n should

be understood as A ∩ (eBne) ′ with e the identity of A, or we should say we often use

Bn to denote eBne if it is clear from the context. Note that λ̃(A ∩ B ′
n) is contained in

A ∩ B ′
n−1 and contains A ∩ B ′

n+1. Since ‖[S, y]‖ = ‖SyS∗ − yα(e)‖ = ‖λ̃(y) − y‖ =

‖λ̃(y∗) − y∗‖ for y ∈ A ∩ B ′
2, we have that y ∈ A ∩ B ′

2 almost commutes with S and

S∗ if and only if ‖λ̃(y)− y‖ ≈ 0. In this way we may try to choose the desired v from

A ∩ B ′
N such that ‖λ̃(v) − v‖ < ǫ for any prescribed N and ǫ.

By the Rohlin property of α, we have, for any N, n ∈ N and ǫ ′ > 0, a Rohlin

partition e10, e11, . . . , e1,n−1, e20, e21, . . . , e2,n of unity by projections in e(BM ∩ B ′
N)e

for a large M > N such that

max
{

‖λ̃(eσ,i) − eσ,i+1‖
∣

∣ i = 0, 1, . . . , n − 3 + σ, σ = 1, 2
}

< ǫ ′.

We assume that N and n are sufficiently large and choose M as above.

Let {Ei ; i = 1, 2, . . . , K} denote the set of minimal central projections in

eBM+2n+2e and let pi be a minimal projection in EiBM+2n+2Ei .

Let e0, e1 be non-zero projections in A∩B ′
M+2n+2 such that λ̃(eσ) ≈ eσ for σ = 0, 1

and [e0 pi]0 = [e1 pi]0 in K0(A) for i = 1, 2, . . . , K. That is, we have set
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P = {pi | i = 1, 2, . . . , K}. Let {F j | j = 1, . . . , K ′} denote the set of minimal

central projections in eBM+2n+1e. Since the condition [e0 pi] = [e1 pi] implies that

[e0F j] = [e1F j] in K0

(

F j(A ∩ B ′
M+2n+1)F j

)

,

and since eσF j 6= 0, we have a partial isometry w ∈ A ∩ B ′
M+2n+1 such that w∗w = e0

and ww∗
= e1.

Since λ̃(eσ) ≈ eσ , there is a vσ ∈ U(A∩B ′
M+2n) such that vσ ≈ 1 and Ad vσλ̃(eσ) =

eσ . Then x = wv0λ̃(w∗)v∗1 is a unitary in e1(A ∩ B ′
M+2n)e1. We set x0 = e1, x1 = x,

and xk = x Ad v1λ̃(xk−1) for k = 1, 2, . . . . Since xk ∈ e1(A ∩ B ′
M+2n+1−k)e1 and

K1(e1(A ∩ B ′
M+n)e1) = 0, there is a rectifiable path wk from e1 to xk in U(e1(A ∩

B ′
M+n)e1) of length about π for k = n, n + 1, i.e., wk(0) = e1, wk(1) = xk, and

‖wk(s) − wk(t)‖ < 2π|s − t| for 0 ≤ s < t ≤ 1. By using those paths applied with

λ̃−k with k = 0, 1, . . . , n and the Rohlin partition in e(BM ∩ B ′
N)e, one defines a

unitary z ∈ e1(A ∩ B ′
N )e1 such that x = wv0λ̃(w∗)v∗1 ≈ zλ̃(z∗) (up to the order of

1/n) [6]. More concretely we define

z =

n−1
∑

k=0

xk+1λ̃
k−n+1

(

wn

(

k/(n − 1)
)∗

)

+

n
∑

k=0

xk+1λ̃
k−n

(

wn+1(k/n)∗
)

,

where we should note that λ̃−1 maps A ∩ B ′
m into A ∩ B ′

m−1. Then w1 = z∗w is a

partial isometry in A ∩ B ′
N such that λ̃(w1) ≈ w1. Since w∗

1 w1 = e0 and w1w∗
1 = e1,

this concludes the proof.

Proof of Theorem 2.1 We may assume that A is unital by finding a projection E

such that EAE almost contains F and by restricting everything to EAE.

As noted before (Lemma 2.4), we may assume that there is an increasing sequence

(An) of unital C∗-subalgebras of A such that A =
⋃

n Am, A =
⊕Kn

k=1 Ank, and Ank =

Dnk ⊗C∗(znk), where Dnk is of the form e(B ×α Z)e as in the previous lemma and znk

is a unitary with full spectrum.

Let F be a finite subset of A and ǫ > 0. We may suppose that F equals

Kn
⋃

k=1

Fnk ∪ {znk}

for some n, where Fnk ⊂ Dnk. We choose Pnk ⊂ P(Dnk), Gnk ⊂ Dnk, and δnk > 0 by

applying 2.4 to Dnk with (Fnk, ǫ).

Let Enk denote the identity of Ank. We approximate znk by

w ⊕ w ⊕ y∗ ∈ U(EnkAEnk),

where [w] = [znk] = [y], [w∗w] = [Enk], [y∗y] = −[Enk], and Spec(w) = T =

Spec(y) (in case [znk] = 0). Let vnk be a self-adjoint unitary in U(EnkAEnk) which

switches the first two components of w ⊕ w ⊕ y∗ and is the identity on the support

of the third.
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We approximate 0 ⊕ w ⊕ y∗ by a unitary on 0 ⊕ 1 ⊕ 1 with finite spectrum

N−1
∑

k=0

e2πik/N fk

for a large N with [ fk] = 0 and fk 6= 0 (cf. [12, 2.5]). We note that F =
∑N−1

k=0 fk

satisfies that F + vFv = 1 ⊕ 1 ⊕ 2. We find a family ( f (nk)
i j ) of matrix units EnkAEnk

such that f (nk)
j j = f j . We set

P =

Kn
⋃

k=1

Pnk,

U =

Kn
⋃

k=1

{znk p + 1 − p | p ∈ Pnk},

G =

Kn
⋃

k=1

Gnk ∪ {Enk, f (nk)
i j , vnk}.

We will take a sufficiently small δ > 0.

Let e0, e1 be a pair in P(A) \ {0} such that

‖[eσ, x]‖ < δ, x ∈ P ∪ U ∪ G

and

[pe0]0 = [pe1]0, p ∈ P,

[ue0]1 = [ue1]1, u ∈ U.

Since eσ almost commutes with Enk, we can discuss the pairs e0Enk and e1Enk in

EnkAEnk separately. Thus we have the following situation: e(B ×α Z)e ⊗ C∗(z) is

a unital C∗-subalgebra of A, where (B, α) is as described as in the proof of Lemma

2.4, and the two non-zero projections e0, e1 ∈ P(A ∩ B ′
m) are equivalent in A ∩ B ′

m

for a sufficiently large m, and satisfy

[eσ, z] ≈ 0, [eσ, fi j] ≈ 0, [eσ, v] ≈ 0, λ̃(eσ) ≈ eσ,

[zpe0]1 = [zpe1]1, p ∈ P,

where we have used the notation in the proof of 2.4. In particular, P is the set of

minimal projections each of which is chosen from a direct summand of eBme. From

the last condition it follows that [ze0]1 = [ze1]1 in K1(A ∩ B ′
m−1). The second and

third conditions imply that even if [zeσ]1 = 0, the spectrum of (a unitary in eσAeσ

close to) zeσ is almost dense in T (because eσF 6= 0 or eσvFv∗ 6= 0 where F =
∑

k fk).

Hence it follows [5] that there is a w ∈ A∩B ′
m−1 such that w∗w = e0, ww∗

= e1, and
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wze0w∗ ≈ ze1. Note also that if eσ 6= 1, then the spectrum of z(1 − eσ) is also almost

dense in T.

We make another assumption on the choice of the increasing sequence (Bm) of

finite-dimensional C∗-subalgebras of B: For any m = 1, 2, . . . there is a v ∈
U(e(Bm+1 ∩B ′

m)e) such that vS ∈ A∩ (eBme) ′ and that for any p ∈ P(e(Bm+1 ∩B ′
m)e)

with p ≤ vSS∗v∗ the projection q = (vS)∗p(vS) ∈ e(Bm+2 ∩ B ′
m)e satisfies that

[q] ≥ [p] in K0(e(Bm+2 ∩B ′
m)e). We can see that this does not cause the loss of gener-

ality as follows. Let {Emk | k = 1, 2, . . . , Km} denote the set of minimal central pro-

jections of eBme. By passing to a subsequence, we may suppose that α(Emk) = SEmkS∗

is equivalent to a subprojection of Emk in eBm+1e. Then there is a v ∈ U(eBm+1e)

such that pk = vSEmkS∗v∗ ≤ Emk for any k. Note that Em+1,ℓ pk is a projection in

Em+1,ℓEmkeBm+1eEmk (which is a full matrix algebra) and has dimension divisible by

[m, k], where [m, k] is given by EmkeBme ∼= M[m,k]. Hence, by changing v if necessary,

we may suppose that Em+1,ℓ pk ∈ Em+1,ℓEmkeBm+1eEmk ∩ (Em+1,ℓEmkeBme) ′ for any ℓ,

which says that

pk = vSEmkS∗v∗ ∈ EmkeBm+1eEmk ∩ (EmkeBme) ′.

Define a homomorphism φk : pkEmkeBme → pkEm+1,ℓEmkeBm+1eEmk pk by

φk(pkx) = Em+1,ℓvSxS∗v∗, x ∈ EmkeBme.

Since this is a unital isomorphism of a full matrix algebra into a full matrix algebra,

this must be unitarily equivalent to the inclusion

pkEmkeBme ⊂ pkEm+1,ℓEmkeBm+1eEmk pk.

Hence there is a unitary wk in pkEmkeBm+1eEmk pk such that

wkvSxS∗v∗w∗
k = pkx, x ∈ EmkeBme.

Let w =
∑

k wk + (e −
∑

k pk) and replace v by wv ∈ U(eBm+1e). Then it follows

that pk = vSEmkS∗v∗ and vSxS∗v∗ = vSS∗v∗x = xvSS∗v∗ for x ∈ eBme. The latter

condition implies that [x, vS] = 0, x ∈ eBme, i.e., vS ∈ A ∩ (eBme) ′. The other

condition can be met by passing to a subsequence if necessary.

We shall show first that there is no loss of generality to assume that e0e1 = 0.

If e0 = 1 = e1, then there is nothing to prove in the first place. Hence suppose

that e1 6= 1. Since λ̃(eσ) ≈ eσ and eσ, λ̃(eσ) ∈ A∩B ′
m−1, there is a vσ ∈ U(A∩B ′

m−1)

for σ = 0, 1 such that vσ ≈ 1 and Ad vσλ̃(eσ) = eσ . By using the Rohlin property

for α on B, we get a Rohlin partition of unity {p10, p11, . . . , p1,n−1, p20, . . . , p2n} by

projections in e(Bm−2 ∩B ′
ℓ+1)e for n ≫ 1 and m ≫ ℓ ≫ 1 such that λ̃(pσ,i) ≈ pσ,i+1.

(We actually choose ℓ first and then m to accommodate such a Rohlin partition.)

We find a v2 ∈ U(e(Bm−1 ∩ B ′
ℓ)e) such that v2 ≈ 1 and Ad v2λ̃(pσ,i) = pσ,i+1.

Since the spectrum of z(1− e1)pσ,i is independent of i (since it is left invariant under

Ad(v2v1)λ̃), it follows that the spectrum of z(1 − e1)p0 is almost dense in T for p0 =
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p10 + p20. We then find a partial isometry w ∈ A ∩ B ′
ℓ such that w∗w = e0, ww∗ ≤

(1 − e1)p0, and [z, w] ≈ 0 (see [5]). We define

W = n−1/2

n−1
∑

k=0

(Lv2v1
Rv∗

0
λ̃)k(w),

which is a partial isometry in A ∩ B ′
ℓ−n such that W ∗W = e0, WW ∗ ≤ 1 − e1,

[z,W ] ≈ 0, and λ̃(W ) ≈ W (up to n−1/2). Here Lx (resp. Rx) denotes the bounded

operator on A defined by Lx y = xy (resp. Rx y = yx.) Note that e ′0 = WW ∗ is

connected with e0 by the partial isometry W which commutes with elements from

a prescribed finite subset. Hence the pair e0 and e ′0 (as well as e1) should satisfy

the same kind of conditions in the statement (if we start with stronger conditions

imposed on the pair (e0, e1).) Thus we are left with the two projections e ′0 and e1

which are mutually orthogonal and can be chosen to have prescribed properties.

Now we assume that e0e1 = 0. We choose v ∈ U(A ∩ B ′
m−1) such that v ≈ 1

and Ad vλ̃(eσ) = eσ. Note that we have chosen w ∈ A ∩ B ′
m−1 such that w∗w = e0,

ww∗
= e1, and [w, z] ≈ 0. Then x = wvλ̃(w∗)v∗ is a unitary in e1(A ∩ B ′

m−2)e1.

Moreover since λ̃(z) = z, x almost commutes with ze1. We set x0 = e1, x1 = x, and

xk = x Ad v1λ̃(xk−1) for k = 2, 3, . . . , n+1. We may suppose that [xk, z] ≈ 0 for k up

to n + 1. By the following lemma 2.5 we have that [xk]1 = 0 in K1(e1(A∩B ′
m−n−2)e1)

and the Bott element B(xk, ze1) is 0 in K0(e1(A∩B ′
m−n−2)e1) for k ≤ n+1 (see [13, 7]).

By 8.1 of [1] we have a rectifiable path (of length less than 5π + 1) from xk to e1 in

U(e1Ae1 ∩B ′
m−n−1) almost commuting with ze1 for k = n, n + 1. By using these paths

(applied by λ̃−k with k up to n) and the Rohlin partition in e(Bm−2n−2 ∩ B ′
N )e (with

m − 2n − 2 ≫ N), we will obtain ζ ∈ U(A ∩ B ′
N ) such that x ≈ ζλ̃(ζ∗). Then ζ∗w

will be the desired isometry just as in the proof of Lemma 2.4. See also [12] for a

similar proof.

Lemma 2.5 With w, e0, e1, z, v as above,

[wvλ̃(w∗)v∗] = 0

in K1(e1Ae1 ∩ (e1Bm−3e1) ′) and

B(wvλ̃(w∗)v∗, ze1) = 0

in K0(e1Ae1 ∩ (e1Bm−3e1) ′). Moreover, with x1 = wvλ̃(w∗)v∗, and xk, k = 2, 3, . . . ,
n+1, as above, [xk] = 0 in K1(e1Ae1∩(e1Bm−2−ke1) ′) and B(xk, ze1) = 0 in K0(e1Ae1∩
(e1Bm−2−ke1) ′).

To prove this lemma we prepare a couple of lemmas. We denote by I(A) the set of

non-unitary isometries of A. When z ∈ U(A) and p ∈ P(A) almost commute, [zp]

is the equivalence class of a unitary close to zp + 1 − p and Spec(zp) is the spectrum

of such a unitary and is defined only up to the order ‖[z, p]‖ (if [zp]1 = 0).
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Lemma 2.6 Let s0, s1 ∈ I(A) and z ∈ U(A) such that [sσ, z] ≈ 0 and

Spec(z(1 − sσs∗σ)) is almost dense in T for σ = 0, 1. Then there is a rectifiable path

s in I(A) such that s(0) = s0, s(1) = s1, and [s(t), z] ≈ 0.

Proof Since [z(1 − sσs∗σ)] = 0, it follows that there is a partial isometry v such that

v∗v = 1− s0s∗0 , vv∗ = 1− s1s∗1 , and [z, v] ≈ 0. Then the unitary u1 = s1s∗0 + v satisfies

that u1s0 = s1 and [u1, z] ≈ 0. We may suppose that [u1] = 0 and B(u1, z) = 0 by

modifying v if necessary. (There is a v ′ ∈ U(A) such that v ′
= v ′(1 − s0s∗0 ) + s0s∗0 ,

(v ′ − 1)z ≈ v ′ − 1, and [v ′] is an arbitrary element of K1(A). There is another

v ′ ′ ∈ U(A) such that v ′ ′
= v ′ ′(1− s0s∗0 ) + s0s∗0 , [v ′ ′] = 0, [v ′ ′, z] ≈ 0, and B(v ′ ′, z) is

an arbitrary element of K0(A).) Then there is a rectifiable path u such that u(0) = 1,

u(1) = u1, and [u(t), z] ≈ 0 (see [1]). Hence the path s(t) = u(t)s0 satisfies that

s(0) = s0, s(1) = s1, and [s(t), z] ≈ 0.

Lemma 2.7 Let D be a finite-dimensional C∗-subalgebra of A and let s0, v0 ∈
I(A ∩ D ′) and z ∈ U(A ∩ D ′) such that [s0, z] ≈ 0, [v0, z] ≈ 0, s0s∗0 + v0v∗0 ≤ 1,

and Spec(zp) is almost dense for each minimal central projection p of D. Then there is

a continuous map s of [0,∞) into I(A ∩ D ′) such that s(0) = s0, [s(t), z] ≈ 0, and

limt→∞ ‖[s(t), x]‖ = 0 for x ∈ A. Moreover there is a continuous path v of [0,∞) into

I(A ∩ D ′) such that v(0) = v0, [v(t), z] ≈ 0, and v(t)v(t)∗ ≤ 1 − s(t)s(t)∗.

Proof Let s1 ∈ I(O∞), where O∞ is the Cuntz algebra generated by infinitely many

isometries. There is a continuous map f of [0, 1] into I(O∞⊗O∞) such that f (0) =

s1 ⊗1 and f (1) = 1⊗ s1. We regard f as a map of [0, 1] into O∞⊗O∞⊗1⊗1 · · · ⊂
⊗∞

0 O∞. Let γ denote the one-sided shift on E =
⊗∞

0 O∞ and define a continuous

map s of [0,∞) into I(E) by

s(t) = γn( f (t − n)), t ∈ [n, n + 1).

It follows that s(0) = s1 ⊗ 1 ⊗ 1 · · · and lim ‖[s(t), x]‖ = 0 for x ∈ E. Note, by

the proof of the previous lemma, that there is a continuous path u in U(E) such that

s(t) = u(t)s1. Note by [8] that E ∼= O∞.

Since A ∼= A⊗O∞, we may identify A with A⊗O∞ and assume that s0, z ∈ A⊗1

and D ⊂ A⊗1 (by modifying them slightly). Since we have constructed a continuous

map s of [0,∞) into I(1 ⊗ O∞) such that lim ‖[s(t), x]‖ = 0 for x ∈ 1 ⊗ O∞, it

suffices to find a path connecting s0 and s(0) in I(A ⊗ O∞ ∩ D ′) almost commuting

with z. Since A ⊗ O∞ ∩ D ′ is a finite direct sum of C∗-algebras like A, this follows

from the previous lemma if the condition on the spectrum of zp(1 − s0s∗0 ) is met

for each minimal central projection p of D. (The condition for zp(1 − s(0)s(0)∗)

is obviously satisfied.) Since 1 − s0s∗0 ≥ v0v∗0 and zpv0v∗0 ≈ v0zpv∗0 , we have that

Spec(zp(1 − s0s∗0 )) almost contains Spec(zp), which is almost dense. Thus we can

apply the previous lemma as asserted.

Note that the path s is defined as s(t) = u(t)s0 with a path u in U(A ∩ D ′) such

that u(0) = 1 and [u(s), z] ≈ 0 uniformly in s ∈ [0,∞). Hence the last part follows

by defining v(t) = u(t)v0.
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Lemma 2.8 Let u, v ∈ U(A ⊗ C[0, 1]) be such that u(0) = v(0) and Spec(u(t)) =

T = Spec(v(t)). Then for any ǫ > 0 there is a ζ ∈ U(A ⊗C[0, 1]) such that ζ(0) = 1

and ‖ζuζ∗ − v‖ < ǫ.

Proof We take a large integer N such that 1/N < ǫ. We approximate u by a unitary

u1 ⊕ u ′ up to the order of ǫ, where the unitary u ′ has spectrum {ω ∈ C | ωN
= 1}

and is given by

u ′
=

N−1
∑

k=0

e2πik/N ek.

We assume that
∑

k[ek] = 2[1] (and so [u∗
1 u1] = −[1]). We approximate v by a

unitary v ′ ⊕ v1 up to the order of ǫ, where

v ′
=

N−1
∑

k=0

e2πik/N pk

with pk 6= 0 and [pk] = 0, which entails that [v∗1 v1] = [1]. We then approximate

u ′ by s1v∗1 s∗1 ⊕ s2v1s∗2 , where s1, s2 are partial isometries such that s1s∗1 + s2s∗2 = u ′u ′∗

and s∗1 s1 = s∗2 s2 = v1v∗1 . Since u1 ⊕ s1v∗1 s∗1 has trivial K1 and spectrum T, we can

approximate it by a unitary u ′ ′, which is given by

u ′ ′
=

N−1
∑

k=0

e2πik/N qk

with qk 6= 0 and [qk] = 0. We find a partial isometry y ∈ A such that yqk y∗ = pk

and y∗y =
∑

k qk. Since u ≈ u1 ⊕ u ′ ≈ u1 ⊕ s1v∗1 s∗1 ⊕ s2v1s∗2 ≈ u ′′ ⊕ s2v1s∗2 and

v ≈ v ′ ⊕ v1, and since the unitary ζ = y + s∗2 satisfies that ζ(u ′ ′ ⊕ s2v1s∗2 )ζ = v ′ ⊕ v1,

it follows that that ‖ζuζ∗ − v‖ is of the order of ǫ.

Note that ζ(0) may not be 1. If the Bott element B(ζ(0), u(0)) vanishes, there is a

continuous path z(t) such that z(0) = 1, z(1) = ζ(0), and [z(t), u(0)] ≈ 0 (see [1]).

Hence in this case we can modify ζ(t) around t = 0 so that ζ(0) = 1, retaining the

condition that ζ(t)u(t)ζ(t)∗ ≈ v(t) for t near 0, where u(t) ≈ u(0) ≈ v(t).

If B(ζ(0), u(0)) 6= 0, then we find a η ∈ U(A ⊗C[0, 1]) such that

[η, u] ≈ 0 and B(η(t), u(t)) = −B(ζ(0), u(0)).

Then it would follow that (ζη)u(ζη)∗ ≈ v and B(ζ(0)η(0), u(0)) = 0, which would

produce the desired unitary by modifying ζη. We can get such an η as follows. We

approximate u by u1 ⊕ u ′ as above, where this time u ′ should be
∑

k e2πik/N ek with

[ek] = B(ζ(0), u(0)). Then we find an η ∈ U(A ⊗ C[0, 1]) such that ηekη
∗

= ek+1

with eN = e0 and η(1 −
∑

ek) = 1 −
∑

k ek. This η satisfies the required condition

(see 4.1 and 8.1 of [1]).

Proof of Lemma 2.5 We have supposed that e0, e1 ∈ A ∩ B ′
m (= A ∩ (eBme) ′ more

precisely) and e0e1 = 0 and chosen a v ∈ U(A ∩ B ′
m−1) such that v ≈ 1 and
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Ad vλ̃(eσ) = eσ , i.e., S ≈ vS ∈ A ∩ {e0, e1}
′. Note that (vS)(vS)∗ = α(e). By

the assumption there is a u ∈ U(eBm−2e) such that uvS ∈ A ∩ B ′
m−3 ∩ {e0, e1}

′

and p = uvS(uvS)∗ ∈ e(Bm−2 ∩ B ′
m−3)e. We have chosen w ∈ A ∩ B ′

m−1 such

that w∗w = e0, ww∗
= e1, and [w, z] ≈ 0. Since x = wvλ̃(w∗)v∗ is a unitary in

e1(A ∩ B ′
m−2)e1 and [u, e1] = 0, we have that x = uxu∗.

Let s0 = uvS and note that [s0, z] ≈ 0. We may suppose that 2[α(e)] < [e] in

K0(B1) in the first place and that 2[p] < [e] in K0(e(Bm−2 ∩ B ′
m−3)e). Thus we may

suppose that there is an isometry b0 ∈ A (of the form bs0 with some b ∈ e(Bm−2 ∩
B ′

m−3)e) such that b0b∗0 ∈ e(Bm−2 ∩ B ′
m−3)e such that [b0, z] ≈ 0, [b0, eσ] = 0, and

s0s∗0 + b0b∗0 ≤ e.

Let s be a continuous path in I(A ∩ B ′
m−3 ∩ {e0, e1}

′) such that s(0) = s0 = uvS,

[s(t), z] ≈ 0, and lim ‖[s(t), x]‖ = 0 for x ∈ A. Note that there is another path

b in I(A ∩ B ′
m−3 ∩ {e0, e1}

′) such that [b(t), z] ≈ 0, b(0) = b0, and s(t)s(t)∗ +

b(t)b(t)∗ ≤ 1. Let p(t) = s(t)s(t)∗ and q(t) = wp(t)w∗, which are continuous paths

in P(A ∩ B ′
m−3 ∩ {e0, e1}

′). Note that ‖q(t) − p(t)e1‖→0 as t→∞. We will assert

that there is a continuous path v in U(e1(A ∩ B ′
m−3)e1) such that

v(0) = e1, v(t)q(t)v(t)∗ = p(t)e1,

lim
t→∞

v(t) exists, [v(t), z] ≈ 0.

If this is shown, then U (t) = s(t)∗v(t)ws(t)w∗v(t)∗ is a unitary in e1(A ∩ B ′
m−3)e1,

because ws(t)w∗v(t)∗ · v(t)ws(t)∗w∗
= q(t) and

U (t)U (t)∗ = s(t)∗v(t)q(t)v(t)∗s(t) = e1,

etc. Note also that U (0) = (uvS)∗w(uvS)w, limt→∞ U (t) = e1, and [U (t), z] ≈
0. Hence t 7→ s(t)∗v(t)ws(t)w∗v(t)∗ is a continuous path in U(e1(A ∩ B ′

m−3)e1),

almost commuting with z, from (uvS)∗w(uvS)w to e1. Since xp = w(uvS)w∗(uvS)∗,

[uvS, z] ≈ 0, and [xp + e1(1 − p)] = [(uvS)∗w(uvS)w∗] in K1(e1(A ∩ B ′
m−3)e1), this

implies the assertions for xp + e1(1 − p).

We shall show the above assertion on v. Let f be a minimal central projection

of eBm−3e. Since z f s(t)s(t)∗eσ ≈ s(t)z f eσs(t)∗, we have that [z, f p(t)eσ] ≈ 0 and

Spec(z f p(t)eσ) is almost dense in T. Since z f wp(t)w∗ ≈ wz f p(t)e0w∗, we have that

[z, f q(t)] ≈ 0 and Spec(z f q(t)) is almost dense in T. Since 1 − p(t) ≥ b(t)b(t)∗

and z f eσb(t)b(t)∗ ≈ b(t)z f eσb(t)∗, we have that Spec(z f eσ(1 − p(t))) is almost

dense. Since z f (e1 − q(t)) = z f w(1 − p(t))w∗ ≈ wz f (1 − p(t))w∗, we have that

Spec(z f (e1 − q(t)) is almost dense.

Since q(0) = wp(0)w∗
= p(0)ww∗

= p(0)e1 and q(t) ≤ e1, there is a path y in

U(e1(A ∩ B ′
m−3)e1) such that y(0) = 1 and

y(t)q(t)y(t)∗ = p(t)e1.

There is again a path η in U(e1(A ∩ B ′
m−3)e1) such that η(0) = 1 and

η(t)p(t)e1η(t)∗ = p(0)e1.
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Then we compare the paths

t 7→ Ad(η(t)y(t))(zq(t)) and t 7→ Ad(η(t))(zp(t)e1)

in the unitary group of p(0)e1(A ∩ B ′
m−3)p(0)e1 and also the paths

t 7→ Ad
(

η(t)y(t)
) (

z(e1 − q(t)
)

and t 7→ Ad (η(t))
(

ze1(1 − p(t))
)

in the unitary group of (1 − p(0))e1(A ∩ B ′
m−3)e1(1 − p(0)). Let T be so large

that q(t) ≈ p(t)e1 for all t ≥ T. By using the density of the spectra of these uni-

taries in each direct summands, we apply the previous lemma to find a path ζ in

U(e1(A ∩ B ′
m−3)e1) such that [ζ(t), p(0)e1] = 0 and

Ad
(

ζ(t)η(t)y(t)
)

(ze1) ≈ Ad η(t)(ze1) for t ∈ [0, T].

Let v(t) = η(t)∗ζ(t)η(t)y(t) for t ∈ [0, T]. Then v(t), t ∈ [0, T] is a path in U(e1(A∩
B ′

m−3)e1) satisfying that v(t)q(t)v(t)∗ = p(t)e1 and [v(t), z] ≈ 0. We can extend v(t)

for t ≥ T in a small vicinity of v(T) retaining these conditions. (For example we can

use the polar decomposition of

p(t)e1v(T)q(t)v(T)∗ + e1(1 − p(t))v(T)(e1 − q(t))v(T)∗,

which is close to e1 for t ≥ T, to modify v(T).) We may further suppose that

limt→∞ v(t) exists (e.g., by repeating the above modifications for larger T). This

concludes the proof of the assertion on v.

There are a finite number of partial isometries {yi | i = 1, . . . , K} in e(Bm−2 ∩
B ′

m−3)e such that yi = (e − p)yi p and
∑

k yi y∗i = e − p. Let y0 = p. Then x =
∑K

i=0 yixy∗i =
∑K

i=0 yiw(uvS)w∗(uvS)∗y∗i . With pi = y∗i yi ∈ eBm−2e ∩ (eBm−3e) ′,

we have that

[yiw(uvS)w∗(uvS)∗y∗i ] = [piw(uvS)w∗(uvS)∗pi]

= [(uvS)∗piw(uvS)w∗(uvS)∗pi(uvS)]

in K1(A ∩ B ′
m−3). Since qi = (uvS)∗pi(uvS) ∈ eBm−1e ∩ (eBm−3e) ′ and [qi] ≥ [pi]

in K0(eBm−1e ∩ (eBm−3e) ′), we may suppose that qi ≥ pi by modifying u using a

unitary in eBm−1e ∩ (eBm−3e) ′. There is a continuous path si in I(qi(A ∩ B ′
m−3 ∩

{e0, e1}
′)qi) such that si(0) = piuvS, [si(t), zqi] ≈ 0, and limt→∞ ‖[si(t), x]‖ = 0

for x ∈ qiAqi . Comparing the paths t 7→ si(t)si(t)∗e1 and t 7→ wsi(t)si(t)∗w∗

in P(e1qi(A ∩ B ′
m−3)qie1) with si(0)si(0)∗e1 = piα(e)e1 = wsi(0)si(0)∗w∗, we as-

sert, as before, that there is a continuous path vi in U(e1qi(A ∩ B ′
m−3)qie1) such

that vi(0) = e1qi , vi(t)wsi(t)si(t)∗w∗vi(t)∗ = si(t)si(t)∗e1, limt→∞ vi(t) exists, and

[vi(t), ze1qi] ≈ 0.

Let Ui(t) = si(t)∗vi(t)wsi(t)w∗vi(t)∗, which is a unitary in e1qi(A ∩ B ′
m−3)qie1.

This is because w∗vi(t)∗si(t) · si(t)∗vi(t)w = si(t)si(t)∗e0 and

Ui(t)∗Ui(t) = vi(t)wsi(t)∗
(

si(t)si(t)∗e0

)

si(t)w∗vi(t)∗ = e1qi ,
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etc. Since Ui(0) = (uvS)∗piwpi(uvS)w∗, limt→∞ Ui(t) = e1qi , and [Ui(t), ze1qi] ≈
0, we have a continuous path in U(e1qi(A ∩ B ′

m−3)qie1), almost commuting with

ze1qi , from (uvS)∗piwpi(uvS)w∗ to e1qi . This implies the assertion for the unitary

yixy∗i + e1(1− yi y∗i ) = xyi y∗i + e1(1− yi y∗i ). By combining these we have completed

the proof.

Thus we have shown that [x] = 0 and B(x, ze1) = 0 in the K theory of e1Ae1 ∩
(e1Bm−3e1) ′. Since Ad vλ̃(ze1) ≈ ze1 and Ad vλ̃(x) ∈ e1Ae1 ∩ (e1Bm−4e1) ′, we have

that [Ad vλ̃(x)] = 0 and B(Ad vλ̃(x), ze1) = 0 in the K theory of e1Ae1∩(e1Bm−4e1) ′.

Since x2 = x Ad vλ̃(x), this conclude the proof for x2. In this way we can conclude

the proof.

Remark 2.9 Theorem 2.1 could hold for a wide class of C∗-algebras, e.g., this is

certainly true for a simple AT C∗-algebra of real rank zero (which is obtained as the

inductive limit of finite direct sums of matrix algebras over C∗(z) with z a unitary.

(The proof of this fact would be simpler than of 2.1 with some modification for the

choice of f k
i j , vk in the beginning of the proof of Theorem 2.1. Any two unitaries in

such a C∗-algebra with the same non-trivial class in K1 are approximately unitarily

equivalent [5].)

3 Unitaries

The following result is a generalization of Proposition 2.1 of [12], where the spectrum

of u(t) is assumed to be finite.

Proposition 3.1 Let A be a unital separable nuclear purely infinite simple C∗-algebra

satisfying the Universal Coefficient Theorem.

For any finite subset F of A and ǫ > 0, there exists a finite subset G of A and δ > 0

satisfying: For any u ∈ U(C[0, 1] ⊗ A) such that Spec(u(t)) is independent of t and

‖[u(t), x]‖ < δ for x ∈ G and t ∈ [0, 1], there is a v ∈ U(C[0, 1] ⊗ A) such that

v(0) = 1, ‖[Ad v(t)(u(0)) − u(t)‖ < ǫ, and ‖[v(t), x]‖ < ǫ, x ∈ F.

If δ > 0 and if two subsets A and B of T satisfy that for any a ∈ A there is a b ∈ B

with |a − b| < δ, then we say that A is δ-contained in B. If A is δ-contained in B and

B is also δ-contained in A, we say that A and B are δ-equal and write A
δ
≈ B.

Lemma 3.2 For any ǫ > 0 there is a δ > 0 satisfying: If z ∈ U(C[0, 1] ⊗ A) satisfies

that Spec(z(t))
δ
≈ Spec(z(0)) for any t, then there is a ζ ∈ U(C[0, 1] ⊗ A) such that

ζ(0) = 1 and ‖Ad ζ(t)(z(0)) − z(t)‖ < ǫ, t ∈ [0, 1].

Proof If Spec(z(t)) = T, then this is 2.4 of [12]. If Spec(z(t)) 6= T, this will follow

from, e.g., 2.5 of [12].

Lemma 3.3 The above proposition is valid for a corner of a Cuntz algebra.

Proof We will repeat the proof of Lemma 2.4 up to a certain point.
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We may assume that A is given as e(B ×α Z)e, where B is a stable AF C∗-algebra

with K0(B) ⊂ R, e is a projection in B, and α is a trace-scaling automorphism of B:

τα = λτ with 0 < λ < 1, where τ is the trace on B defined by τ (p) = [p] for

any projection p ∈ P(B) (see [15]). We may further assume that there is an increas-

ing sequence (Bn) of finite-dimensional C∗-subalgebras of B such that B = ∪nBn,

α(Bn) ⊂ Bn+1, Bn ⊂ α(Bn+1), e ∈ B1, α(e) ∈ B1, α(e) ≤ e, and α(e) has central

support e in eB1e. Note that α has the Rohlin property and is unique up to cocycle-

conjugacy [6, 3].

Let U denote the canonical unitary in M(B ×α Z) implementing α and let S =

U e ∈ A = e(B ×α Z)e. Then S is an isometry in A and generates A together with

eBe. We define an endomorphism λ of A by λ(x) = SxS∗, x ∈ A, whose range is

α(e)Aα(e). By using the fact that the multiplication by α(e) on A ∩ (eB1e) ′ is an

isomorphism and the inclusion Bn ⊂ α(Bn+1), we define a unital endomorphism λ̃n

of A∩B ′
n+1 into A∩B ′

n by λ̃n(x)α(e) = λ(x) for any n = 1, 2, . . ., where the notation

A∩B ′
n is used for A∩(eBne) ′. Since α(Bn+1) ⊂ Bn+2, the range of λ̃n includes A∩B ′

n+2.

We will simply denote λ̃n by λ̃ because λ̃n+1|A ∩ B ′
n+1 = λ̃n.

In this situation we may specify N, ǫ > 0, in place of F, ǫ in the statement of the

lemma, in the sense that v ∈ U(C[0, 1]⊗A) should be chosen from C[0, 1]⊗(A∩B ′
N )

and should satisfy ‖λ̃(v(t)) − v(t)‖ < ǫ, t ∈ [0, 1].

Suppose that we fix N as above and n ∈ N such that 3π/n < ǫ. By the Rohlin

property of α we have a Rohlin partition {e10, e11, . . . , e1,n−1; e20, . . . , e2,n} of e with

eσ,i ∈ P(e(BM ∩ B ′
N )e) for some M > N such that

∑

σ=1,2

∑

i

eσ,i = e, max
σ,i

‖λ̃(eσ,i) − eσ,i+1‖ ≈ 0.

(We will not be very specific about the estimates; if something is ≈ 0, then this should

be appropriately close to zero.)

Note that we have fixed N, n, M as above. Let {Ei} be the set of minimal central

projections in eBM+2n+2e and let Ti be an isometry in A such that TiT
∗
i ≤ Ei . Let

u ∈ U(C[0, 1]⊗A∩B ′
M+2n+2) be such that ‖λ̃(u(t))−u(t)‖ ≈ 0 and ‖[u(t), Ti]‖ ≈ 0.

Thus G is the union of a family of matrix units for eBM+2n+2e and {S} ∪ {Ti} with a

suitable choice of δ > 0.

The last condition implies that Spec(u(t)Ei) is almost independent of t . Hence,

by the previous lemma, there is a v ∈ U(C[0, 1] ⊗ A ∩ B ′
M+2n+2) such that v(0) =

1 and Ad v(t)(u(0)) ≈ u(t). Let w(t) = v(t)∗λ̃(v(t)) ∈ U(A ∩ B ′
M+2n+1). Then

[w(t), u(0)] ≈ 0 and w(0) = 1. Let (ws)s∈[0,1] denote the path in U(C[0, 1] ⊗ A ∩
B ′

M+2n+1) defined by ws(t) = w(st) and note that [ws, 1 ⊗ u(0)] ≈ 0. Let w0 = 1 and

w1 = w and let wk = wλ̃(wk−1) for k = 2, 3, . . . , n + 1. We can construct a rectifiable

path of length at most 6π in the unitary group of

{x ∈ C[0, 1] ⊗ A ∩ B ′
M+n+1 | x(0) = 1}

from wk to 1 by using (ws) for k = n, n + 1 (see [14, 12]). In particular u(0) almost

commutes with the unitaries along the paths. By using these paths applied with λ̃−k

for k = 0, 1, . . . , n and the Rohlin partition in e(BM ∩B ′
N )e, we get a y ∈ U(C[0, 1]⊗
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A∩B ′
N ) such that w ≈ yλ̃(y∗), y(0) = 1, and [y, 1⊗u(0)] ≈ 0 (see the proof of 2.4).

Then vy ∈ U(C[0, 1] ⊗ (A ∩ B ′
N )) satisfies that v(0)y(0) = 1, Ad(v(t)y(t))(u(0)) ≈

u(t), and λ̃(v(t)y(t)) ≈ v(t)y(t). This completes the proof.

Lemma 3.4 Let z be a unitary in A with Spec(z) = T and m ∈ N. Then for any

ǫ > 0 there is a unital C∗-subalgebra D = D1 ⊕ D2 of A such that D1
∼= Mm, D2

∼=
Mm+1, ‖(Ad z − Ad Uσ)|Dσ‖ < ǫ, where U1 (resp, U2) is a diagonal unitary with the

eigenvalues {ω ∈ C | ωm
= 1} (resp. {ω ∈ C | ωm+1

= 1}).

Proof Let e, f ∈ P(A) be such that e 6= 0, f 6= 0, and [1] = m[e] + (m + 1)[ f ]

and let v ∈ U(eAe) and w ∈ U( f A f ) be such that [z] = m[v] + (m + 1)[w]

and Spec(v) = Spec(w) = T. We then find a family {si, t j} of partial isome-

tries such that s∗k sk = e for k = 1, . . . , m and t∗ℓ tℓ = f for ℓ = 1, . . . , m + 1,
∑

k sis
∗
i +

∑

ℓ t jt
∗
j = 1, and z ≈

∑

k ske2πik/mvs∗k +
∑

ℓ tℓe
2πℓ/(m+1)wt∗ℓ (see [5, 12]).

Then we define D to be the C∗-subalgebra generated by sis
∗
j and tit

∗
j , which is a

unital C∗-subalgebra isomorphic to Mm ⊕ Mm+1. Since zsks∗ℓ ≈ e2πik/mskvs∗ℓ and

s∗ℓ z∗ ≈ e−2πiℓ/mv∗s∗ℓ , we have that Ad z(sks∗ℓ ) ≈ e2π(k−ℓ)/msksℓ. In the same way we

have that Ad z(tkt∗ℓ ) ≈ e2πi(k−ℓ)/(m+1)tkt∗ℓ . Since the approximation can be made ar-

bitrarily precise, this completes the proof.

Proof of Proposition 3.1 By the classification result by Kirchberg and Phillips [8, 9]

there is an increasing sequence (An) of unital C∗-subalgebras of A with dense union

such that An =
⊕Kn

k=1 Ank and Ank = Dnk ⊗ C∗(znk), where Dnk is of the form

e(B ×α Z)e as in the proof of 4.9 and C∗(znk) is the universal C∗-algebra generated

by a single unitary znk. We may suppose that each C∗(znk) is mapped into each An+1,ℓ

isomorphically (see [2]).

Let F be a finite subset of A and ǫ > 0. We may suppose that F equals

Kn
⋃

k=1

(Fnk ∪ {znk})

for some n, where Fnk ⊂ Dnk. We choose Gnk(⊂ Dnk) and δnk > 0 for (Fnk, ǫ) as

in Lemma 3.3. In particular Gnk contains a family of matrix units for some finite-

dimensional C∗-subalgebra Bnk.

Let Enk denote the identity of Ank. We choose a unital C∗-subalgebra Dk = Dk1 ⊕
Dk2 (with Dk1

∼= Mm and Dk2
∼= Mm+1) of EnkAEnk for znk, for a large m as in the

previous lemma. We may suppose that Dk commutes with the above Bnk. Let Cnk

denote the set of matrix units of Dk and let Tk be an isometry in A such that TkT∗
k ≤

Enk. Let also Tki be an isometry in EnkA ∩ B ′
nkEnk for i = 1, 2 such that Tk1T∗

k1 ≤ 1Dk1

and Tk2T∗
k2 ≤ 1Dk2

. We set

G =

Kn
⋃

k=1

(

Gnk ∪Cnk ∪ {znk, Tk, Tk1, Tk2}
)

.

We will take a sufficiently small δ > 0.
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Let u ∈ U(C[0, 1] ⊗ A) be such that ‖[u(t), x]‖ < δ, x ∈ G and Spec(u(t)) is

independent of t . Since u(t) almost commutes with Enk and Tk, we may suppose that

[u(t), Enk] = 0 and that Spec(u(t)Enk) is almost independent of t and discuss each

uEnk ∈ U(C[0, 1]⊗EnkAEnk) separately. Denoting EnkAEnk by A, we have reached the

following situation:

e(B ×α Z)e ⊂ A, B = ∪mBm, u(t) ∈ A ∩ (eBM+2n+2e) ′ ∩ D ′,

λ̃(u(t)) ≈ u(t), Spec(u(t) f ) = Spec(u(0) f ), [u(t), z] ≈ 0,

for each minimal central projection f in eBM+2n+2e ∨ D, where e ∈ B is the identity

of A and D (∼= Mm ⊕ Mm+1) denotes the unital finite-dimensional C∗-subalgebra of

A ∩ (eBM+2n+2e) ′ associated with z.

We then find a v ∈ U(C[0, 1] ⊗ (eBM+2n+2e) ′ ∩ D ′) such that v(0) = 1 and

Ad v(t)(u(0)) ≈ u(t). If w(t) = v(t)∗zv(t)z∗, it follows that w(0) = 1 and

[w(t), u(0)] ≈ 0. By using the Rohlin property for Ad z|D, we obtain a y ∈ C[0, 1]⊗
A ∩ (eBM+2n+2e) ′ such that w = v∗zvz∗ ≈ yzy∗z∗, y(0) = 1, and [y(t), u(0)] ≈ 0.
Then Ad z(vy) ≈ vy, v(0)y(0) = 1, and Ad(v(t)y(t))(u(0)) ≈ u(t). We shall denote

vy by v.

We thus have v ∈ U(C[0, 1] ⊗ A ∩ (eBM+2n+2e) ′) such that v(0) = 1,

Ad v(t)(u(0)) ≈ u(t), and [v(t), z] ≈ 0. Note that [v(t)∗λ̃(v(t)), u(0)] ≈ 0. By

using the Rohlin property for λ̃ we obtain a y ∈ U(C[0, 1] ⊗ A ∩ (eBN e) ′) such that

v∗λ̃(v) ≈ yλ̃(y∗), y(0) = 1, and [y(t), u(0)] ≈ 0. Then vy satisfies the desired

conditions.

4 Rohlin Flows

We recall the definition of the Rohlin property for flows [10], where M(A) denotes

the multiplier algebra of A.

Definition 4.1 Let A be a C∗-algebra and α a flow on A. The flow α is said to have

the Rohlin property if for any p ∈ R there is a sequence (un) in U(M(A)) such that

‖αt (un) − ei pt un‖→0 uniformly in t on every compact subset of R and ‖[un, x]‖→0

for any x ∈ A.

In the following ω denotes a free ultrafilter on N and Aω is the quotient of ℓ∞(A)

divided by the ideal cω(A) = {x = (xn)| limn→ω ‖xn‖ = 0}. See Section 1 for details

including the definition of Aω
α when α is a flow on A. The K0 version of the following

result is shown in [12].

Lemma 4.2 Let α be a Rohlin flow on A. Then for any unitary u ∈ A ′ ∩ Aω there is

a unitary v ∈ (A ′ ∩ Aω
α)α such that [u] = [v] in K1(A ′ ∩ Aω).

Proof Let u ∈ U(A ′ ∩ Aω) and let (un) be a sequence in U(A) which represents

u. Fix a large T > 0. By 3.1 there is a sequence (Vn) in U(C[0, T] ⊗ A) such that

maxt ‖Ad Vn(t)(un) − αt (un)‖ converges to zero as n→ω and maxt ‖[Vn(t), x]‖→0

as n→ω for any x ∈ A. By [14] (or 2.7 of [12]) there is a sequence (vn) in
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U(C[0, T] ⊗ A) such that vn(0) = 1, vn(T) = Vn(T)∗, (vn) ∈ A ′ ∩ (C[0, T] ⊗ A)ω ,

and the length of (vn(t))t∈[s1 ,s2] is less than 6π|s2 − s1|/T for any 0 ≤ s1 < s2 ≤ T.

We define a unitary Un ∈ C(R/TZ) ⊗ A by setting

Un(t) = αt−T(vn(t))αt (un)αt−T(vn(t)∗)

for t ∈ [0, T] except for t close to T. Since Un(T) ≈ un = Un(0), this indeed defines

a unitary in C(R/TZ) ⊗ A by suitably defining U (t) ≈ un for t ≈ T and it follows

that (Un) ∈ A ′ ∩ (C(R/TZ) ⊗ A)ω .

Define a unitary wn in C(R/TZ)⊗A by wn(t) = αt−T(vn(t))Vn(t), where wn(T) =

1 = wn(0). Then it follows that ‖Un − wn(1 ⊗ un)w∗
n‖→0 as n→ω.

If γ denotes the flow on C(R/TZ) defined by (γt f )(s) = f (s − t), it follows, as in

the proof of 3.1 of [12], that

‖γt ⊗ αt (Un) −Un‖ ≤ 12π|t|/T + ǫn,

where ǫn→0 as n→∞.

Let (u j) be a central sequence in U(A) such that ‖αt (u j)− e2πit/Tu j‖→ uniformly

in t on every compact subset. We define a linear map φ j from the algebraic tensor

product C(R/TZ)⊙A into A by φ j(zℓ ⊗a) = uℓ
ja, where z is the canonical unitary in

C(R/TZ). Then (φ j) is an approximate homomorphism of C(R/TZ) ⊙ A into A in

the sense that ‖φ j(xy) − φ j(x)φ j (y)‖→0, ‖φ j(x)∗ − φ j(x∗)‖→0, and ‖φ j(x)‖→‖x‖
for any x, y ∈ C(R/TZ) ⊙ A. It also follows that (φ j) intertwines γt ⊗ αt and αt :

‖φ j(γt ⊗ αt )(x) − αtφ j(x)‖→0 for x ∈ C(R/TZ) ⊙ A. By using these facts we

can define a unitary u ′
n as a kind of φ j(Un) for a large j. At the same time we may

suppose that we can define a unitary w ′
n as a kind of φ j(wn); we then have that u ′

n ≈
Ad w ′

n(un) as φ j(1 ⊗ un) = un. In this way we get a sequence (u ′
n) in C(R/TZ) ⊗ A

such that limn→ω ‖αt (u ′
n) − u ′

n‖ ≤ 12π|t|/T, limt→ω ‖[u ′
n, x]‖ = 0 for x ∈ A, and

[(u ′
n)] = [(un)] in K1(A ′ ∩ Aω). By taking a larger and larger T we can obtain the

desired sequence which belongs to U((A ′ ∩ Aω
α)α). (See [12] for details.)

Lemma 4.3 Let α be a Rohlin flow on A. Then for any unitary u ∈ A there are

sequences (u ′
n) and (vn) in U(A) such that ‖αt (u ′

n) − u ′
n‖→0 uniformly in t on every

compact subset of R and ‖vnuv∗n − u ′
n‖→0.

Proof This follows from the proof of 4.2.

Lemma 4.4 Let u, v ∈ U((A ′ ∩ Aω
α)α). If [u] = [v] in K1(A ′ ∩ Aω), then [u] = [v]

in K1((A ′ ∩ Aω
α)α).

Proof Suppose that [u] = 0 in K1(A ′ ∩ Aω) and let (un) be a sequence in U(A)

representing u. Since A ′ ∩Aω is purely infinite and simple [8], we can approximate u

by a unitary with finite spectrum in A ′∩Aω [17]. Then we can argue as in 3.2 of [12]

using 3.6 there. That is, we can approximate each un by a unitary with finite spectrum

whose spectral projections are almost α-invariant. Thus each un is connected to 1 by

a rectifiable path in U(A) of length about π which is almost α-invariant. In this way

we can find a path in U((A ′ ∩ Aω
α)α) which connects u and 1.
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The previous paragraph is sufficient for the conclusion. But supposing that [u] =

[v] 6= 0 in K1(A ′ ∩ Aω), we shall give a detailed proof using 3.1 and [10]. Since

A ′∩Aω is a unital purely infinite simple C∗-algebra, u and v are in the same connected

component in U(A ′∩Aω). Let (U (t))t∈[0,1] be a continuous path in U(A ′∩Aω) such

that U (0) = u and U (1) = v. Let (Un) be a sequence in U(C[0, 1] ⊗ A) representing

U . Then by 3.1 there is a sequence (Vn) in U(A) such that maxt ‖Vn(t)Un(0)Vn(t)∗−
Un(t)‖ → 0 as n → ω and maxt ‖[Vn(t), x]‖ → 0 as n → ω for all x ∈ A. Let

zn = Vn(1). Then (zn) ∈ U(A ′ ∩ Aω) and ‖znunz∗n − vn‖ → 0 as n → ∞. Let

wn(t) = z∗nαt (zn). Then (wn) is a sequence of α-cocycles such that ‖[wn(t), x]‖ → 0

as n → ω uniformly in t on every compact subset and ‖[wn(t), un]‖ → 0 as n → ω.

Then there is a sequence (yn) in U(A) such that (yn) ∈ U(A ′ ∩ Aω), ‖[yn, un]‖ → 0

as n → ω, and supt∈[0,1] ‖wn(t) − ynαt (y∗n )‖ → 0 as n → ω [12, 10]. Since (zn yn) ∈
U((A ′∩Aω

α)α) and ‖(zn yn)un(zn yn)∗−vn‖ → 0 as n → ω, this implies that [u] = [v]

in K1((A ′ ∩ Aω
α)α).

If α is a flow, then αt is homotopic to the identity and so often is approximately

inner for each t ∈ R. The following is defined in [12].

Definition 4.5 Let A be a C∗-algebra and α a flow on A. Then αt is said to be

α-invariantly approximately inner if there is a sequence (un) in U(A) such that αt =

lim Ad un and ‖αs(un) − un‖ converges to zero uniformly in s on every compact

subset.

Theorem 4.6 Let A be a unital separable nuclear purely infinite simple C∗-algebra

satisfying UCT and let α be a flow on A. Then the following conditions are equivalent.

(1) α has the Rohlin property.

(2) (A ′ ∩ Aω
α)α is purely infinite and simple, K0((A ′ ∩ Aω

α)α) ∼= K0(A ′ ∩ Aω) induced

by the embedding, and Spec(α|A ′ ∩ Aω
α) = R.

(3) The crossed product A ×α R is purely infinite and simple and the dual action α̂ has

the Rohlin property.

(4) The crossed product A×αR is purely infinite and simple and each αt is α-invariantly

approximately inner.

If the above conditions are satisfied, it also follows that K1((A ′ ∩Aω
α)α) ∼= K1(A ′ ∩Aω),

which is induced by the embedding.

When α is a flow on A, we denote by δα the infinitesimal generator of α, which is

a closed derivation in A. If h ∈ Asa, then ad ih is a bounded derivation. We denote

by α(h) the flow generated by δα + ad ih. See [4, 16] for details.

Proposition 4.7 Let A be a non-unital separable nuclear purely infinite simple C∗-

algebra satisfying the UCT. Then the following conditions are equivalent.

(1) α has the Rohlin property.

(2) For any ǫ > 0 there exists an h ∈ Asa and an increasing sequence (en) in P(A) such

that ‖h‖ < ǫ, α(h)
t (en) = en, α(h)|enAen has the Rohlin property, and (en) is an

approximate identity for A.
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Proof Suppose (2). Then it follows that α(h)|(en − en−1)A(en − en−1) has the Rohlin

property for all n with e0 = 0. We choose, for any p ∈ R, a central sequence (un,m)

in U((en − en−1)A(en − en−1)) such that ‖αt (un,m) − ei pt un,m‖ converges to zero, as

m → ∞, uniformly in t on every compact subset of R. By passing to a subsequence

we may suppose that ‖αt (un,m) − ei pt un,m‖ < 1/m for |t| ≤ 1. Let um =
∑∞

n=1 un,m,

which converges in the multiplier algebra M(A). Then (um) is the desired sequence

in U(M(A)) for p ∈ R.

Suppose (1). Let p ∈ P(A) and fix a large T > 0. Then there exists a projection

f ∈ A such that α−t ( f )p ≈ p for any t ∈ [0, T]. Again there exists a projection

e ∈ A such that αt (e) f ≈ f for any t ∈ [0, T]. Let ft be the support projection of

αt (e) f αt (e). Then t 7→ ft is continuous and ft ≤ αt (e) and ft ≈ f for t ∈ [0, T].

Let ut denote the unitary part of the polar decomposition of ft f0 + (1 − ft )(1 − f0);

then ut ≈ 1 and Ad u∗
t ( ft ) = f0 for t ∈ [0, T]. We find a continuous function

t 7→ vt ∈ U(A) such that Ad vt (e − f0) = Ad u∗
t (αt (e)) − f0 and vt f0 = f0. Let

wt = ut vt . Then wt f ≈ f and Ad wt (e) = αt (e) for t ∈ [0, T].

We find a rectifiable path (yt )t∈[0,T] in U(A) such that y0 = 1, yT = w∗
T , yt f ≈ f ,

and the length of (yt )t∈[s1,s2] is dominated by 6π(s2 − s1)/T, because we can con-

struct such a path in terms of (wt ) (see [14, 12]). We then define a projection E in

C(R/TZ) ⊗ A by

E(t) = αt−T(yt )αt (e)αt−T(yt )
∗,

which satisfies that E(0) = e = E(T). Since pαt−T(yt ) ≈ pαt−T( f yt ) ≈ p, we

obtain that E(t)p ≈ p. By using the Rohlin property for α we have an approximate

homomorphism (φ j) of C(R/TZ) ⊙ A into A such that αtφ j ≈ φ j(γt ⊗ αt ), where

γ is the flow on C(R/TZ) induced by translations (see the proof of 4.2). Applying φ j

to E, we get a projection e ′ in A such that ‖αt (e ′)− e ′‖ < 6π/T + ǫ for t ∈ [0, 1] and

e ′p ≈ p. By perturbing e ′ slightly we may assume that ‖δα(e ′)‖ is small (depending

on 1/T) (see [4, 16]). In this way we can construct an approximate identity (en)

consisting projections such that ‖δα(en)‖ → 0 and ‖en p − p‖ → 0. It is then easy to

show the conclusion.

Proof of Theorem 4.6

The last statement follows from 4.2 and 4.4.

We have shown that (1)⇔(2)⇒(4) in [12].

It is easy to show that (4) implies (3). Let t ∈ R and let (un) be a sequence in

U(A) such that αt = lim Ad un and ‖αs(un) − us‖ → 0 uniformly in s on every

compact subset of R. If we denote by λ( · ) the canonical unitary flow in M(A ×α R)

implementing α, then we have that α̂p(u∗
nλ(t)) = ei pt u∗

nλ(t) and ‖[u∗
nλ(t), x]‖ → 0

for any x ∈ A ×α R.

Suppose (3). By the previous proposition we have an h = h∗ ∈ A ×α R and

an increasing sequence (en) in P(A ⊗α R) such that (en) is an approximate identity

and α̂(h)
p (en) = (en) and β = α̂(h)|en(A ×α R)en has the Rohlin property. Then

from (1)⇒(3), we obtain that the dual flow of β has the Rohlin property. Since

en(A ×α R)en ×β R = en(A ×α R ×α̂ R)en with the dual flow β̂ being a restriction of
ˆ̂α and (en) is a sequence in M(A ×α R ×α̂ R), we can conclude that ˆ̂α has the Rohlin

property. By the Takesaki-Takai duality we have that A ×α R ×α̂ R ∼= A ⊗ K(L2(R))
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and ˆ̂αt = αt ⊗ Ad λ(−t), where K(L2(R)) denotes the compact operators on L2(R).

Then it follows that α has the Rohlin property.

Let α and β be flows on a unital C∗-algebra A. We say that α is an approximate

cocycle perturbation of β if there is a sequence (un) of β-cocycles such that

αt (x) = lim
n→∞

Ad un(t)βt (x)

uniformly in t on every compact subset of R for any x ∈ A [11]. If α is an approximate

cocycle perturbation of the trivial flow id, then α is approximately inner, i.e., αt =

lim Ad eithn for some sequence (hn) in Asa. A Rohlin flow is never approximately

inner. The following result generalizes 4.4 of [11].

Proposition 4.8 Let A be a unital separable nuclear purely infinite simple C∗-algebra

satisfying the Universal Coefficient Theorem and let α be a Rohlin flow on A. Then

the trivial flow id is an approximate cocycle perturbation of α. In particular there is a

unital approximately inner endomorphism φ of A such that φ = Ad utαtφ for some

α-cocycle u.

Lemma 4.9 Let D be a finite-dimensional C∗-subalgebra of A. Then there is a α-

cocycle u such that Ad utαt (x) = x for any x ∈ D.

Proof See [4, 16] for example. We do not need the Rohlin property for this.

Lemma 4.10 Let z be a unitary. Then for any ǫ > 0 there is an α-cocycle u such that

‖Ad utαt (z) − z‖ < ǫ for t ∈ [0, 1].

Proof By 4.3 for any ǫ > 0 there are Z, v ∈ U(A) such that ‖αt (Z) − Z‖ < ǫ for

t ∈ [0, 1] and ‖vzv∗ − Z‖ < ǫ. Let ut = v∗αt (v), which is an α-cocycle. Then it

follows that ‖Ad utαt (z) − z‖ < 3ǫ for t ∈ [0, 1].

Proof of Proposition 4.8 The last statement follows from 4.6 of [11].

We may suppose that there is an increasing sequence (An) of C∗-subalgebras of

A with dense union such that each An is a finite direct sum of C∗-algebras of the

form O ⊗ C∗(z), where O is a corner of a Cuntz algebra and C∗(z) is the C∗-algebra

generated by a unitary with full spectrum. We assume that O is given as e(B ×γ Z)e,

where B is a stable AF C∗-algebra with K0(A) ⊂ R, γ is a trace-scaling automorphism

of B, and e ∈ P(B), as in the proof of 2.1.

It suffices to show that there is a sequence (un) of α-cocycles such that

‖Ad un(t)αt (x) − x‖ → 0 uniformly in t ∈ [0, 1] for any x ∈ A1. It again suf-

fices to show this assuming that A1 = e(B ×γ Z)e ⊗C∗(z).

Suppose that B is the completion of the union of an increasing sequence (Bn) of

finite-dimensional C∗-algebras such that e, γ(e) ∈ B1, γ(e) ≤ e, and the central

support of γ(e) in eB1e is e. Moreover we assume that γ±(Bn) ⊂ Bn+1. We denote by

U the canonical unitary in M(B ×γ Z) implementing γ and set S = U e, which is an

isometry in e(B ×γ Z)e. By Lemmas 4.9 and 4.10 we may assume, for a large n and
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a sufficiently small ǫ > 0, that αt |Bn+1 = id and ‖αt (z) − z‖ < ǫ for t ∈ [0, 1]. We

shall show that there is an α-cocycle u in A∩B ′
1 such that ‖Ad utαt (S)− S‖ ≈ 0 and

‖[ut , z]‖ ≈ 0 for t ∈ [0, 1].

Let wt = S∗αt (S). Since αt (SS∗) = SS∗ ∈ B1, (wt ) is an α-cocycle. If x ∈ Bn, then

xwt = xS∗αt (S) = S∗λ(x)αt (S) = S∗αt (λ(x)S) = Sαt (S)x, where λ(x) = SxS∗ ∈
Bn+1. Thus wt ∈ A ∩ B ′

n. We also have that ‖[wt , z]‖ < 2ǫ for t ∈ [0, 1]. Then we

find a v ∈ U(A ∩ B ′
n) such that ‖wt − vα(v∗)‖ ≈ 0 and ‖[v, z]‖ ≈ 0 (but in general

is much bigger than ǫ). Then it follows that αt (Sv) ≈ Sv for t ∈ [0, 1].

The above v is obtained as follows [10]. Take a large T such that both 1/T and Tǫ
are small and define a unitary V ∈ C(R/TZ) ⊗ A by

V (t) = wtαt−T(x(t)∗),

where (x(t))t∈[0,T] is a path in U(A) such that x(0) = 1, x(T) = wT , and

‖x(s) − x(t)‖ < 6π|s − t| for s, t ∈ [0, T]. Since such a path is obtained in terms

of wt and sufficiently central elements in A, we may suppose that x(t) ∈ A ∩ B ′
n and

[x(t), z] ≈ 0 (of the order ǫT). Moreover it follows that [V ] = 0 in K1(C(R/TZ)⊗A).

(We can see this by making T decrease to zero; the construction of (x(t))t∈[0,T] from

(wt )t∈[0,T] is canonical.) Then we get v as an image of an approximate homomor-

phism of C(R/TZ)⊗A into A as in the proof of 4.2. Since the Bott element B(V, 1⊗z)

is zero in K0(A ∩ B ′
n), which follows from V (0) = 1, the same follows for the pair v

and z in A ∩ B ′
n. It also follows that [v] = 0 in K1(A ∩ B ′

n).

By using the above facts and the Rohlin property for λ̃ as in the proof of 2.1,

we find a y ∈ U(A ∩ B ′
1) such that λ̃(v) ≈ yλ̃(y∗) and [y, z] ≈ 0. We define

ut = y∗αt (y). Since Sv ≈ ySy∗, we have that Ad utαt (S) ≈ S and [ut , z] ≈ 0 for

t ∈ [0, 1]. This concludes the proof.
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