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Problem 1 Human Eye

How do we see?
What kind of glasses might we need?
When can we distinguish between the two eyes of a cat during the night?

A schematic view of the structure of the human eye is presented in Figure 1.1. Light
rays that refract at the cornea and eye lens end up at the retina, which produces
nerve impulses sent to the brain down the optic nerve. In a simplified model of
an eye, the cornea and eye lens can be replaced with one converging lens (called
simply the lens in the remainder of the text) while the retina can be modeled as
a disk of radius R = 1.00 cm, the axis of which coincides with the optical axis of

Figure 1.1 Scheme of the structure of the human eye: (1) cornea, (2) eye lens, (3)
retina, (4) optic nerve, (5) ciliary muscles, (6) suspensory ligament
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2 Human

the lens, as shown in Figure 1.2. The distance between the retina and the lens is
d = 2.40 cm. A human can adjust the focal length of the lens and therefore has
the capability of clearly seeing objects at different distances. This process is called
eye accommodation and is enabled by ciliary muscles connected to the eye lens
by a suspensory ligament. These muscles act to tighten or relax the ligaments and
therefore thin down or thicken the lens. Consequently the focal length of the lens
changes.

Figure 1.2 A simplified model of the human eye

(a) A human has regular eyesight if images of all objects from a distance larger
than d0 = 25.0cm can be formed at the retina. What is the range of the lens’
focal lengths for a human with regular eyesight?

(b) The maximal focal length fmax of the lens for a nearsighted man is smaller than
the upper limit of the range determined in part (a). This man uses glasses with
a diopter value of D1 = −1.00m−1 to clearly see very distant objects. Deter-
mine fmax and find the maximal distance of an object that this man can clearly
see without using the glasses. For simplicity neglect the distance between the
glasses and the lenses.

(c) The minimal focal length fmin of the lens for a farsighted woman is larger than
the lower limit of the range determined in part (a). This woman needs glasses
with a diopter value of D2 = 2.00m−1 to clearly see objects at a distance of
d0 = 25.0 cm. Determine fmin and find the minimal distance of an object that
this woman can clearly see without using the glasses.

(d) A person is nearsighted (farsighted) as well when the distance between the
retina and the lens is larger (smaller) than the regular distance of d = 2.40 cm.
Calculate the diopter value of the glasses that should be used by a man with a
distance between the retina and the lens of d1 = 2.50 cm (d2 = 2.30 cm).

Figure 1.3 With problem 1(e)
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Solution of Problem 1 3

(e) A man with regular eyesight whose height is h = 2.00m is observing a tree of
height H = 2h (Figure 1.3). His view is directed toward the middle of the tree.
What is the minimal distance between the man and the tree that allows him to
see the whole tree?

Two types of light receptors are placed at the retina – rods (about N1 = 108 of
them) and cones (about N2 = 6 ·106 of them). Rods enable night vision, while cones
are used for vision during the day. Assume that a person can distinguish two distant
objects during the day (night) if their images are at different cones (rods). Assume
also that the cones (rods) are evenly distributed on the retina surface and that their
positions form a square lattice.

(f) Two point objects are at a mutual distance of a = 1.00mm. The direction that
connects them is perpendicular to the optical axis of the lens (Figure 1.4). What
is the maximal distance fromwhich a woman can distinguish between these two
objects during the day?

Figure 1.4 With problem 1(f)

(g) At what maximal distance can a woman read the license plates of a car during
the day? Assume that the license plates can be read if a woman can distinguish
between the point objects at a mutual distance of a = 1.00 cm.

(h) At what maximal distance can a woman distinguish between the two eyes of a
cat during the night? The eyes of a cat are at a mutual distance of a = 2.00 cm.

Solution of Problem 1

(a) To see an object at a distance p from the eye, a human needs to accommodate
the focal length of the lens so that the image of the object is formed at the
retina (which is at a distance l = d from the lens). For an object at a distance
p1 = d0 the focal length is given by lens equation 1

f1
= 1

p1
+ 1

l . For an object
at a distance p2 → ∞ we have 1

f2
= 1

p2
+ 1

l . From previous equations we obtain
f1 = 2.19cm and f2 = 2.40cm. Consequently the lens focal length of a human
with regular eyesight takes a range from f1 = 2.19 cm to f2 = 2.40 cm.

(b) The lens focal length and the distance of the object that the man clearly sees
are related by 1

f = 1
p +

1
d . Consequently, without the use of glasses, this man

cannot clearly see objects at a distance larger than pmax, where

https://doi.org/10.1017/9781009160261.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009160261.002


4 Human

1
fmax

=
1

pmax
+

1
d
. (1.1)

The focal length of the system lenses-glasses fns satisfies the relation 1
fns

=
1
f +D1. When this man clearly sees very distant objects with the use of glasses,
the lens equation reads

1
fmax

+D1 =
1
p2

+
1
d
, (1.2)

where p2 → ∞. From equation (1.2) we obtain fmax =
d

1−dD1
= 2.34 cm. By

subtracting equations (1.1) and (1.2) we find pmax =− 1
D1

= 1.00m.
(c) Without the use of glasses, this woman cannot clearly see objects at a distance

smaller than pmin, where
1

fmin
=

1
pmin

+
1
d
. (1.3)

The lens equation for a woman with glasses looking at an object at a distance
d0 reads

1
fmin

+D2 =
1
d0

+
1
d
. (1.4)

From equation (1.4) it follows that

fmin =
1

1
d0
+ 1

d −D2
= 2.29 cm. (1.5)

By subtracting equations (1.3) and (1.4) we obtain

pmin =
d0

1−D2d0
= 50.0 cm. (1.6)

(d) The lens equation for a man with regular distance between the lens and the
retina when he clearly sees an object at a distance p is 1

f =
1
p +

1
d . For a man

with distance di between the retina and the lens who uses glasses with diopter
value Di and clearly sees the same object when the lens focal length is the
same, we obtain 1

f +Di =
1
p +

1
di
. Subtracting the previous two equations, we

find Di =
1
di
− 1

d . Consequently, we find in the first case D1 =−1.67m−1 and
in the second case D2 = 1.81m−1.

(e) A man sees the whole tree when the size L of the image of the tree on the
retina is smaller than the retina diameter (Figure 1.5). Using the similarity of
the triangles in Figure 1.5 we obtain L

H = d
x , where x is the distance between the

man and the tree. Consequently theman sees thewhole treewhenL=H d
x < 2R,

leading to x > Hd
2R = 4.80m.
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Problem 2 The Circulation of Blood 5

Figure 1.5 With the solution of problem 1(e)

(f) The number of cones per unit surface is equal to NS =
N2

R2π . On the other hand,
since we assume that the positions of cones form a square lattice with lattice
constant b, we also have NS =

1
b2 . From the previous two equations it follows

that b = R
√

π
N2

= 7.24 µm.When the woman is at a maximal distance at which
she can still distinguish between the two objects, the images of the objects are
formed at two neighboring cones. From the similarity of triangles in Figure 1.6,
we find a

x = b
d – that is, x = ad

b = 3.32m.

Figure 1.6 With the solution of problem 1(f)

(g) From the solution of part (f) we have x = ad
b , where in this case a = 1.00 cm,

leading to x = 33.2m.
(h) Since the woman observes the cat during the night, the solution of part (f)

is modified only by replacing the number of cones with the number of rods.
Consequently, x = ad

√
N1

R
√

π = 271m.

We refer the reader interested in more details regarding the physics of the human
eye to chapter 12, reference [13].

Problem 2 The Circulation of Blood

How powerful is the human heart?
How does a bypass help in the case of arteriosclerosis?

The human cardiovascular system consists of the heart, the blood, and the blood
vessels. The heart pumps the blood through the blood vessels. The blood carries
nutrients and oxygen to and carbon dioxide away from various organs. The most
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6 Human

important portions of the cardiovascular system are pulmonary circulation and sys-
temic circulation. Pulmonary circulation pumps away oxygen-depleted blood from
the heart via the pulmonary artery to the lungs. It then returns oxygenated blood to
the heart via the pulmonary vein. Systemic circulation transports oxygenated blood
away from the heart through the aorta. The aorta branches to arteries that bring the
blood to the head, the body, and the extremities. The veins then return oxygen-
depleted blood to the heart. The direction of blood flow is determined by four heart
valves. Two of them are positioned between the antechambers and the chambers,
while two are located between the chambers and the arteries.

(a) The heart pumps blood by contraction of the muscles of the antechambers and
chambers. The blood pressure gradually increases from the minimal (diastolic)
value of pd = 80mmHg to the maximal (systolic) value of ps = 120mmHg
during contraction.

Figure 1.7 The graph of the dependence p(t)

Themuscle then relaxes and the value of pressure suddenly decreases, as shown
in Figure 1.7. The heart contracts (beats) around 60 times a minute. Each con-
traction pumps around 75 ml of blood. The pump shown in Figure 1.8 is a
simple model of the heart. The heart decreases the volume during the con-
traction, which corresponds to the upward motion of the piston in the model.

Figure 1.8 A pump as a model of the heart
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Problem 2 The Circulation of Blood 7

Thereby the pressure increases and closes the input valves while it opens the
output valves. Determine the power of the heart.

The boundary between laminar and turbulent flow of blood is determined from
the Reynolds number, which is directly proportional to the speed of blood v. The
Reynolds number is a dimensionless quantity that depends as well on the density
of blood ρ = 1,060kg/m3, viscosity of blood η = 4.0 ·10−3Pa · s and the diameter
of the blood vessel D. The flow is turbulent if the Reynolds number is larger than
2,000, while it is laminar otherwise.

(b) Derive the expression for the Reynolds number using dimensional analysis.
Assume that the dimensionless constant that appears in front of the expression
is equal to 1.

(c) The diameter of the aorta is D = 10 mm. Calculate the maximal speed of
laminar blood flow in the aorta.

We consider next the laminar flow of blood through the artery whose shape is a
cylinder of length L and radius R, as shown in Figure 1.9. The flow of blood in the
artery is caused by the difference of pressures ∆p at the ends of the artery, which
is a consequence of blood pumping from the heart. The blood does not slide at the
walls of the artery. For this reason, a cylindrical layer of blood that is at rest is
formed near the wall of the artery. The viscosity of the blood causes laminar flow
where each layer slides between neighboring layers. The viscosity force between
the layers F is given by Newton’s law,

F = ηS
∆v
∆r

,

where η is the viscosity of the blood, S is the area of the layer that is in contact with
the neighboring layer, and ∆v/∆r is the gradient of speed in the radial direction.
The walls of the artery are inelastic and the speed of flow does not change between
the points on the same line in the direction of the artery.

Figure 1.9 Artery

(d) Determine the dependence of the speed of blood on the distance from the artery
axis.

(e) Using the analogy of electrical resistance, one can define the resistance of blood
flow as the ratio of the pressure difference and the volume flow caused by this
difference of pressures. Determine the blood flow resistance through the artery.
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(f) As a consequence of arteriosclerosis, the inner diameter of a part of the
artery decreased from d1 = 6.0 mm to d2 = 4.0 mm. How many times was
the blood flow resistance increased in this part of the artery? To reduce
the blood flow resistance, a bypass can be introduced. A healthy artery
or vein is removed from another part of the patient’s body and attached
in parallel to this part of the artery. Assume that the bypass is of the
same length as this part of the artery. How many times does the blood
flow resistance decrease after the introduction of a bypass of diameter
d3 = 5.0mm?

When the blood enters the artery, the speed of the blood is nearly the same
throughout the cross-section of the artery. This means that the blood needs to
accelerate and decelerate to reach the regime considered in previous parts of the
problem. The blood near the artery walls decelerates to zero speed, while the part
in the center of the artery accelerates to the maximal value of the speed. Consider
the situationwhenwe neglect the viscosity andwhen the blood accelerates along the
artery.

(g) Determine the relation between the pressure difference ∆p at the ends of the
artery and the change of volume flow ∆q/∆t as a function of blood density ρ ,
the length of the artery L, and its radius R.

(h) As in part (e), the analogy with electrical circuits can be also introduced in part
(g). Which element of the electric circuit can be used to describe the relation
determined in part (g)?

Solution of Problem 2

(a) The work performed by the pump when the piston moves by ∆r is

∆A = F∆r =
F
S

∆rS = p∆V . (1.7)

The work performed by the heart is equal to the area under the graph of the
function p(V ). The heart performs 60 beats per minute, which is 1 beat per
second. Consequently the heart pumps in V = 75 ml of blood each second.
Therefore, the graph of the function p(V ) looks as shown in Figure 1.10. The
work performed by the heart during 1 beat is

A = pdV +
1
2
(ps − pd)V =

1
2
(ps + pd)V = 1.0 J . (1.8)

The work A is performed by the heart during t = 1 s, which means that the
corresponding power is P = A/t = 1 J/1 s= 1.0W .
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Figure 1.10 The graph of the function p(V )

(b) We can find the expression for the Reynolds number using dimensional analysis

Re= vρα ηβ Dγ ⇒ 1 = [m · s−1] [kg ·m−3]α [kg ·m−1s−1]β [m]γ , (1.9)

which leads to the system of equations

1−3α −β + γ = 0,−1−β = 0,α +β = 0 , (1.10)

whose solution is (α,β ,γ) = (1,−1,1). Therefore, the Reynolds number is
given by the expression

Re=
ρvD

η
. (1.11)

(c) The maximal speed of blood in the aorta is obtained for Re= 2,000 and reads

v =
ηRe
ρD

= 75
cm
s

. (1.12)

The Reynolds number reaches the critical value when the valves of the aorta
open. The blood is then under big pressure and reaches a speed as high as
120 cm/s. So-called Korotkoff sounds appear then as a consequence of tur-
bulent flow. These can be heard using a stethoscope. This fact is used when
blood pressure is measured using a sphygmomanometer.

(d) The system has cylindrical symmetry. Consequently the speed of blood is con-
stant in each thin cylindrical layer. Consider the part of blood in the shape of
a cylinder of radius r. This part of blood in the artery moves due to pressure
difference ∆p, which yields the force F1 = πr2∆p. The magnitude of the vis-
cosity force that acts on this layer is F2 = 2πrLη ∆v

∆r . Since each layer of blood
is moving at a constant velocity, we obtain from Newton’s first law that

F1 = F2 ⇒ ∆v =
∆p

2ηL
r∆r . (1.13)

By transforming the equation (1.13) to differential form and performing inte-
gration with the boundary condition v(R) = 0, we obtain the dependence of the
speed of blood on the distance from the axis of the artery:
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v(r) =
∆p

4ηL
(R2 − r2) . (1.14)

(e) The flow of blood through the ring of width dr, which is located in the region
between r and r+dr, is v(r)dS, where dS = 2πrdr is the area of that ring. The
flow of blood through the artery is then obtained by performing the integration
over all rings, which leads to

q =
∫ R

0
v(r)2πrdr =

∫ R

0

π∆p
2ηL

(rR2 − r3)dr =
π∆pR4

8ηL
, (1.15)

and consequently the blood flow resistance is

R=
∆p
q

=
8ηL
πR4 . (1.16)

(f) Due to arteriosclerosis the blood flow resistance in the sick part of the artery
R2 increases in comparison to the resistance in the healthy artery R1, which
leads to

R2

R1
=

(
d1

d2

)4

= 5.1 . (1.17)

After the bypass is introduced, the sick part of the artery and the bypass
form a parallel connection of two resistors with equivalent resistance Re. The
resistance then reduces by

R2

Re
=

R2
R2R3
R2+R3

= 1+
(

d3

d2

)4

= 3.4 . (1.18)

(g) Newton’s second law applied to the blood in the artery gives:

m
∆v
∆t

= ∆pS , (1.19)

where m = ρV = ρLπR2 is the mass of the blood in the artery, ∆v/∆t is the
change of the speed of blood along the artery, and S = πR2 is the area of the
inner cross-section of the artery. The change of flow is∆q=∆(R2πv)= πR2∆v,
which along with equation (1.19) gives

∆p =

(
ρL
πR2

)
∆q
∆t

. (1.20)

(h) One can conclude from part (e) that the change of pressure is analogous to
the potential difference, while the flow of blood is analogous to the electrical
current. Consequently equation (1.20) is analogous to the equation

∆φ = L ∆I
∆t

, (1.21)
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Problem 3 A Human As a Heater 11

which leads to the conclusion that the inductor is the analogous electrical
component that describes the blood flow in part (g).

We refer the reader interested in more details about the circulation of blood in
the human body to references [23] and [41].

Problem 3 A Human As a Heater

How many persons are needed to heat a room to the same temperature as a
heater?

You will have certainly noticed that it can be very hot in a room where a lot of
people are present. The reason for this is that humans emit heat and consequently
they heat the room. We assume that humans exchange heat with the room only by
thermal radiation and heat conduction.
We consider first how a human exchanges heat with their surroundings by ther-

mal radiation. We use a simplified model in which the shape of the human is a ball
of radius r, while the room is a sphere of radius R, which is much larger than r. The
centers of the ball and the sphere coincide, as shown in Figure 1.11(b). Assume
that the human and the internal walls of the room radiate as black bodies, whose
temperatures are respectively Tc and Tz.

Figure 1.11 (a) A human in the room. (b) Simplified model of the human and the
room. (c) A scheme accompanying equation (1.22)

To solve the problem you can make use of the following fact. In point X the
intensity of electromagnetic radiation emitted by a black body in the shape of a
small flat tile is given as

I =
σT 4∆Scosθ

d2π
, (1.22)

where T is the temperature of the body, ∆S is the area of one side of the tile, d is
the distance between the tile and point X , and θ is the angle between the direction
connecting point X with the tile and the direction perpendicular to the plane of the
tile, as shown in Figure 1.11(c).
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(a) Determine the expression for the power of the radiation that the human emits.
(b) Determine the expression for the power of the radiation that the human absorbs.
(c) Determine the expression for the power of the radiation that the human

exchanges with their surroundings.
(d) Calculate the power of the radiation that the human exchanges with their sur-

roundings. Assume that the equations derived in previous parts of the problem
can be applied to a human in the room. Use the following numerical values
in this part of the problem – tc = 36.0◦C, tz = 20.0◦C – and assume that the
surface area of one human is equal to Sc = 1.90m2. The Stefan–Boltzmann
constant is σ = 5.67 ·10−8 Wm−2K−4, 0◦C= 273.15K.

The law of heat conduction states that the amount of heat that a human exchanges
with their surroundings in unit time by heat conduction is given by the expression

dQ
dt

= αSc(To −Tc), (1.23)

where α is the coefficient of heat conduction equal to α = 4.50 W
m2·K for a

human wearing regular clothes, Sc is the surface area of the human, and To is the
temperature of the surroundings.

(e) Calculate the power of heat that a human from part (d) exchanges with their sur-
roundings by heat conduction. Assume that the temperature of the surroundings
is equal to the temperature of walls from part (d).

(f) Calculate how many persons are needed to heat the room to the same tem-
perature as the heater, whose useful power is Pg = 1.30 kW. Assume that the
formulas derived in previous parts of the problem can be applied to each per-
son in the room and that people exchange heat with their surroundings only by
radiation and conduction.

(g) Answer the same question as in part (f) in the case when people in the room
wear winter clothes whose coefficient of heat conduction is α ′ = 2.40 W

m2·K .

Solution of Problem 3

(a) Since the human emits as a black body, the power of the emitted radiation
is given by the Stefan–Boltzmann law Pem = σT 4

c Sc, where Sc = 4r2π is the
surface area of the human, which leads to Pem = σT 4

c 4r2π .
(b) We determine first the power of the radiation emitted by a small part of the

wall of area ∆Sz that is absorbed by the human. We denote this power as ∆Ppr.
The intensity of the radiation emitted by that part of the wall at a distance R

is, according to the formula given in the problem, ∆I = σT 4
z ∆Sz

R2π . The radiation
incident on the human is the radiation that would be incident on a tile of area
r2π that is perpendicular to the direction that connects the part of the wall and
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the human. Therefore, ∆Ppr = ∆I · r2π , which leads to ∆Ppr =
σT 4

z ∆Szr2

R2 . The
total power of the radiation absorbed by the human is obtained by adding all
∆Ppr. Bearing in mind that Sz = 4R2π , we obtain Ppr = σT 4

z 4πr2.
(c) The power that the human exchanges with their surroundings is Pr = Pem −

Ppr = σ
(
T 4

c −T 4
z
)

4πr2.
(d) Using the expression from part (c) leads to Pr = σ

(
T 4

c −T 4
z
)

Sc, and conse-
quently Pr = 188W.

(e) The power of heat that the human exchanges with their surroundings by heat
conduction is Pt = αSc(To −Tc) = 137W.

(f) To heat the room to the same temperature as the heater, the power that people
exchange with their surroundings should be the same as the power of the heater.
Consequently, Pg = N (Pr+Pt), where N is the number of persons in question.
Using the solutions of parts (d) and (e), we find N ≈ 4.

(g) The power of heat that a human exchanges with their surroundings by heat
conduction is now P′

t = α ′Sc(To −Tc) = 73W, and therefore N =
Pg

Pr+P′
t
≈ 5.

We refer the interested reader to reference [16]. Part of this problem was given by
the authors at the national physics competition for the fourth grade of high school
in Serbia in 2016.

Problem 4 Human Walk

How fast can humans walk without running?
What is the energy required for walking?

We consider the human walk in this problem. You might have noticed that it is quite
difficult to walk fast without actually running.

(a) Make an order ofmagnitude estimate of the highest possible speed of the human
walk without using the data given in the rest of the problem.

In the rest of this problem we consider the following model of the human walk
and use it for amore detailed analysis of the humanwalk.We assume that the human
body consists of three rigid rods that represent the two legs and the abdomen. The
pelvis is where the legs and abdomen merge. The position of the abdomen during
the walk is always vertical. One leg (which we call the standing leg) is always
in contact with the ground, while the foot of the other leg is slightly above the
ground but not in contact with the ground. Static friction between the legs and the
ground is enough to prevent the standing leg from slipping. Unless otherwise stated,
assume that muscles do not perform work and that the person moves only under the
influence of external forces.
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Different positions that a person takes during one step are presented in Fig-
ure 1.12. At the beginning of the step (moment 1) the angle between each leg and
the vertical is θ = θ0 (θ0 < 48◦). The pelvis rotates around the point of contact of
the standing leg and the ground and consequently the angle θ decreases until the
legs become parallel (moment 3). Next, the angle θ increases to the value θ = θ0

(moment 5). At moment 5 there is a change of standing leg as follows. First, the
standing leg loses contact with the ground (legD in Figure 1.12 [moment 5]). Imme-
diately after that the second leg (leg L in Figure 1.12 [moment 5′]) becomes the
standing leg.

′

Figure 1.12 Positions a person takes during one step in five different moments of
time (denoted as 1 to 5 and 5′). L denotes the left leg while D denotes the right
leg

We assume for simplicity that the person’s total mass is located in the pelvis. The
length of each leg is l, the person’s mass is m, and gravitational acceleration is g.
The speed of the person at the moment when the legs are parallel is v0.

(b) Find the expressions for the magnitude of angular velocity of the leg and for
the reaction force of the ground at the moment when the angle between the leg
and the vertical is θ .

(c) Determine the condition that the quantities v0, g, l, and θ0 should satisfy to
make sure that the standing leg remains in contact with the ground.

(d) Calculate the maximal speed of walking for a person with short steps (small
value of θ0). The length of the leg is l = 90 cm while gravitational accel-
eration is g = 9.81 m

s2 . Compare the result with the average speed of the
best athlete competing in a 10 km walking race. The world record in this
discipline is 37 minutes and 11 seconds for male athletes and 41 min-
utes and 4 seconds for female athletes. Comment on the difference in the
results.

(e) The angular velocity of the leg suddenly changes during the change of the
standing leg. Find the ratio of the angular velocity of the leg immediately after
and immediately before the change of standing leg.
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(f) Determine the expression for the loss of kinetic energy of the person during the
change of the standing leg.

(g) Calculate the work per distance traveled that muscles should perform in order
to compensate for the loss of kinetic energy described in part (f). Use the fol-
lowing numerical values: θ0 = 10◦, v0 = 2.0 m

s , and m = 75kg, while g and l
are given in part (d).

(h) How much spinach should the person eat to have enough energy to walk the
distance of s = 10km? The energy value of 100 g of spinach is 28kcal, where
1kcal= 4.196kJ. Use the numerical values from parts (d) and (g).

Solution of Problem 4

(a) Assume that the person walks at a speed v. For an order of magnitude estimate,
we assume that the person’s whole mass m is located in the pelvis. During
one step the pelvis performs the motion on a circle of radius l equal to the
length of the leg. The person stays in contact with the ground if the force of
gravity is larger than the centripetal force mg > mv2

l , where g is gravitational
acceleration. We therefore obtain v >

√
gl. Assuming that g ≈ 10 m

s2 and that
the length of the leg is l ≈ 1m, we obtain a maximal speed of human walking
of vmax =

√
gl ∼ 3 m

s .
(b) The trajectory of the pelvis is the circle of radius l, which implies that its speed

is v = lω , where ω is the magnitude of the angular velocity of the leg. Since we
assume in this problem that the person’s whole mass is located in the pelvis,
the person’s kinetic energy is T (θ) = 1

2 mv(θ)2 = 1
2 ml2ω(θ)2. The gravita-

tional potential energy (with the reference level set at the ground) is U(θ) =
mgl cosθ . The law of energy conservation reads U(θ)+T (θ) =U(0)+T (0)
and consequently

ω(θ)2 =
v2

0
l2 +

2g
l
(1− cosθ) . (1.24)

Newton’s second law of motion of the person in the y direction gives
dpy

dt
= N −mg, (1.25)

where N is the magnitude of the reaction force of the ground and py is the y
component of the person’s momentum. The y coordinate of the person is given
as y = l cosθ , which leads to py = mdy

dt =−mlθ̇ sinθ , where we introduce the
notation θ̇ = dθ

dt . Further differentiation leads to

dpy

dt
=−ml

(
θ̇ 2 cosθ + sinθ

dθ̇
dt

)
. (1.26)
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We further obtain
dθ̇
dt

=
dθ̇
dθ

dθ
dt

= θ̇
dθ̇
dθ

=
1
2
dθ̇ 2

dθ
. (1.27)

Since the relation ω(θ)2 = θ̇ 2 holds at every moment of time, by using the
trigonometric identity sin2 θ = 1− cos2 θ , we obtain from equations (1.24) to
(1.27) that

N = 3mgcos2 θ −2mgcosθ −m
v2

0
l
cosθ . (1.28)

(c) The standing leg will remain in contact with the ground if the condition
N > 0 is satisfied at every moment of time. This leads to the condition v2

0 <

gl (3cosθ −2). This condition is satisfied for each value of θ during themotion
if the condition v2

0 < gl (3cosθ0 −2) is satisfied.
(d) Since a walk with short steps implies θ0 ≈ 0, the solution of part (c) yields

vmax
0 =

√
gl = 3.0 m

s . The average speed of world record holders in walking
is vsr = s

t , where s = 10 km and t = 2,231 s for males, while t = 24,64 s for
females. Consequently vsr = 4.5 m

s for males and vsr = 4.1 m
s for females. This

result implies that the average speed of world record holders is faster than this
model predicts. One reason for that could be the simplicity of the model used,
which gives only an estimate of maximal possible walking speed. Another
reason is that athletes perform characteristic moves of the pelvis that enable
walking at higher speeds while keeping the standing leg on the ground. This
is particularly important in walking events because the athlete gets a warning
every time the leg loses contact with the ground and three such warnings lead
to disqualification.

(e) During the change of the standing leg (from moments 5 to 5′) it loses contact
with the ground first, which does not lead to a change in the person’s speed.
When the second leg makes contact with the ground, a sudden change takes
place in the person’s speed and in the angular velocity of the leg. The person’s
angular momentum with respect to the point of contact of the standing leg with
the ground (point O in Figure 1.13) is conserved during such contact. The rea-
son for this is that gravity is the only external force acting during the contact
that has torque with respect to point O. Since the duration of the contact is short
and the force of gravity is finite, the change of angular momentum with respect
to point O is negligible.
Angular momentum with respect to point O before the contact of the leg with
the ground is L⃗i = m⃗r × v⃗i, where r⃗ = −l sinθ0⃗ex + l cosθ0⃗ey is the position
of the pelvis with respect to point O; v⃗i = lωi cosθ0⃗ex − lωi sinθ0⃗ey, where
e⃗x and e⃗y are the unit vectors in the x and y directions; v⃗i is the velocity of
the pelvis just before the contact of the leg with the ground (Figure 1.13);
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Figure 1.13 With solution of problem 4(e)

and ωi is the magnitude of the angular velocity of the leg just before its
contact with the ground. Using the identity cos(2θ0) = cos2 θ0 − sin2 θ0, it
follows that (Li)z = −ml2ωi cos(2θ0). Next we have L⃗ f = m⃗r × v⃗ f , where
v⃗ f = lω f cosθ0⃗ex + lω f sinθ0⃗ey, with v⃗ f being the velocity of the pelvis just
after the contact of the leg with the ground (Figure 1.13), andω f being the mag-
nitude of the angular velocity of the leg just after its contact with the ground.
Using the identity 1 = cos2 θ0 + sin2 θ0, it follows that

(
L f
)

z = −ml2ω f .
Conservation of angular momentum yields

(
L f
)

z = (Li)z. This leads to:
ω f

ωi
= cos(2θ0) . (1.29)

(f) The person’s kinetic energy just before the change of standing leg is Ti =
1
2 ml2ω2

i , while just after the change of the standing leg it is Tf =
1
2 ml2ω2

f . Using
equation (1.29) the change of kinetic energy is ∆T = 1

2 ml2 sin2 (2θ0)ω2
i . Using

equation (1.24) we obtain

∆T =
1
2

ml2 sin2 (2θ0)

[
v2

0
l2 +

2g
l
(1− cosθ0)

]
. (1.30)

(g) In every step the person travels a distance of 2l sinθ0 and loses kinetic energy
∆T . The work per distance traveled that compensates for this loss of energy is
A′ = ∆T

2l sinθ0
= 59.9 J

m .
(h) To travel the distance of s = 10 km the person requires E = A′s = 599 kJ =

143kcal of energy. The energy value of spinach per unit of mass isw= 28kcal
100g =

280 kcal
kg . Therefore, the person has to eat ms =

E
w = 0.51kg of spinach.

We refer the reader interested in more detail about the physics of human walk-
ing to reference [1] and other references therein. The authors presented a modified
version of this problem at the Serbian Physics Olympiad for high school students
in 2018.
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