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THE LIMIT OF BIASED VARISOLVENT
CHEBYSHEV APPROXIMATION

BY
CHARLES B. DUNHAM

ABSTRACT. Best biased and one-sided Chebyshev approximation
with respect to a varisolvent approximatng function on an interval
are considered. The uniform limit of best biased approximations is
the (unique) best one-sided approximation if the best one-sided
approximation is of maximum degree. Examples are given where
the best one-sided approximation is not of maximum degree and
failure of uniform convergence and of existence occurs.

Let [, B] be a closed interval and let C[a, B] be the space of continuous
functions on [a, B8]. For given r in [0, »] define

d.(y)=y y=0
=ry y>0
and for ge Cla, B] define the r-biased Chebyshev norm to be

llgll. = sup{|d,(g(x))|: a =x=pB}.

The || |l. norm is also called the one-sided (from above) norm. Let F be an
approximating function unisolvent of variable degree on [a, 8] with parameter
space P and bounded degree. The r-biased Chebyshev problem is given
feCla, B] to find A*e P for which ¢,(A)=|f—F(A, )|, attains its infimum
p.(f) over AeP. Such a parameter A* is called best with respect to the
r-biased norm and F(A¥, ) is called a best approximation with respect to the
r-biased Chebyshev norm.

Varisolvent approximating functions (approximating functions unisolvent of
variable degree) are studied in [9, Chapter 7] with respect to ordinary
Chebyshev approximation. We will assume that the difficulty pointed out in [1;
3] does not occur: we assume

HyrotHEsIs A. For given A €P and &€ >0 there exists B, C € P such that
F(A,.)—e<F(B,.)<F(A, .)<F(C,.)<F(A, .)+e.

This is a necessary condition for an alternating theory [9, 21].
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r-biased Chebyshev approximation, 0 <r <o, is introduced in [5, 224] under
different notation and a general characterization of best approximations is
given.

THEOREM. Let F be of degree n at A. F(A,.) is a best r-biased approximation
to f if and only if d,(F—F(A,.)) alternates n times on [a, 3]. A best r-biased
approximation is unique.

If there exists no F(A, .)=f, the one-sided problem is vacuous. We henceforth
assume existence of such an F(A, .).

THEOREM. Let F be of degree n at A. F(A, .)=f is a best one-sided approxi-
mation to f if and only if there is a set x,, . . ., Xp, A =Xq<- <X, =< such that
f—F(A,.) takes alternately the value —e.(A) and 0 on the set. Best orie-sided
approximations are unique.

LemmMA 1. Let F(A, .) be the best one-sided approximation to f on [a, B] and F
be of degree n at A. Let {x,...,x,} be an ordered set of points such that
f—F(A,)) is alternately —e.(A) and 0. Let §>1/r and ||f — F(B, |, = e(A).
Then

F(B, x;)—F(A, x)=-8|f—F(A, )|l if f(x;)— F(A, x,)=0
=8lf— F(A, M. if f(x)—F(A, x,)=—e.(A)
Proof. Suppose F(B, x;)—F(A, x;) <—-8 ||f— F(A, |l and f(x;)-F(A, x;) =0.

Then |f(x;)—F(B, x;)|, =r8|lf - F(A, ).>|f- F(A, )ll.. Suppose F(B, x;)-
F(A, x,)>0 and f(x;)— F(A, x;) = —e.(A), then f(x;)— F(B, x;) <—e.(A), hence
If—F(B, Jll, > e(A).

Let || || denote the ordinary Chebyshev norm on [, 8], which is equal to || ||;.

(1)

LemMA 2. Let F be of degree n (maximal) at A then for given § >0 there
exists 1(8)>0 such that |F(A, .)—F(B, )| <m(8) if (1) holds and n(8)—0 as
5—0.

This lernma was first stated in [4] and proven in [7].

LemMma 3. Let F be unisolvent of degree m at A, k=0,1,... and let
{F(A,,.)} converge poimiwise to F(A,,.) on m distinct points then {F(A,.)}
converges uniformly to F(A,, .).

This iemma is a generalization of a result of Tornheim. It was first stated in [4]
and proven in [7].

LemMA 4. Let F(A, .) be the one-sided best approximation to f and f# F(A, .),
then for r<o, p.(f) <e.(A).
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Proof. Since |g|, <|igll. for ge Cla, B], we have p,(f)=e.(A). If p,(f)=
e.(A) then F(A, ) is a best r-biased approximation to f. But f— F(A,.)=0 and
so A cannot be best by the alternating characterization of [S].

THEOREM. Let F be unisolvent of variable degree. Let f have a best one-sided
approximation F(A, .) and F be of degree n (maximal) at A. There exists M such
that r > M implies that there is a best approximation to f with respect to || ||,. Let
r(k) be an increasing sequence with limit © and F(A,,.) be best with respect to
Il v, then {F(A,.)} converges uniformly to F(A, .).

Proof. The theorem is obvious if f=F(A, .), so we assume that f is not an
approximant.

Let xo, ..., x, be as in Lemma 1. By definition of solvency of degree n at A
there exists y >0 such that if |y, —F(A, x,)|<7v, k=1, ..., n, then there exists
a parameter B satisfying

(2 F(B, x.) =y k=1,...,n

Using property Z and maximality of n, it is easily seen that F is unisolvent of
degree n at such B, and hence B is completely determined by (2). Choose &
such that n(8)<+y/2 then by Lemmas 1 and 2, if r>1/8 and |f—F(B, )|, =
e.(A), we have ||[F(A,.)—F(B, )| <v/2. Now let ||f — F(B,, .|, be a decreasing
sequence with limit p,(f), which is less than e.(A) by Lemma 4, then for all k
sufficiently large ||F(A, .)— F(By, .)| <+v/2. Then n-tuples of values at the points
Xy, ..., X, of the approximants F(B,,.) form, therefore, a bounded sequence
with subsequence converging to an accumulation point (y,,...,Yy,) which
determines a parameter B at which F is unisolvent of degree n. By Lemma 3,
{F(B,, .)} converges uniformly on [a, B8] to F(B,.), hence for all xe[a, 8],
|f(x)— F(B, x)|<p,(f) and so F(B, .) is a best approximation to f with respect to
Il l,- The first part of the theorem is shown. Now let {r(k)}— =, then for all k
sufficiently large a best approximation F(A,,.) with respect to the r(k) norm
exists. From Lemmas 1 and 2 it follows that {F(A,, .)} converges uniformly to
F(A,)).

If (F, P) is unisolvent, all approximations are of maximum degree and we
always have uniform convergence of biased approximations to the one-sided
approximation.

We now give an example where F is unisolvent of less than maximum degree
at the best one-sided approximation and uniform convergence does not occur.
Consider the case when F(A, x) = a,; exp(a,x). It follows from results of Barrar
and Loeb [2, 594] and of Meinardus and Schwedt [8, 312-313] that F is
unisolvent of degree 1 at parameters corresponding to the zero function and
degree 2 at parameters corresponding to nonzero functions.
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ExampLE 1. Let [a, B]=[0, 1] and f(x)=x—1. As f(1)=0, f<0, and 0 is of
degree 1, 0 is the best one-sided approximation to f. As f=<0, 0 is not a best
approximation with respect to the || ||, norm, 0<r <. Let F(A,, .) be best to f
with respect to || ||, then f—F(A,, .) oscillates twice [5, 227], hence F(A,, .) is
non-constant. Now

()~ FAy, 1) = ~ F'(A, x)=~a,3 explasx).

As F(A,,.) <0, a,<0, hence

2

Zz% (f(x)-F(Ai, x))>0, 0=x=<],

and F(A,, 0)<f(0)=—1. Hence F(A,, .)-p 0 and convergence does not occur.
Best biased approximations need not exist if the best one-sided approxima-
tion is not of maximum degree.

THEOREM. Given varisolvent (F, P) and u continuous on [o, B], define P, =
{A:F(A, )>u}. (F, P,) is a varisolvent family with the same degrees.

This follows directly from the definition of varisolvence.

ExampLE 2. Take the same problem as in the previous example except we let
u =—1 and approximate by (F, P,). Suppose F(A,, .) is best to f with respect to
|| ll, then by arguments of the preceding example F(A,, 0)<-1, which is a
contradiction.

There appears to be no simple treatment of the behaviour of p,(f) as a
function of r. The possible non-existence of best approximations complicates
analyses greatly. The following example shows that we can have discontinuities
even with fixed degree.

ExampLE 3. Let F(a,.)=a and P={a:a¢[0, 1]}. We have p,(0) =0 for r <
but p..(0)=1.

The major theorem of this paper ensures that p,(f)— p.(f) if the best one-
sided approximation is of maximum degree.

The case where F is merely an alternating approximating function, as
considered in [7; 9, section 7-7], is also of interest. The uniform convergence
part of the theorem applies by Lemma 1 and 2, but no existence result holds.

As best biased approximations can be computed by the Remez algorithm for
approximation with respect to a generalized weight function [5, 228] the
theorem suggests use of a large bias to get an approximation close to a best
one-sided approximation from above.

Let us also consider what happens when the bias factor r tends to zero.
Positive deviations are weighted by r and negative deviations weighted by 1.
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This is equivalent to weighting positive deviations by 1 and negative deviations
by 1/r, which increases both deviations by a factor of 1/r. We get by similar
arguments

THEOREM. Let F be unisolvent of variable degree. Let f have a best one-sided
approximation from below F(A,.) and F be of degree n (maximal) at A. There
exists f such that r <g implies that there is a best approximation to f with respect
to || ||,. Let r(k) be a decreasing sequence with limit 0 and F(A,,.) be best with
respect 10 || |, then {F(A,,.)} converges uniformly to F(A,.).
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