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Minimal genus and fibering of canonical surfaces
via disk decomposition

A. Stoimenow

Abstract

This paper contains some applications of the description of knot diagrams by genus, and Gabai’s
methods of disk decomposition. We show that there exists no genus one knot of canonical genus
2, and that canonical genus 2 fiber surfaces realize almost every Alexander polynomial only
finitely many times (partially confirming a conjecture of Neuwirth).

1. Introduction

Introducing the genus g(K) of a knot K, Seifert [42] gave a construction of compact oriented
surfaces in 3-space bounding the knot (Seifert surface) by an algorithm starting with some
diagram of the knot (see [1, § 4.3] or [40]). The surface given by this algorithm is called
canonical. The canonical genus g̃(K) of K is the minimal genus over all surfaces so obtained,
the genus g(K) the minimum extended over possible other Seifert surfaces of K. Clearly,
g(K) 6 g̃(K). The case of equality means the existence of a diagram which is genus-minimizing
(or of minimal genus), that is, whose canonical Seifert surface realizes g(K) (and not only
g̃(K)). This problem has been studied over a long period. First, the minimal genus property
was shown for alternating diagrams, independently by Crowell [11] and Murasugi [30]. Their
algebraic proof uses the Alexander polynomial ∆ [2] and the inequality max deg ∆ 6 g (which
thus they prove to be exact for alternating knots). Later Gabai [14] developed a geometric
method using foliations, called disk decomposition, which, too, establishes genus minimality
for alternating diagrams. Murasugi’s sum operation [31] (*-product) was shown to behave
naturally with respect to the Alexander polynomial by himself, and later by Gabai [15, 16] in
the geometrical context.

The aim of this paper is to apply the description of canonical genus 2 surfaces in [44], the
methods of Gabai to detect minimal genus and fiber property, and some computational effort,
to prove two related theorems.

Theorem 1.1. No knot has genus g = 1 and canonical genus g̃ = 2.

This statement cannot be considered expected, since for any other pair of integers a, b with
1 6 a 6 b, it is not too hard to construct knots with g = a and g̃ = b. A reformulation (using
Theorem 2.9) is that almost every genus 2 diagram is genus-minimizing, except if it displays a
(p, q, r)-pretzel knot, p, q, r odd, or a genus 1 2-bridge knot. In particular, we have the following
corollary.

Corollary 1.1. The canonical genus of any satellite knot of wrapping number zero is at
least 3.

In case of Whitehead doubles, there is a conjecture saying that their canonical genus is equal
to the crossing number of the companion knot. The conjecture was confirmed first by Tripp [52]
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for doubles of (2, n)-torus knots, and later more generally by Nakamura [33] for 2-bridge knots,
and for alternating pretzel knots by Brittenham-Jensen [5]. Not much else seems known about
it, though. The above corollary implies a partial statement towards the general case.

The proof of Theorem 1.1 consists in adapting a certain version of disk decomposition to deal
with infinite families of canonical genus 2 surfaces. The failure of this procedure leaves only
knots either of canonical genus 1, or with canonical genus 2 surfaces which can be Murasugi
desummed. In the latter case, the summands can be inspected by induction.

The other result of disk decomposition, proved by essentially the same method, relates to
the description of Alexander polynomials of fibered knots.

Neuwirth, who introduced fibered knots, conjectured that for a given Alexander polynomial
only finitely many fibered knots occur. This is clearly true for polynomials of degree† 1, since
it was well known that only the trefoil and figure-8-knot are fibered genus 1 knots. Morton
found the first counterexamples in [27], and later (after some other authors’ contributions,
for example [38]) managed to ‘demolish the remains of this conjecture’ [28] by constructing
an infinite number of fibered knots for any Alexander polynomial of degree at least 2. His
construction suggests that the description of general fiber surfaces is already too complicated
even in genus 2. It seems reasonable to look then for some restrictions under which something
more specific could be said about these surfaces. One such natural condition is to consider
canonical surfaces. It was recently proved, independently by Nakamura [34] and myself [49],
that each monic Alexander polynomial is realized by at least one canonical fiber surface.
Moreover, for example by Stallings twists, one can construct infinitely many canonical fiber
surfaces for many concrete Alexander polynomials. Nakamura’s question thus becomes natural:
do infinitely many canonical fiber surfaces (or equivalently fibered knots with such surfaces)
exist for any monic Alexander polynomial of degree at least 2? We answer this question
negatively for genus 2.

Theorem 1.2. All but finitely many monic degree 2 (admissible) polynomials are realized
as Alexander polynomials by only finitely many (genus 2) knots with canonical fiber surfaces.

This seems the first somewhat broader statement toward confirming (at least) partially
Neuwirth’s conjecture.

2. Preliminaries

2.1. Knots and knot diagrams

Knots/links and their diagrams must be oriented (even if orientation is not always displayed).
A crossing p in a knot diagram D is called reducible (or nugatory) if it looks like on the left

of (2.1).

p (2.1)

A diagram D is called reducible if it has a reducible crossing; otherwise, it is called reduced.
The reducing of the reducible crossing p is the move depicted in (2.1). Each diagram D can be
(made) reduced by a finite number of these moves. We assume in the following all diagrams
reduced, unless otherwise stated.

The diagram on the right of

†Here the maximal degree, and not the span (twice the maximal degree) is meant; see § 2.3.
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is called the connected sum A#B of the diagrams A andB. We say that A andB are (connected
sum) factors of D. If a diagram D can be represented as the connected sum of diagrams A and
B, such that both A and B have at least one crossing, then D is called composite; otherwise,
it is called prime. A knot or link K is prime if, whenever D = A#B is a composite diagram
of K, one of A and B represents an unknotted arc (but not both; the unknot is not prime per
convention). Every diagram (and link) has a decomposition into prime factors, unique up to
permutation.

Theorem 2.1 [24]. If D is a prime alternating non-trivial diagram of a link K, then K is
prime.

A diagram D is split or disconnected if its plane curve is a disconnected set in R2, that is,
there is a simple closed curve disjoint from D, whose interior and exterior contain parts of D.
A diagram which is not disconnected is connected or non-split. A link is a split link if it has
a split diagram, and otherwise a non-split link.

The (Seifert) genus g(K), respectively Euler characteristic χ(K) of a knot or link K, is
said to be the minimal genus, respectively maximal Euler characteristic, of a Seifert surface
of K. For a diagram D of K, we define g(D) to be the genus of the Seifert surface obtained
by Seifert’s algorithm on D, and χ(D) its Euler characteristic. For a diagram with c(D)
crossings, n(D) = n(K) components, and s(D) Seifert circles, we have χ(D) = s(D) − c(D)
and 2g(D) = 2− n(D)− χ(D).

Theorem 2.2 (See [11, 14, 30]). If D is an alternating diagram of K, then g(K) = g(D)
and χ(D) = χ(K).

The canonical genus g̃(K), respectively canonical Euler characteristic χ̃(K), is defined as
the minimal genus, respectively maximal Euler characteristic, of all diagrams of K. In general
we can have g(K) < g̃(K), that is, no diagrams of K of minimal genus (see [26]).

The writhe or sign of a crossing is ±1. A crossing as has writhe 1 and is called positive.

A crossing as has writhe −1 and is called negative. The writhe w(D) of a link diagram

D is the sum of the writhes of all its crossings. A diagram is positive/negative if all its
crossings are such; a link with this type of diagram is also called positive/negative. (See, for
example, [10, 36, 53, 54].)

Definition 2.1. A clasp is a tangle that consists of two crossings, that is, a pair of crossings
that bound a bigonal (2-corner) region in the plane complement of a diagram. The clasp
is called positive, negative or trivial, if both crossings are positive/negative, respectively of
different sign. Depending on the orientation of the involved strands (for an oriented diagram)

we distinguish between a reverse clasp and a parallel clasp . Thus a clasp is

reverse if it contains a full Seifert circle, and parallel otherwise. The replacement of a crossing
with a parallel clasp is called a clasping :

, . (2.2)

It is always compatible with component orientation, but changes the number of components.

Definition 2.2. A flype is a move on a diagram as shown in Figure 1. We say that a
crossing admits a flype if it can be represented as the distinguished crossing p in the diagrams
in the figure, and both tangles have at least one crossing.
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Figure 1. A flype near the crossing p.

Figure 2. Wave moves. The number of strands on the left and right of the shaded circle may vary. It
is only important that the parities are equal, respectively different, and that the left-outgoing strands
are fewer that the right-outgoing ones.

By the fundamental work of Menasco-Thistlethwaite, we have a proof of the Tait flyping
conjecture.

Theorem 2.3 [25]. For two alternating diagrams of the same prime alternating link, there
is a sequence of flypes taking the one diagram into the other.

A wave move, or bridge rerouting, is a replacement of a too long bridge by a shorter one;
see Figure 2 (or [50] for example).

A Seifert circle is called separating if both its complementary regions in the plane contain
other Seifert circles. A diagram is special if no Seifert circle is separating. For such a diagram
D, Seifert circles coincide with the boundary of a set of regions of D (connected components
of the planar complement of D). We will call the remaining regions of D hole regions.

It is an easy observation that, for connected diagrams, two of the properties alternating,
positive/negative and special imply the third. A diagram with these properties is called special
alternating. A knot or link is special alternating if it has a special alternating diagram. Such
knots were introduced and studied by Murasugi [29] and have a series of special features.
Contrarily, all knots have a special (not necessarily alternating) diagram. Hirasawa [20] shows
how to a modify any knot diagram D into a special diagram D′ so that g(D) = g(D′) (actually,
the canonical surfaces of D and D′ are isotopic).

The concept of (diagrammatic) Murasugi sum will also be of central importance here; we
appeal to some nomenclature set up in [9, § 1] and [39].

Definition 2.3. The Seifert picture (union of Seifert circles) of a link diagram D separates
the plane into regions. A non-empty part of D lying in some such region is called a block. We
call a Murasugi atom a prime factor of a block of D.

In the terms of Definition 2.3, a Seifert circle is separating if it bounds blocks on both sides,
and a diagram is special if it has only one block. In particular, any of the blocks of D is special.

Definition 2.4 (see [32] for example). The operation that reconstructs a diagram from
its blocks by gluing them back along the separating Seifert circles is called (diagrammatic)
∗–product or Murasugi sum.

This operation is (here) defined for a pair of diagrams A,B and a pair of distinguished
non-separating Seifert circles a, b. We draw A so that all of it lies in the interior of a and B
so that all of B is in the exterior of b. Then we identify a and b, such that at a place where a
crossing is attached to b (respectively a) we delete an interval of a (respectively b). There may
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be a sequence of consecutive deleted intervals along a or b; we identify them. Then the number
of such deleted intervals is an even integer; it can be called the degree of the Murasugi sum.
A Murasugi sum of degree 2 is just a connected sum. A Murasugi sum of degree 4 is called
a plumbing. If one of A or B is a Hopf band, it is a Hopf plumbing. The converse operations
to (Hopf) plumbing and Murasugi sum are called (Hopf) deplumbing and Murasugi desum.
(See, for example, [19] for some geometric pictures.)

The operation on the canonical surfaces of these diagrams is likewise called Murasugi sum.
(This operation can be defined for Seifert surfaces in a more general form.)

Definition 2.5. A knot or link L is fibered, if S3 \ L is a surface bundle over a circle.

Theorem 2.4 (Neuwirth–Stallings). If L is fibered, then a fiber surface is a minimal genus
surface, and a minimal genus surface is unique.

Definition 2.6. A knot or link L will be called canonically fibered, if L is fibered, and the
fiber is a canonical surface for some diagram D of L. We then also call D canonically fibered.

The proofs of Theorems 1.1 and 1.2 will rely fundamentally on the following theorem of
Gabai.

Theorem 2.5 (Gabai [16–18]). If a surface L decomposes as Murasugi sum A ∗B, then L
is of minimal genus if and only if A and B are so, and L is a fiber surface if and only if A and
B are so.

2.2. Knot and diagram notation

We will use, unless explicitly noted otherwise, KnotScape’s [21] notation for eleven or more
crossing knots throughout the rest of the paper. It is organized so that non-alternating knots
are appended to alternating ones instead of using ‘a’ and ‘n’ superscripts. For ten or fewer
crossings we use the numbering of [40], with the Perko duplication removed (and index of the
last four knots shifted down by 1).

It is convenient to define the Dowker–Thistlethwaite (DT) notation [12], in the form used
in [21]. Several diagrams will be given, instead graphically, by this form.

A knot diagram D of n crossings is represented as a sequence of n+ 2 integers of the form
(n, k, a1, . . . , an). The first integer specifies the crossing number, n. The second integer is a
knot identifier; it has a merely technical purpose, and in the notation we reproduce its value
will be specified subsequently. The ai are obtained as follows. Each crossing of D has two
crossing points, an overcrossing and an undercrossing. We number the crossing points by 1 to
2n cyclically along the circle. Each crossing then has a crossing point of an odd number 2k−1
(for some 1 6 k 6 n) and one of an even number l. We set ak = l if l is the overcrossing,
and ak = −l otherwise. We obtain thus a sequence of n even integers ai, which determines a
prime diagram D up to mirroring. We fix the mirroring ambiguity so that a1 > 0 if and only if
its crossing (the crossing with crossing point 1) is positive (as defined in § 2.1). Beside saving
space, the DT notation thus has a further advantage of assigning an order to the crossings,
which will be very convenient for us.

The mirror image of a diagram D is written !D, and !K is the mirror image of K. Clearly
g(!D) = g(D) (and therefore g̃(K) = g̃(!K)), and g(!K) = g(K).

We will repeatedly mention (specific) rational, pretzel, and Montesinos tangles, diagrams
and links, and thus we clarify here (our convention of) terminology. In the following we use
the approach of Conway [7].

A tangle diagram is a diagram consisting of strands crossing each other, and having four
ends.
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Figure 3. Conway’s tangles and operations.

Definition 2.7. A rational tangle diagram is the one that can be obtained from the
primitive Conway tangle diagrams by iterated left-associative product in the way displayed in
Figure 3. A simple but typical example is shown in the middle of the figure. The convention
in composing tangles, which will extend to Montesinos diagrams below, is that the diagram is
alternating if and only if all occurring numbers have the same sign. A rational (2-bridge) knot
or link is one with a diagram which is the closure of a rational tangle diagram.

Montesinos links (see, for example, [23]) are generalizations of pretzel and rational links
and special types of arborescent links. They are obtained by summing (simultaneously, not
successively) n rational tangles Pi. If n < 3, an easy observation shows that the Montesinos
link is in fact a rational link. A pretzel link (a1, . . . , an) for integers ai is a Montesinos link
with all Pi being primitive Conway tangles ai. A Montesinos diagram (respectively rational
or pretzel diagram) is the diagram of a closed Montesinos (or rational, or pretzel) tangle.
Geometric properties of Montesinos links are discussed in detail in [6].

2.3. The Alexander-Conway polynomial

Let X ∈ Z[t, t−1]. The minimal or maximal degree min degX or max degX is the minimal,
respectively maximal, exponent of t with non-zero coefficient in X. Let spantX = max degtX−
min degtX. The coefficient in degree d of t in X is denoted [X]td or [X]d. The leading coefficient
max cf X of X is its coefficient in degree max degX.

The (one variable) Alexander polynomial [2] ∆ can be defined by being 1 on the unknot
and the (skein) relation

∆ −∆ = (t1/2 − t−1/2) ∆ . (2.3)

(The Alexander polynomial is often defined only up to units in Z[t, t−1]; the present
normalization is so that ∆(t) = ∆(1/t) and ∆(1) = 1. For links there are also multi-variable
versions, but we use only the one-variable polynomial throughout the paper.)
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We will sometimes use, instead of ∆, the Conway polynomial [7] ∇(z) with ∇(t1/2−t−1/2) =
∆(t). It satisfies the skein relation (with D∗ the diagrams in (2.3))

∇(D+)−∇(D−) = z∇(D0). (2.4)

Note that max deg∇ = 2 max deg ∆. It is well known that for a link L of n components,
∇L ∈ zn−1Z[z2], and that each such polynomial occurs for some L, except for knots (n = 1),
where we pose the additional condition [∇]0 = 1. We abbreviate by ∇i the coefficient [∇]i of
zi in ∇, and for i = 2, 4 we sometimes write vi for ∇i.

Since we have 2 max deg ∆ 6 1 − χ for every link, it is clear that in any diagram
2 max deg ∆(D) 6 1 − χ(D). Murasugi proved the multiplicativity of the maximal (possible)
coefficients under Murasugi sum.

Theorem 2.6 (Murasugi [31]; see also [32]). If a diagram D decomposes as Murasugi sum
A ∗B, then

[∆(D)](1−χ(D))/2 = [∆(A)](1−χ(A))/2 · [∆(B)](1−χ(B))/2 .

The notion of a homogeneous diagram/link was introduced by Cromwell [9], in an attempt
to extend certain results on positive and alternating links. We say that D is homogeneous
if all blocks Di of D are positive or negative (that is, special alternating). A link is
homogeneous if it has a homogeneous diagram. Since in positive/negative diagrams all
blocks are positive/negative, such diagrams are homogeneous. Alternating diagrams are also
homogeneous, this time so that blocks which are bordering along a Seifert circle have opposite
sign. Theorem 2.6 (algebraically) and Theorem 2.5 (geometrically) extend the minimal genus
property of alternating diagrams to homogeneous diagrams and links. (For positive diagrams
this property follows from yet another source, the work of Bennequin [3] on contact structures;
see [41].)

The following property of the Alexander polynomial of fibered links is well known. We call
a polynomial ∆ in Z[t±1] monic if max cf ∆ = ±1.

Theorem 2.7 (See, for example, [40]). If L is fibered, then 2 max deg ∆L = 1 − χ(L) and
∆L is monic.

2.4. Genus generators

Now let us recall, from [44, 45], some basic facts concerning knot generators of given genus. An
explanation is also given in [8, § 5.3]. (There are several equivalent forms of these definitions,
and we choose here one that leans on the previously explained DT code.) We will also fix some
notation and conventions used below.

Definition 2.8. Let D be a knot diagram, and p and q be two of its crossings. If the
crossing points of p, q are passed in cyclic order pqpq, we call the crossings linked, and write
p ∩ q. Otherwise (that is, if the cyclic order is ppqq), p, q are unlinked, and we denote this by
p 6∩ q.

(i) We call p and q equivalent, q ' p, if for all r 6= p, q we have r ∩ p ⇐⇒ r ∩ q.
(ii) We call p and q ∼-equivalent and write p ∼ q if p and q are equivalent and p 6∩ q.
(iii) Similarly p and q are called ∼∗ -equivalent, p ∼∗ q, if p and q are equivalent and p ∩ q.
(iv) We call p and q twist equivalent, if there is a sequence of crossings p = p0, . . . , pn = q

such that pi and pi+1 form a clasp (cf. Definition 2.1).
We sometimes also call a ∼-equivalence class a group of crossings. A ∼-equivalence class
consisting of one crossing is called trivial, a class of more than one crossing non-trivial.
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Figure 4. A flype of type A and B.

It is an exercise to check that ∼ is an equivalence relation, and two crossings are ∼-equivalent,
if after a sequence of flypes they can be made to form a reverse clasp. The same remark applies
to ∼∗ , with a parallel clasp instead of a reverse one. (In this way, one can also define these
equivalences in link diagrams, where linkedness of crossings cannot be defined as done here.)

It is readily seen that linkedness is a feature of two ∼-equivalence (in fact, even equivalence)
classes, and thus we also call ∼-equivalence classes (un)linked, depending on whether any
crossing in the one is (un)linked with any crossing in the other. For instance, the 3 crossing
trefoil diagram has three (trivial) mutually linked ∼-equivalence classes, which form a single
equivalence class. The 4 crossing figure-8-knot diagram has two pairs of unlinked crossings,
forming two linked ∼-equivalence (and equivalence) classes.

Definition 2.9. Let t(D) be the number of ∼-equivalence classes of the diagram D. When
a DT notation of D is given, there is a natural ordering of its ∼-equivalence classes by the
first integer in the sequence (giving a crossing in the class). A DT notation (ai) also assigns a
number i = 1, . . . , c(D) to each crossing of D, and we write {i} for the ∼-equivalence class of
crossing i.

Definition 2.10. A t̄′2 move or twist at a crossing p in a diagram D is a move which creates
a pair of ∼-equivalent crossings to p as shown in the following diagram.

Definition 2.11. An alternating diagram D is called t̄′2 irreducible or generating diagram,
if all its ∼-equivalence classes have at most two crossings. The diagrams obtained from D by
t̄′2 moves and crossing changes form the sequence or series 〈D〉 of D. An alternating knot K
is called a generator if some of its alternating diagrams are generating.

Observe that, since ∼-equivalence is invariant under flypes, Theorem 2.3 implies that some
alternating diagram of K is generating if and only if all its alternating diagrams are so.

A flype in Figure 1 is called trivial if one of the tangles contains only crossings equivalent
to the crossing admitting the flype.

We introduced (see [51]) a distinction of flypes according to the orientation near the crossing
p at which the flype is performed. See Figure 4, and compare with the right of Figure 1. A flype
is of type A if the strand orientation is so that strands on the left/right side of each tangle are
directed equally with respect to the tangle (that is, both enter or both exit). Otherwise it is a
flype of type B. So the property to admit a type A, respectively type B, flype is an invariant
of the ∼∗ , respectively ∼-equivalence, class.

An important observation is that each crossing admits at most one of the types A and B of
flypes, and this remains so after applying any sequence on flypes on the diagram.

Theorem 2.8 [4, 45]. There exist only finitely many generators of given genus. All diagrams
of that genus can be obtained from diagrams of these generators, under t̄′2 twists, flypes, and
crossing changes.
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In [46] we obtained rather sharp estimates on the maximal number of crossings and ∼-
equivalence classes of generators. This, together with the examples in [51], determined the
maximal crossing number of a knot generator to be 10g− 7 for genus g > 2, and the maximal
number of ∼-equivalence classes to be 6g − 3.

In practice (in particular as we will see below) it is important to obtain the list of generators
for small genus. We recall the result for genus at most 2. (For genus 2, it is sufficient to
find prime diagrams, and by Theorem 2.1, prime generators. Genus 1 was also observed
independently; see [4, 41].)

Theorem 2.9 [44, 45]. There are two generators of genus 1, the trefoil and figure-8-knot.
There are 24 prime generators of genus 2, as shown in Figure 5.

A classification, by means of obtaining the list of prime generators, is possible for genus
g 6 4, and is explained in [44, 48]. The rapid growth of complexity not only raised an
enormous computational challenge for the generator list of each next genus, but also required
an entirely different (and considerably more efficient) method of compilation.

It follows from Theorem 2.3 that the series of different (alternating) diagrams of the same
generating knot are equivalent up to mutations. However, in § 3, the sensitivity of the geometric
methods with respect to mutation requires us to work with multiple diagrams D of each
generator K. In that case, the series 〈K〉 will stand for the union of 〈D〉 over diagrams D of
K that need to be treated. (One can still use t(K) = t(D), since t(D) is equal for all diagrams
D that can be taken.)

Let D(x1, . . . , xl) be the diagram in 〈D〉 where group i has crossings of total writhe xi. A
feature of Vassiliev invariants, studied in [47], is that when v is a Vassiliev invariant of degree
n, then the map

(x1, . . . , xl) 7→ v(D(x1, . . . , xl))

is a polynomial in xi of degree (taken with respect to all variables together) at most n. In case
of the coefficients of ∇, such as v = v2 or v4, a consequence of the skein relation (2.4) of ∇ is
that this polynomial is additionally square-free (no monomial contains a variable in a power
higher than 1; see also [43]). In several calculations below it will be necessary to determine
these polynomials (under some restrictions on xi). This was usually done by evaluating v
on several simple instance diagrams D(x1, . . . , xl) and recovering the polynomial from these
particular values.

2.5. Disk decomposition

Here we briefly review the work of Gabai in [14, 17], which will be used in § 3. For a set S,
the expression |S| denotes in the sequel the cardinality of S. The symbol ‘⊂’ stands for a (not
necessarily proper) inclusion.

A sutured manifold in the sense of Gabai [14] can be understood as a pair (L,H) consisting
of a closed 3-dimensional submanifold H of R3 with boundary S = ∂H a connected surface,
and a set of oriented disjoint loops L ⊂ H, called suture. We require that one can orient the
connected components of S \L so that the induced orientations on L coincide from both sides
of L (in particular a connected component of S \ L never bounds to itself along a loop of L),
and are given by the orientation of L.

Let F be a connected Seifert surface of a(n oriented) link L = ∂F . We embed F as F ×{0.5}
into the bicolar H = F × I (with I = [0, 1]). Then (L,H) becomes a sutured manifold. We
call it a canonical sutured manifold C(F ) of F .

Now let X be a special diagram of a knot K and F its canonical Seifert surface. Then in
C(F ) = (K,H), the bicolar H is a handlebody, with 2g + 1 holes, corresponding to the hole
regions of X (including possibly the unbounded one), where g = g(X).
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Figure 5. The 24 prime genus 2 generators.
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(a) (b)

(c)

Figure 6. Disk decomposition.

We describe some basic operations on sutured manifolds (L,H).
A decomposition disk D is a disk with P = ∂D ⊂ ∂H, properly embedded in the complement

of H (that is, D ∩ H = P ). We require that D is not parallel to S = ∂H, and satisfies
P ∩ F 6= ∅. We assume also that the intersection of P and F is transversal, so that it is a
collection of points. Every disk D can be thought of as lying in a handle in the complement
of H, and so represents a ‘hole’ of H. Let us call an empty hole a hole not intersecting the
suture.

Assume that D does not lie in an empty hole. Since L = ∂F is separating on S, the
intersection D ∩ L = P ∩ F is an even number of points, and the orientation of L at the
intersection points is alternating (with respect to the orientation of the loop P ). See diagram
(a) in Figure 6 (where the grayed regions indicate the bicolar).

A disk decomposition on D is the operation from part (a) to part (b) in Figure 6. It is shown
in the case that |D ∩ L| = 4, but applies analogously if |D ∩ L| > 4. It is a transformation
of (L,H) into a sutured manifold (L′, H ′), where L′ is obtained by splicing L in such a way
that no equal pairs of arcs of the suture are connected on both sides, and gluing D2 × I into
H along a neighborhood N(P ) ' S1 × I of P on S, so that ‘a hole is filled’. Clearly there are
two choices for joining the arcs, which we call orientations.

In the case that |D ∩ L| = 2 there is only one choice for reconnecting the arcs. Part (c) in
Figure 6 shows that splicing as seen from inside the hole. This special case is sometimes also
called a product decomposition (see [16]).

Definition 2.12. We define a sutured manifold (L,H) to be disk decomposable as follows.
(1) Assume H is a ball and L is a (single) loop on ∂H. Then (L,H) is disk decomposable.
(2) If (L′, H ′) is obtained from (L,H) by a disk decomposition (along some decomposition

disk D), and (L′, H ′) is disk decomposable, then so is (L,H).
In a similar way we can define product decomposable by replacing ‘disk decomposition’ by
‘product decomposition’ in the second condition above.

Theorem 2.10 (Gabai [14, 17]). If C(F ) is disk decomposable, then F is a minimal genus
surface for L = ∂F . Moreover, F is a fiber surface for L if and only if C(F ) is product
decomposable (for proper choice of decomposing disks).

This is a very efficient practical test to detect minimal genus and fibering.
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3. Fibering and minimality for canonical genus 2

As outlined, the mathematical arguments proving Theorems 1.1 and 1.2 will build on a
computation based on the description of canonical genus 2 surfaces (see Theorem 2.9). We
used several computer programs that disk decompose the occurring families of diagrams and
seek identifications and reductions between the various families. There still remain a small
number (about 25) of special cases the programs could not handle (completely), that must
checked by hand.

In the following proofs we will mention some sizes of sets of diagrams. These are provided to
give an idea of the extent of calculation and efficiency of the different parts of the argument.
The numbers cannot be, however, considered binding, in the sense that they depend on the
procedure chosen to a degree of technical detail which is unreasonable to present here.

We remark that in Theorem 1.2 the same statement can be proved for genus 1 links of two
components; see Theorem 3.1. Here the amount of computation and case-by-case analysis for
canonical surfaces can be reduced significantly. (The check of many generators can be avoided,
though the exclusion for two linked ∼-equivalence classes in Lemma 3.11 is no longer valid.) For
general fiber surfaces, the opposite situation may again be displayable by adapting Morton’s
construction, but some details remain to be settled (see Remark 3.2).

One more remark on methodology. Of course, beside Gabai’s (geometric) methods, there are
copious other (algebraic) criteria for estimating genera and testing fiberedness, involving most
prominently the Alexander polynomial ∆, and more modernly its various twisted relatives. All
these methods, however, do not fit so well into the setting of ‘generators and twisting’, which
is developed for canonical genus.

While the Alexander polynomial does admit a good description in terms of its skein relation,
this shows that it is often unreliable: its obstructions may vanish even for very high numbers
of twists. The standard example are the pretzel knots with trivial polynomial. It is only under
twisting in restricted types of diagrams that ∆ behaves ‘nicely’ (see [43]). However, in such
cases it is indeed useful sometimes, and we will apply it to handle some of the diagram families
left over by disk decomposition for Theorem 1.2. (These families are small enough to allow us
to conclude that only finitely many monic Alexander polynomials occur infinitely many times,
without that we identify exactly which of the knots are fibered.)

The modern non-commutative relatives of ∆ appear, though, even less helpful for us.
For specific examples they can do much better than their classic ancestor. However, their
calculation for single knots is already sometimes not easy, and their behaviour seems completely
uncontrollable even under such a simple diagrammatic operation as a t̄′2 move. In contrast,
disk decomposition can be easily ‘stabilized’ with respect to twisting, and so it will become
one main ingredient of our proofs.

3.1. Minimal genus

Every diagram D decomposes (possibly trivially) as a Murasugi sum, and its Murasugi sum
factors as a connected sum. Recall (Definition 2.3) that a Murasugi atom [39] is a prime factor
of a block of D.

Definition 3.1. We consider the complexity function κ(D) on a diagram D, which is given
by an increasingly lexicographically ordered 4-tuple. Let n1 be the total number of crossings
of all the Murasugi atoms of D which are not reversely oriented (2, k)-torus links (k even).
Let n2 be the number of Murasugi atoms. Let n3 = t(D) be the number of ∼-equivalence
classes, and n4 the number of trivial ∼-equivalence classes. Then the complexity of a diagram
is κ(D) = (n1,−n2, n3,−n4).

Thus, first, diagrams are simpler in complexity when they have a smaller (total) crossing
number of all the Murasugi atoms, which are not reversely oriented (2, k)-torus links. Where
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Figure 7. A hidden Hopf band. Note that the vertical strand may also pass on the bottom and the
clasp may be turned around, or a t̄′2 twist may be applied at it.

this crossing number is equal, we regard diagrams as simpler if they have more Murasugi
atoms, and for a fixed number of Murasugi atoms, if they have fewer ∼-equivalence classes, or
equally many but more trivial ones.

The proof of Theorem 1.1, as well as the following proofs, will largely go like this. We generate
a finite list of representatives D̊ of the possible occurring diagrams D (using Theorem 2.9),
and either show that the canonical surface of D is disk decomposable, or find an isotopy of
D to a genus 1 diagram, or a diagram of smaller complexity κ. The difficulty here is that we
have to design tests on D̊ so that they extend to all D represented by D̊.

We will have to examine how κ behaves with respect to various operations. (These operations
in fact let to the present design of κ.) We start with two easy but important properties.

Lemma 3.1. Let κ(D) < κ(D′) and D̃, D̃′ be obtained from D, respectively D′, by the same

number of t̄′2 moves. Then κ(D̃) < κ(D̃′).

Lemma 3.2. If D and D′ differ by a flype, then κ(D) = κ(D′).

Depending on the situation, we will use several further types of move, which reduce
complexity:

– a twist tangle move (3.2) (see Lemma 3.3);
– a hidden Hopf band move on Figure 7 (see Lemma 3.4);
– some particular types of (crossing number non-augmenting) wave moves (see

Lemma 3.5, 3.7 and below it);
– a (2,−1) tangle move (3.7) (see Lemma 3.8);
– a loop move (3.11) (see Lemma 3.12).

Many of these moves will be tested in large amounts computationally, but some will be observed
manually in a few instances. We should point out that even the computational tests are not
exhaustive, and we may have retained diagrams admitting such moves (which could have been
discarded). Ultimately, we must focus on the final goal of dealing with each diagram in one
way or the other, rather than obtaining maximal reduction at each stage.

It should be noted also that the definition of κ, the listed moves, and the arguments (below)
of how they affect κ do not restrict to D being a knot diagram. It is the basis of our programs
on the (knot) DT notation that will compel us to seek knot diagrams D to compare.

Proof of Theorem 1.1. Start with a genus 2 diagram D. The case that D is composite is easy
to handle, thus assume D is prime.

We will now do induction on D with respect to the complexity κ. Clearly the minimal genus
property is invariant in going over to another diagram with the same genus. So we can assume
that D has minimal complexity among all genus 2 diagrams of the knot.

We now cover all occurring D one by one. We will make heavy use of Theorem 2.5, without
mentioning it explicitly each time.
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Case 1. D is special.

The procedure here can largely be split into three parts, which in some form will also reappear
in later verifications.

Part 1. Generating initial representative diagrams not admitting simple reductions

As cautioned by the KT and Conway knot in [14], the geometric methods we use are
very sensitive with respect to mutations. Thus we need to work with the series of multiple
(alternating) diagrams D̂ of a generator. We must consider at least all diagrams obtained by
type A flypes (see Figure 4). Still, type B flypes commute with t̄′2 twists. Then we assume
without loss of generality that we flype (by type B flypes) the generator diagram so that
∼-equivalent crossings are twist equivalent.

We separate the series 〈D̂〉 containing D by −3,−1, 1, 3 crossings in a trivial ∼-equivalence

class of the generator D̂ (where ±i crossings stands for i crossings of writhe ±1) and −4,−2, 2, 4
crossings in a non-trivial ∼-equivalence class. Let D be the set of such diagrams, which we
call D̊. Then D is obtained by adding t̄′2 twists at a ∼-equivalence class of at least three

crossings in some of the diagrams D̊.

Definition 3.2. In general we will call classes at which we are allowed to apply t̄′2-moves
twistable, and the others untwistable. Thus our convention here is that a class is twistable if
and only if it has at least three crossings. We will stick to this convention most of the time
(also in later proofs), and we will explain when we have to depart from it.

Thus there is a sequence of two transformations

D̂ −→ D̊ −→ D. (3.1)

Here the first transformation involves change of crossings and application of at most one t̄′2
move per ∼-equivalence class. The second transformation involves applications of some number
of t̄′2 moves at ∼-equivalence classes of at least three crossings.

Our attitude is, again, that we will manage only the (finitely many) diagrams D̊ as
representatives of all D. By Lemma 3.1 we need to care about the complexity of the diagrams
D̊ alone, not of all its twisted versions D.

We put the following warning in advance. The structure (3.1) is not invariant under several

of the moves listed in the beginning of § 3.1. Thus in general a symbol like D̊′ will mean (D̊)′,

a diagram obtained from D̊ by some move. This does not need to be equal to (̊D′), or to

E̊ for any diagram E whatsoever. Some moves alter ∼-equivalence classes on the global level
severely. We do not care about this, though; we use D̊′ just to show that all D represented by
D̊ can be handled.

We discard (with Lemma 3.2) flype equivalent duplicates D̊ and flype crossings in a ∼-
equivalence class of at least three crossings so that the crossings are all twist equivalent. This
is a preparation for disk decomposition.

There are two more fragments that we can exclude in diagrams D̊. We formulate them as
separate lemmas.

Lemma 3.3. If the generator D̂ of D has two ∼∗ -equivalent crossings p ∼∗ q, then (in the

first transformation in (3.1)) in D̊ both crossings p, q must be twisted at; otherwise D̊ can be
discarded.

Proof. Assume that in D̊, one of p or q is not twisted at. Then we can always flype it to
form a parallel clasp, or a (1,±k)-tangle with k > 0 odd. (If k = ±1, then it is a clasp.)

If a parallel clasp is trivial (that is, k = −1, or in other words both crossings in it have

opposite sign), then the surface of D̊ (and hence D) is obviously not of minimal genus.
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If the clasp is non-trivial, it can be turned by isotopy (commuting with D̊ → D) into a
(2,−1)-tangle, whose clasp is reverse and gives a Hopf band Murasugi atom. We argue that

in the new diagram D̊′, we have κ(D̊′) < κ(D̊). Note that the move creates an extra crossing,

c(D̊′) = c(D̊) + 1, but because two crossings in D̊′ give a new (2,±2)-torus link Murasugi

atom, we have n1(D̊′) = n1(D̊) − 1. So we found a simpler diagram D̊′ than D̊, which we
excluded.

A (1,±k)-tangle for k > 1 odd turns similarly into a (−1, 1± k)-tangle

(3.2)

and a reverse (2, 1 ± k)-torus link deplumbs with a similar contradiction (to κ-minimality

of D̊).

The other type of fragment is a ‘hidden Hopf band’, pointed out to me by M. Hirasawa, and
shown in Figure 7.

Lemma 3.4. If D̊ has a hidden Hopf band, it can be discarded.

Proof. By the isotopy of Figure 7 we find a diagram D̊′. We observe that g(D̊′) = g(D̊) and

c(D̊′) = c(D̊). However, in D̊′, one ∼-equivalence class becomes a separate (2,±2)-torus link

Murasugi atom. Thus n1(D̊′) < n1(D̊). (Note that, in the transformation D̊ → D in (3.1), the
two non-clasp crossings in the diagrams of Figure 7 are not affected by t̄′2 moves, and thus the
isotopy applies in D as well.)

The reduction of the set D using the previous two lemmas led to a size of approximately
121 000 diagrams D̊.

Part 2. Stable disk decomposition

The next step is to apply disk decomposition on the diagrams of D. Note, however, that most
of these diagrams are representatives of an infinite family of diagrams, obtained by adding
t̄′2 twists at a ∼-equivalence class of at least three crossings. Therefore, we must design the
decomposition to become ‘stable’ under these twists.

This is accomplished as follows. We consider the bicolar of the Seifert surface of a special
diagram, which is a handlebody of genus 2g, where g is the genus of the surface (in our case
g = 2). Through the whole process the position of the handlebody is kept fixed, and we move
the suture. We allow except for disk decomposition along some of the 2g + 1 holes of the
handlebody (the infinite region counted) three types of isotopies of the suture on the surface
of the handlebody to make it look simpler (see Figure 8).

– Hole move: pulling a loop around a hole. This means a suture segment that goes through
a hole X, does not get into any crossing, and gets back through the same hole X, without
going around another hole, to be moved through the hole X, so that its two intersections
disappear.

– Reidemeister I move: removing a self-intersection near a hole; suture passes above, goes
on the lower side through a hole and passes the same crossing below, without going
through any other crossings and around other holes in between.

– Reidemeister II move: removing a pair of self-intersections forming a clasp; one arc on
upper side, one on lower side. (There should be no empty hole inside a region bounded
by the two arcs.)
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Reidemeister II

Figure 8. Suture moves.

The diagrams in D were generated so that all ∼-equivalent crossings, if there are more than
two, are twist equivalent. Now if we apply a twist at a group of at least three crossings,
then after disk decomposing along one of the neighbored holes, we get from the two new
crossings two extra pairs of Reidemeister I moves and a hole move. So the result would be the
same as if we did not apply the twisting. In a similar way one sees that a hole move is not
affected by twists. For Reidemeister I one must notice that if a twisted crossing is involved in
a Reidemeister I, then by hole-moves and Reidemeister I one can reduce all the crossings in
the twist, and so Reidemeister I commutes, too, with twisting.

However, the situation is different for Reidemeister II moves. In this case one can undo a
certain number of twists, and the behaviour under subsequent disk decompositions can be
changed. To remedy this problem we must consider a restricted type of suture isotopy. We
put a mark from the beginning on each crossing in D ∈ D which belongs to a ∼-equivalence
class of three or four crossings, and prohibit the application of Reidemeister II moves in which
a marked crossing is involved. (Marked crossings can still be removed using Reidemeister I
moves.)

Note that for holes that intersect the suture more than twice, we have two orientations
(see Figure 6); also the result of disk decomposition may depend on the order in which holes
are dealt with. We used the full capacity of the algorithm and tried all possible orders. If,
however, there are at least two holes which do not intersect the suture (empty holes), or the
plane projection of the suture becomes split, then all continuations of the procedure will fail,
and so we can spare ourselves the work.

From about 121 000 diagrams D̊ in D, this stable disk decomposition failed only on 778.

Part 3. Rigid wave move reductions

Now we apply a different program that uses wave moves to find reductions (with respect to
our complexity function) of such D̊ that commute with the t̄′2 twists.

In this vein, we take one crossing in a ∼-equivalence class of D̊ of three or four crossings to
be rigid. Here ‘rigid’ means that we do not allow any strand at this crossing to be removed
by a wave move. Said more clearly, it means that the crossing must not occur as one of the
explicitly visible crossings on the left hand sides of the two (types of) moves in Figure 2. We
call this a rigid wave move.
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Lemma 3.5. Let D̊ be transformable by a sequence of rigid wave moves into a diagram D̊′

of (a) genus 1, or (b) genus 2 and fewer crossings than D̊, or (c) a non-special genus 2 diagram
D̊′ of the same number of crossings as D̊. Then D̊ can be discarded.

Proof. Rigid wave moves were designed to commute with the t̄′2 twists at rigid crossings
(which accomplishes D̊ → D in (3.1)). Thus case (a) is obvious, and it is enough to see that,
in cases (b) and (c), we have κ(D̊′) < κ(D̊).

Since D̊ is special, and obviously not a reverse (2, k)-torus link diagram, we have n1(D̊) =
c(D̊). Moreover, n1(D̊′) 6 c(D̊′). Thus if c(D̊′) < c(D̊), we have n1(D̊′) < n1(D̊), and case (b)
is clear. For case (c) just note that n1(D̊′) 6 n1(D̊), but n2(D̊′) > 1 = n2(D̊).

Then our program applies wave moves that keep the rigid crossings, seeking a reduction to
a diagram of the sort of Lemma 3.5.

If the program did not find reductions, then it was designed to report the diagram to which
it could minimize the input diagram; this allows us to identify input series as equivalent, and
to discard duplicate copies of equivalent series, even if the series is not reducible. (Note that
in these diagrams we must still keep the information regarding which crossings are rigid.)

It turned out, though, that in fact the program reduced all 778 diagrams, and so we are
done.

Case 2. D is not special.

In this case the argument depends somewhat on the specifics of the corresponding generators.
One general helpful tool is as follows.

Lemma 3.6. (a) Assume the (p, q, r)-pretzel surface, for p, q, r odd, is not of minimal genus.
Then some of p, q, r are 1 and −1.

(b) If the (p, q, r)-pretzel surface, for p, q, r even, is not of minimal genus, then two of p, q, r
are 0.

Proof. (a) The (p, q, r)-pretzel must be an unknot, and this occurs only if some of p, q, r are
1 and −1.

(b) We must have χ > 1, so that a minimal genus surface is disconnected. Using linking
numbers, one easily sees that this can (and then indeed does) occur only if two of p, q, r
are 0.

Some cases are easy to handle. If a reverse (2, k)-torus link or (2, 2, 2)-pretzel link occurs as
a Murasugi sum factor of D̂, it must be non-trivial in D. Therefore, we need to consider only
the cases that some other Murasugi sum factor/Murasugi atom is not of minimal genus.

A few of the generators are dealt with first.

Case 2.1. 812: These are 2-bridge knots, and can be immediately discarded.

Case 2.2. 62: One Murasugi sum factor is a (p, q, r, s) pretzel, p, . . . , s odd; the other factor
is a Hopf link (which is non-trivial by the assumption that the diagram is in the 62 series).
If some of p, . . . , s are ±1 but none is ∓1, then we can deplumb the pretzel surface into Hopf
bands, so if this is not the case, then either (a) 1,−1 ∈ p, . . . , s, or (b) |p|, . . . , |s| > 3. In case
(a), we have a reduction to a genus 1 diagram. If (b) occurs, then the surface is a minimal
genus surface. One way of seeing this is to assume the contrary. Then the link bounds an
annulus. So it is either a reverse (2, k)-torus link or its satellite. The former is excluded by
the classification of Montesinos links, and the latter by the description of their incompressible
surfaces (in particular tori; see [35]).
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Case 2.3. 63: This is the Murasugi sum of two trefoils. Under twist they give two (p, q, r)-
pretzel surfaces, with p, q, r odd. If D is not genus-minimizing, for one of them some of p, q, r
are 1 and −1. Then one exhibits the reduction to a genus 1 diagram directly.

Case 2.4. 76: This is the Murasugi sum of a trefoil and two Hopf bands. If the trefoil has a
trivial clasp, one exhibits the reduction to a genus 1 diagram directly.

Case 2.5. 941: The same argument as for 76 applies.

Case 2.6. 121202 has two (2, 2, 2)-pretzel links (as Murasugi sum factors), so it is done.

Case 2.7. All other non-special generators except 939 have the following feature: each of
their diagrams D̂ turns into a special one D̂′′ by operations we call an ×-move. We will need
to analyze the move at several places, so we formalize its definition.

Definition 3.3. The ×-move move on D̂ consists of two steps. First, we deplumb a Hopf
band in a rational tangle T = (2, 1), in which the clasp is reverse. Then, after deplumbing the
Hopf band, we can do a clasping (2.2) at the remaining third (non-clasp) crossing of T , as
shown below.

The ×-move extends to a move between twisted diagrams × : D̊ 7→ D̊′′ and D 7→ D′′, where
a tangle T = (k, 1) is modified (k 6= 0 even). We call the class of |k| crossings ×-class. The
t̄′2-twisting in the ×-class of D (and D̊) is lost in D′′ (D̊′′).

Then, by applying an ×-move on D̂, we obtain a new generator knot diagram D̂′′ of genus 2,
which becomes special. Also, genus minimality of D is equivalent to that of D′′ (regardless of
the lost twisting in the ×-class). For 〈77〉 and 〈1058〉 we need to apply two ×-moves to obtain
a special D′′.

With this move we can recur the check of these non-special generators D̂ to the special ones
D̂′′. For example, if D ∈ 〈1058〉 (with the notation in Definition 2.11), then D′′ ∈ 〈815〉. Also
D′′ may land in different series depending on the size of ∼-classes in D: if D ∈ 〈77〉, then
D′′ ∈ 〈51〉 or D′′ ∈ 〈75〉 are both possible.

We stress that the reason we use D′′ is technical: our (stable) disk decomposition program
was designed only for special diagrams. Note also that the map D̂ 7→ D̂′′ and D 7→ D′′ is not
injective.

Furthermore, κ(D′′) > κ(D). Thus ×-moves provide no recurrence to Case 1 as it is.
Essentially, the special generators check must be redone, but the following modifications are
necessary.

Part 1

We again separate the series containing D′′ by distinguishing diagrams D̊′′ with −3,−1, 1, 3
crossings in a trivial ∼-equivalence class of the generator (−i crossings are i crossings of writhe
−1) and −4,−2, 2, 4 crossings in a non-trivial one. However, since the plumbing/clasping may
alter a fragment of a hidden Hopf band, we must also consider (as input to disk decomposition)
diagrams D̊′′ with a hidden Hopf band. The same problem occurs with tangles (1,±k). Hence,
diagrams D̊′′ having these tangles cannot be discarded. Contrarily, we must now discard all
diagrams D̊′′ that have no parallel clasp.

After sorting out duplicates by (type B) flypes, we have a list E of about 6000 diagrams D̊′′.
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Clarification: the diagrams we have rendered here are thus, a priori, (̊D′′). It was cautioned
that this is not the same as (D̊)′′. However, ×-moves do not augment sizes of ∼-equivalence
classes. (This observation is important and will reappear below.) Thus the set of all (D̊)′′ is a
subset of the set of all (̊D′′). Still, our understanding will be to maintain a list of diagrams
originally generated as (̊D′′), and we will use D̊′′ = (̊D′′) in this meaning below. This way,
at each stage, our list contains at least all necessary (although possibly also some extraneous)
diagrams.

Part 2

Disk decomposition fails for 249 of the diagrams D̊′′.

Part 3

We subject them to a similar wave move reduction. This part requires the most delicate
modifications.

The reduction of D̊′′ → D̊′′1 using (rigid) wave moves must keep (along with a crossing in
each ∼-equivalence class of at least three crossings) crossings in parallel clasps rigid, and this
is enough, since the restoring of the non-special diagram D̊ involves a local move at these
clasps. Thus D̊′′ → D̊′′1 gives rise to a (rigid) wave move (sequence) D̊ → D̊1, and we have the
following commutative diagram.

D̊
× //

wave

��

D̊′′

wave

��
D̊1

× // D̊′′1

(3.3)

Here we continue our cautionary tale, this time with regard to reading the above diagram.
There is an ambiguity of the transformation D̊ → D̊′′. It is, as a map, neither injective, nor,
in fact, well defined: there are diagrams D with the same D̊ giving D′′ with different D̊′′. This
happens when a twistable class becomes untwistable under an ×-move; we will discuss this
situation below (see the use of Lemma 3.11 in Case 2.6 in the proof of Theorem 1.2).

This ambiguity means that (3.3) should be read thus. We start by fixing a pair (D̊, D̊′′),
so that (at least) some part of the diagrams D represented by D̊ turn under ×-moves into
diagrams D′′ represented by D̊′′. The wave move on the right will be chosen so as to make
its left sibling discredit the κ-minimality of this same part of diagrams D represented by D̊.
Thus for some D̊ we will deal with its diagrams in pieces (by discarding various D̊′′ in various
ways).

As outlined, we want to choose the wave move reduction D̊′′ → D̊′′1 so that κ(D̊1) < κ(D̊).
This is not the same and not ascertained by κ(D̊′′1 ) < κ(D̊′′), as we will see. However,
Lemma 3.5 can still be made to work.

Lemma 3.7. Assume D̊′′ → D̊′′1 so that D̊′′1 conforms, instead of D̊1, to one of the three
cases of Lemma 3.5, where D̊ is replaced by D̊′′. Then κ(D̊1) < κ(D̊) (for whatever D̊ the
diagram D̊′′ corresponds to), and consequently D̊′′ can be discarded.

Proof. Since g(D̊′′) = g(D̊), case (a) (from Lemma 3.5) is obvious.
For case (b) note that when D̊′′ is obtained from D̊ by one ×-move, then

n1(D̊′′)− n1(D̊) = n1(D̊′′1 )− n1(D̊1) ∈ {1, 3} (3.4)

is one less than the size of the ×-class in D̊ and D̊1. Also,

n2(D̊′′)− n2(D̊) = n2(D̊′′1 )− n2(D̊1) = −1. (3.5)
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The differences are 2, 4 or 6 in (3.4), respectively −2 in (3.5), when two ×-moves are applied,
for 〈77〉 and 〈1058〉. Important in (3.4) and (3.5), though, are the equalities on the left, and
that these remain when all ring accents are removed.

Then the argument in the proof of Lemma 3.5 can be modified.

Thus if our program finds a reduction of D̊′′ with regard to genus or number of crossings,
or to a non-special diagram D̊′′1 of the same number of crossings, then D̊′′ could again be
discarded.

Note that, so far, we have not made use of the inclusion of n3(D) = t(D) into the order κ(D)
(recall Definitions 2.9 and 3.1). This is now exploited here, for one further partial disposal of
diagrams D̊′′ using rigid wave moves.

Assume a sequence of such moves turns D̊′′ into a special genus 2 diagram D̊′′1 with the
same number of crossings. Then n1(D̊) = n1(D̊1) and n2(D̊) = n2(D̊1). Our program tries to
recognize a reduction of D̊′′ → D̊′′1 with respect to the number of ∼-equivalence classes. As
cautioned, though, the resulting move from D̊ → D̊1 may no longer be a reduction, that is,
t(D̊1) < t(D̊) may not hold. To account for this, we observe that

t(D̊′′1 ) > t(D̊1) and t(D̊′′) 6 t(D̊) + q(D̊′′),

where q(D̊′′) is the number of ∼-equivalence classes of D̊′′ which are linked with the two
crossings in one parallel clasp, and no other crossing. Then it is legitimate to (and what we
did is) test

t(D̊′′1 ) < t(D̊′′)− q(D̊′′). (3.6)

Thus if a wave move D̊′′ → D̊′′1 satisfies (3.6), we can ascertain that D̊ → D̊1 is a κ-reduction,
and D̊′′ can also be discarded.

The twelve diagrams D̊′′ that are left over all have a parallel clasp included in a (non-
alternating) (2,−1) rational tangle.

Then we can argue with the following lemma, which we will also apply later.

Lemma 3.8. If D̊′′ has no parallel clasp, or has a parallel clasp involved in a (2,−1) tangle,
then any (corresponding) D̊ is not complexity minimal, and we can discard D̊′′.

Proof. Clearly D̊′′ must have a parallel clasp by construction. Assume it has a (2,−1) tangle.
If the parallel clasp in that tangle is not changed when recovering D̊, then the (2,−1) tangle
changes into a reverse clasp by a (2,−1) tangle move as shown below.

(3.7)

This move reduces n1 (when D̊′′ is special), and D̊ (and D) would admit the same κ-reduction.
Otherwise, D̊ will have a trivial reverse clasp, and by construction, we need not consider
such D̊.

Case 2.8. There remains the final case D ∈ 〈939〉. Here also one Hopf band deplumbs, but
it is not in a (2, 1)-tangle. Consequently, we cannot use wave moves to reduce the diagrams.
However, by clasping (2.2) the remaining special 2-component link diagram D′, we get a
diagram D′′ in the series of 815.

Let us analyze the minimal genus property of D′. It is obtained from the (2, 2, 2)-pretzel by
one clasping, with intermediate result we call D1, and then t̄′2 twists. Let a, b be the reverse
clasps of D1 (those that remain from the (2, 2, 2)-pretzel) and c the parallel clasp (obtained
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after clasping). The same notation holds in D′, though c may have been turned into a (k, l)-
pretzel tangle with k, l odd. Note that c is not a clasp in D, since it is created by the Hopf
deplumbing.

Since a, b are not trivial (that is, have non-zero number of crossings) in D, they are not
trivial in D1; however, c may be trivial in D1 and D′. If c is of the form (±1, k), k 6= ∓1, in
D′, then we can deplumb a reverse (2, k ± 1)-torus link and see that D′ is of minimal genus.
So if D is not of minimal genus (equivalently, D′ is not of minimal genus), then c in D′ is
either trivial, that is, c = (±1,∓1), or both crossings in c in D1 must be t̄′2 twisted at when
recovering D′, that is, c is in D′ a pretzel tangle (k, l) with |k|, |l| > 3.

If c is trivial in D′, we easily find an isotopy of D to a pretzel diagram (p, q, r) (with p, q, r
odd), of genus 1. It thus remains to check the case when both crossings of c in D1 are twisted
at. This gives (under clasping at one of the crossings in a or b) diagrams D′′ of the series 〈815〉
with exactly one parallel clasp, which is non-trivial and lives in an alternating (2, 1)-tangle.
Since both crossings of c are twisted at, the diagrams D′′ are not Montesinos.

These remaining possibilities were ruled out by going over again to D̊′′ and direct inspection
of the 249 diagrams D̊′′ in Case 2.7, on which disk decomposition failed, and which remained
before the use of wave move reductions. This verification showed that here no diagrams are
relevant: there are 24 diagrams in the series 〈815〉, and all have a parallel clasp in a (2,−1)
tangle, making Lemma 3.8 applicable. Thus we are also done here, and therefore with the
proof of Theorem 1.1.

Proof of Corollary 1.1. Since canonical Seifert surfaces are free (their complement is a
handlebody), Theorem 1.1 shows that if g̃(K) 6 2, then K has a minimal genus free surface
S. However, it is well known that for wrapping number zero satellites K, every minimal genus
Seifert surface S can be moved into the companion (solid) torus T : the part of S outside T
must be some collection of disks and annuli, which can be successively eliminated by isotopy.
Thus S is not free.

3.2. Alexander polynomial of canonical fiber surfaces

Proof of Theorem 1.2. We examine now how D must look such that its canonical surface (of
genus 2) is a fiber surface.

Again the fiber property is invariant under going over to another diagram of the same genus
(by Neuwirth–Stallings’ theorem). We thus use induction with respect to the same complexity
as before (see Definition 3.1).

The central criterion to exclude fibering we use is again based on disk decomposition.

Lemma 3.9 (see Gabai, [17, Lemma 2.6]). Assume that H is a bicolar of a Seifert surface
S and D a circle on the boundary of H (bounding a disk in S3 \H) such that |D ∩ S| > 4.
Decompose H along D with both orientations to get bicolars K,L. If one can reduce both K,L
by disk decomposition to a ball with a circle, then the surface S in H is not a fiber surface.
Also, if one can reduce a bicolar H ′ to H by disk decomposition, then the Seifert surface in
H ′ is not a fiber surface either.

Apart from this we will also use Theorem 2.7, saying that (in our case) the Conway
polynomial coefficient v4 = [∇]4 is v4(D) = ±1 for a fiber surface.

The following is a test (again geometrically proved), which is useful in some cases.

Lemma 3.10 (see Gabai [17, Theorem 6.7, case I]). There are only finitely many pretzel
surfaces (p, q, r), (p, q, r, s), all p, q, r, s odd (with twist classes of p, . . . , s reverse) which are
fibers. The only infinite sequence of pretzel surfaces (p, q, r) with p, q, r even is for (up to
permutation) p = 2, q = −2, r even.
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The disk decomposition we apply now is a variant of the one for the proof of Theorem 1.1. The
main difference is that we need to succeed twice, instead of once, with the proper orientations
at the holes, as described in Lemma 3.9.

Again we need to separate the series 〈D̂〉 containing D by distinguishing −3,−1, 1, 3 crossings
in a trivial and −4,−2, 2, 4 crossings in a non-trivial ∼-equivalence class, and consider repeated
twisting at a ∼-equivalence class of three or more crossings. Discarding duplicates we gain a
set D of diagrams to examine.

Note, however, the following: a ∼-equivalence class of n crossings produces in general not
more than n−1 intersections with the disks in the neighboring holes. Since for a fibering check
it is relevant whether the intersections of the suture with the loop are two or more, for the
fiberedness test it is invariant under t̄′2-twists only from four crossings on, but possibly not
from three. Thus it may occur that the disk decomposition as in the proof of Theorem 1.1
fails to show non-fibering, but might be able to do so after we add a twist at some class(es) of
three crossings. This is, in a way, good news, because we gain a further non-fibering test. We
call it the extended non-fibering test.

Now we also use the Alexander polynomial. The following are two simple cases where it can
do some work.

Lemma 3.11. Twisting in one ∼-equivalence class (group) gives either one Alexander
polynomial infinitely many times, or infinitely many Alexander polynomials one time. Twisting
at two linked ∼-equivalence classes gives at most one Alexander polynomial infinitely many
times.

Proof. When we twist at one group, the Alexander polynomials form an arithmetic
progression. It is either constant, or not. Thus the claim is obvious.

Now consider two linked twist groups, parametrized by integers a, b. To see that all
polynomials but one are realized finitely many times, it is both necessary and sufficient to
look at v2. According to the explanation at the end of § 2.4, the invariant has an expression in
the form v2 = C1+C2a+C3b+C4ab, where Ci are constants. In case the ∼-equivalence classes
we twist at are linked, it can be concluded that the constant C4 is non-zero (see for example
the remarks on v2 in [22, § 12] or its Gauß sum formula in [37]). It is easy to see that such a
form realizes any integer only finitely many times, except at most one. The a, b correspond to
factorizations of v2/C4 +C for some constant C, so if this expression is non-zero, only finitely
many (a, b) can occur.

In our context this lemma says that we can discard all D̊ ∈ D with at most one, or two
linked, ∼-equivalence classes of three or four crossings.

Case 1. D is special.

We use again disk decomposition with Gabai’s non-fibering criterion Lemma 3.9, so that
this procedure is stable under twists at ∼-equivalence classes of three or four crossings. We
stick to the accent nomenclature in (3.1).

About 3000 diagrams D̊ failed to be shown non-fibered. Wave move reduction tests reduced
this list to 27, and application of Lemma 3.11 to 23.

These were processed by an extended non-fibering test as follows: we twist zero or one times
at each ∼-equivalence class of (exactly) three crossings. Then the resulting diagrams were
processed by a version of disk decomposition in which we mark crossings in groups of at least
four crossings. Additionally we apply Lemma 3.11 and discard all input diagrams in which
only one ∼-equivalence class has at least four crossings, or there are (exactly) two such classes,
and they are linked. (The understanding here is that we twist only at such classes.)
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This procedure reduced the list of diagrams to 17. These diagrams are given below in DT
notation (see § 2.2). For technical reasons, we will fix the identifier (the second integer) in DT
notation displayed throughout this section to indicate the subscript/index of the underlying

generator, as numbered in Figure 5 (for example, 120 if D̊ ∈ 〈10120〉).
14 120 6 -14 24 28 18 16 -4 -22 10 -26 -12 2 -20 8

16 120 6 -14 28 32 20 18 -4 -26 -24 10 -30 -12 -16 2 -22 8

16 120 6 28 -16 32 -18 -4 26 24 -10 -8 -30 2 14 12 -22 -20

20 1097 8 -16 -28 36 -22 -20 30 -4 -34 -32 -10 -40 -38 -6 14 12 -18 2 -26 -24

17 329 8 -16 26 18 34 24 -28 -4 -2 10 -32 -30 6 -14 -12 -22 -20

22 1097 8 -22 -20 38 -28 -26 32 -42 -40 -6 -4 -36 -34 -10 -44 14 12 -24 2 -18 -16 -30

16 1097 8 14 -26 16 -20 28 4 2 24 -10 -32 -30 -6 12 -18 -22

20 1097 8 16 -32 -18 26 -36 -34 4 2 -30 -28 -38 10 40 -20 -6 -14 -12 -24 -22

19 329 8 18 -28 -20 38 36 -26 30 4 2 -12 -34 -32 -6 16 14 -24 -22 10

19 329 8 18 -28 -20 38 36 -26 30 4 2 -12 34 32 -6 16 14 24 22 10

19 329 8 18 -30 -20 38 22 -28 32 4 2 12 10 36 34 -6 16 14 26 24

21 329 8 20 -32 -22 42 40 24 -30 34 4 2 14 12 38 36 -6 18 16 28 26 10

18 120 8 30 -16 -14 36 22 2 -6 -28 -26 12 -34 -32 -18 4 20 -24 10

18 120 8 30 -16 -32 36 22 20 -6 28 26 12 -34 -14 18 4 2 -24 10

21 4233 8 30 -16 -32 42 40 22 -6 28 36 34 12 -38 18 4 2 -14 20 -26 -24 10

21 4233 8 32 -14 -34 42 22 -6 30 28 38 36 10 -40 18 16 4 2 -12 20 -26 -24

23 4233 8 34 -16 -36 46 44 24 -6 32 30 40 38 12 -42 20 18 4 2 -14 22 -28 -26 10

On these diagrams, disk decomposition still rules out t̄′2 twists at some groups of three or
four crossings. For the remaining groups, we use the Alexander polynomial. Let a, b, c, d > 0
be variables that indicate the number of t̄′2 twists to apply at these remaining groups of three
or four crossings. (In all diagrams we have at most four such groups.) Then both v2 and v4
depend polynomially on a, b, c, d. Moreover, these polynomials are square-free and of (total)
degree at most 2, respectively 4 (cf. the end of § 2.4). The polynomials can be easily determined
by applying zero or one twists at each group of three or four crossings and calculating the
Conway polynomials of the resulting diagrams.

It is then a matter of simple algebra, and sometimes short case-by-case study, to restrict
the possible values of a, b, c, d. We explain only a few cases to show how this works. Following
Definition 2.9, let {p} stand for the group to which the p-th crossing (in the given DT notation)
belongs. We will abbreviate by d ∼ {p} that d is the number of twists to apply at the group {p}.

As a first example, consider the 15th diagram. Disk decomposition restricts us to further
treat only diagrams where we have no t̄′2 twists at {13}, but do have at least one twist at {10}.
With d ∼ {10}, we then find that (d+ 1) | v4, so v4 = ±1 never occurs for d > 0.

Sometimes it is easier if we look at v2. In the 6th diagram, disk decomposition rules out
twists at {7}, and we have

v2 = a+ 2b+ 4c+ ca+ cb+ d+ ab+ dc

with a ∼ {2}, b ∼ {8}, c ∼ {5}, d ∼ {12}. Since v2 is thus bounded below by any of the four
variables, we see that v2 →∞, so each value of v2 is taken only finitely many times.

Consider the 14th diagram. With a ∼ {9}, b ∼ {6}, c ∼ {2}, and d ∼ {1}, we find

v4 = −ac− bd+ abcd and v2 = −2 + ab+ cd .

If one of a or c is zero, then v4 = −bd = ±1 implies b = d = 1, and only one variable is free.
Then by Lemma 3.11 we are done. Similarly one argues if one of b and d is zero. If all a, b, c, d
are non-zero, then v2 > x− 2 for each x among a, b, c, d. This implies again that v2 →∞.

With this type of argument we can deal with most of the families. (We defer one more such
calculation in cases to the part of the proof for non-special diagrams.)

Something more interesting happens in the 9th and 13th diagrams. In this case, we
easily restrict the variables (for proper naming) to b= c= 1, but under this condition, we
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have v4 = −1 independently of a and d, and v2 is of the form −5 + a − d. Then we see that
indeed we can realize any monic Alexander polynomial with leading coefficient −1 infinitely
many times by twisting at a and d. Here again disk decomposition was necessary. We perform
one t̄′2 twist at the groups of b and c, and apply a non-fibering check, this time keeping marked
the crossings in a group of three or four (but not more than four). Again, this decomposition
was successful and excluded the fibering.

Case 2. D is non-special.

Case 2.1. 62, 63, 76, 77: Murasugi desum into Hopf bands and trefoils, so only finitely many
fiber surfaces occur in their series.

Case 2.2. 812: This yields the 2-bridge knots; they are immediately ruled out.

Case 2.3. 941: Murasugi desums into a (2, 2, 2)-pretzel link and trefoil. So there is only one
unlimited twist group, and we are done with Lemma 3.11.

Case 2.4. 121202: Murasugi desums into two (2, 2, 2)-pretzel links, so we may have two twist
groups. (Note that in this case, since for (−2, 2, n)-pretzel max cf ∆ = −1, all such fibers
have max cf ∆ = 1, by multiplicativity of max cf ∆ under Murasugi sum; see Theorem 2.6.)
To see that only finitely many polynomials are realized infinitely many times, in case the
∼-equivalence classes we twist at are linked, we have Lemma 3.11. If the twist groups are
unlinked, then one sees that here v2 (or equivalently ∆) remains the same under twists at
both groups.

Case 2.5. 939: We repeat the study of 939 in the proof of Theorem 1.1. We use the same
notation as there. It remains to see from what D1 do canonical fibers in D come. The non-
minimal genus cases are out, and if the clasp c becomes (±1, k) in D′, with k 6= ∓1, then
we can plumb a (2, k ± 1)-torus link down to a (2, 2, 2)-pretzel family. Then necessarily for
fiberedness k = ±3, and we have by Lemma 3.10 infinite degree of twist only in at most one
∼-equivalence class. Thus we are done by Lemma 3.11. If c is trivial, we saw that D reduces
to a genus 1 diagram. Now it remains again to check the case that both crossings of c in D1

are twisted at. This gives (under clasping at one of the crossings in a or b) diagrams D′′ of
the 815 series with exactly one parallel clasp, which is non-trivial and lives in an alternating
(2, 1)-tangle, and D′′ is a non-Montesinos diagram.

For such D′′, we check again our previous calculation with D̊′′ (which, we recall, is used in

the sense of (̊D′′)). Note that D̊′′ → D′′, or twisting at non-trivial classes, does not change the
Montesinos property of a diagram. Among the 875 diagrams in E (from Part 1 in Case 2.7 of

the proof of Theorem 1.1) for which the non-fibering check fails, there are 103 diagrams D̊′′ in
the 815 series. However, all are either Montesinos, or have a parallel clasp in a (2,−1)-tangle,
so we are done here.

Case 2.6. All other generators: again we need to examine the diagrams D̊′′ in E for which
the non-fibering check fails.

Note the following important fact: the ×-class of the ×-moves that create D′′ out of D
cannot be twisted at in the case of fiber surfaces of D, because of (Theorem 2.5 and) the fact
that the surface of the reverse (2, k)-torus link is a fiber surface only for k = ±2.

Disk decomposition and wave moves. We check reduction with wave moves, which keep
parallel clasps rigid. We also try to reduce with respect to the number of ∼-equivalence classes
for special diagrams of the same number of crossings.

Then 166 diagrams D̊′′ remain. A disposal of diagrams with a parallel clasp near the first
crossing (in their DT notation) in a (2,−1) tangle gives 59 diagrams (recall Lemma 3.8).
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Applying Lemma 3.11. Next we want to use Lemma 3.11. The upshot is that this lemma
reduces the list of 59 to 22. However, there are some caveats in applying the lemma. We must
again clarify twistable classes (see Definition 3.2), most importantly before the ×-moves, since
it is the (Alexander) polynomial ofD we are interested in, not the one ofD′′. Again, one method
we pursue here is to keep, in D and D′′, the convention to regard a class as twistable if and only
if it has three or more crossings. (See Remark 3.1 below for an indication of an alternative.)
This leads to the old specification of D̊ and D̊′′, and the problem discussed below (3.3).

To investigate in which way one can use Lemma 3.11 here, we remark first, by the observation
at the beginning of the case, that an ×-move now (for fiber surfaces) does not erase a twistable
×-class; neither does it (in the general case) create any new twistable ∼-equivalence class.

Moreover, an ×-move does not alter the linking status of ∼-equivalence classes (outside the
spot it acts). It may alter, though, the size of one such class. There is thus one situation in
which the assumption of Lemma 3.11 is changed between D̊ and D̊′′. This occurs when D̊′′ has
a ∼-equivalence class of exactly two elements, and these crossings are linked with a parallel
clasp. (In other words, up to flypes, there is then a (2, 2)-rational tangle with a parallel clasp

in D̊′′.) We checked that in the list of 59 there are three such diagrams D̊′′, as shown below.

7 5 4 10 -12 -14 2 8 -6

9 5 4 12 -14 16 -18 2 10 8 6

11 23 4 12 16 14 20 2 10 6 -22 8 -18

(3.8)

It is easy to see that all diagrams D′′ obtained by twisting at non-trivial classes can
be simplified by undoing claspings to (p, q, r)-pretzel diagrams with (p, q, r) odd. Then
Lemma 3.10 finishes these three D̊′′. (With such D̊′′, there are only finitely many D′′, and
hence D, which could be canonically fibered.)

Remark 3.1. There are ways of getting around (3.8), by making the definition of twistable
classes in D more flexible (than just by distinguishing between at least three and less than
three elements), and depending on D′′. But the exact description of this would be similarly
technical. In any case, Lemma 3.11 requires some thought here.

Extended non-fibering test. This means that we can continue working with the list of
the aforementioned 22 diagrams. Finally we applied the extended non-fibering test, and
Lemma 3.11, where we regard classes in D̊′′ (but not D̊) as twistable if they have at least
four crossings. This restriction disposes us of pathologies such as (3.8). In the end, the list of
22 is reduced to eight.

15 38 10 -18 26 -22 -20 30 -24 -28 -4 -2 -8 -12 6 -16 -14

15 38 10 -18 26 22 20 30 -24 -28 -4 -2 8 -12 6 -16 -14

12 15 4 10 -16 -14 2 20 -8 -6 -24 -22 12 -18

12 15 4 10 24 -14 2 -18 -8 22 20 -12 16 6

18 101 4 12 -20 -30 -28 2 -26 -24 32 -6 -36 -34 -14 -10 -8 18 16 -22

18 101 14 -24 -22 -34 20 -28 -26 36 -30 10 8 -4 -2 -12 -18 -16 -6 -32

18 101 4 12 36 20 -28 2 26 24 30 8 -34 -32 14 -10 18 16 -22 6

15 38 8 -16 22 20 30 28 24 -4 -26 -2 6 14 12 -18 10

(3.9)

Case-by-case Vassiliev invariant tests. We number the diagrams in (3.9) by 1 to 8
consecutively and analyze this list below in four cases.

Case 2.6.1. Diagrams number 3 and 4 have a parallel clasp in a (2,−1) tangle, so we can
discard them.
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a

b
c

8#2#1#

Figure 9. Three of the remaining diagrams whose Alexander polynomials must be investigated.

Case 2.6.2. Consider the first two diagrams (see Figure 9). All three twist groups are linked;
the leading coefficient v4 of z4 in the Conway polynomial is of the form

v4 = C1abc+ C2ab+ C3ac+ C4bc+ linear terms, (3.10)

where (a, b, c) are the number of crossings† in the twisted classes, and C1 6= 0. (The constant
C1 can be obtained by smoothing out a crossing each in the classes of a, b, c and taking the
leading coefficient of the Alexander polynomial of the link, which in D̊′′ is a Hopf link, and so in
D remains a Hopf link, possibly of opposite sign.) If infinitely many diagrams have Alexander
polynomial with leading coefficient ±1, then some of a, b, c must be bounded. But (a, b, c) are
pairwise linked. Then the argument in Lemma 3.11 about two linked groups shows that v2 is
realized only finitely many times.

For the other diagrams it was necessary to calculate and analyze the polynomial expressions
for v2,4 in the numbers of twists a bit more closely. Note again that v4 would depend just up
to sign on the sign of the Hopf band, but v2 will differ more significantly. Thus, instead of
calculating the exact polynomial expressions twice, we argue by direct observations on D̊′′. In
some cases we still used the partial exclusions that were provided by the extended non-fibering
test.

Case 2.6.3. Diagram number 8: let c be the lower right, b the lower left, and a the upper
group. We use the same variable for the group and for the (even/odd) number of crossings in
it. To recover D from D′′, we must smooth out one crossing in the parallel (negative) clasp and
plumb a Hopf band. (If the band is negative, we have a non-alternating (2,−1) tangle, that is,
D and D′′ are isotopic.) Again the coefficient v4 of z4 in the Conway polynomial in D is of the
form (3.10), with C1 = −1/8 6= 0. Hence, if v4 ≡ ±1 is constant, then some of a, b, c is bounded
(above). Now (a, b) and (b, c) are linked. If b is unbounded, then depending on whether both a
and c are bounded or one is not, we can argue with either parts of Lemma 3.11. Thus assume
b is fixed.

Note that the application of Lemma 3.11 implicitly uses v2, which we declared to avoid.
However, even though v2 will change depending on the way (sign and/or spot) of plumbing,
once this choice is fixed, the property to form an arithmetic progression is always satisfied.
Moreover, the linking status of groups in which t̄′2 twists are applied is not changed between
D and D′′. Therefore, at most one polynomial will be realized infinitely many times by the
diagrams D regardless of the values of v2.

†Here we alternatively use the number of crossings in a ∼-equivalence class instead of the number of twists.
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In that case, if b > 5, then one sees that v4 (as a linear polynomial in a, c) has a non-trivial
coefficient in ac. This coefficient is itself some polynomial in b, and thus bounded away from
0 uniformly for all b > 5. Therefore, if v4 ≡ ±1, then one of a or c must be bounded. Then we
have only one group free to twist at, and with Lemma 3.11 we are done.

If b = 3, then v4 has no coefficient in ac, and neither has v2. Then the linear coefficient of c in
v2(D) is ±1/2 and in v4 it is 0, since smoothing out a crossing in c we obtain a Hopf link in D̊′′,

and so also in D̊. The linear coefficient of a in v2 is 0, because the linking number of the link
La obtained by smoothing a crossing in a is 0 (in D′′, and it is not changed when recovering
D). The linear coefficient of a in v4 is ±1/2, because La is a Hopf plumbed (2,−2, c−1) pretzel
link (c is odd), which is fibered. Then |v2|+ |v4| → ∞ if max(a, c)→∞, and we are done with
diagram 8.

Case 2.6.4. The surfaces in the diagrams 5–7 are all Hopf plumbing equivalent; consider
number 6. We use the DT notation in the above list. For recovering D we again have two
possibilities, depending on the sign of the Hopf band. (These diagrams lie in 〈11148〉.)

19 148 14 -24 -22 -34 20 -28 -26 38 -30 10 8 -4 -2 -12 -18 -16 -36 -6 -32

19 148 14 -24 -22 34 20 -28 -26 38 -30 10 8 -4 -2 -12 -18 -16 -36 6 -32

We calculate v4: it does not depend on the site of plumbing, and depends on the sign of the
Hopf band only up to sign. Thus, as long as we avoid considering v2, we can work for all cases
(all three diagrams D̊′′ and both signs of Hopf bands plumbed) simultaneously. Let a, b, c > 0
be the number of additional twists at the groups of crossings 9, 6, 5, and d the number of
additional twists at the group of crossing 2 in D̊′′ (so that the groups {9}, {6}, {5}, {2} have
3 + 2a, 3 + 2b, 3 + 2c, 4 + 2d crossings, respectively). Then verification of v4 on some individual
example diagrams shows

v4 = b+ 2ba− 3c− 2ca− 2cb+ d(b+ ab− 2c− ca− cb).
We analyze this expression in the following cases.

– If a = 0, then v4 = b− 3c− 2cb+ d(b− 2c− cb).

∗ If c > 0, then v4 6 −b− 3c 6 −3, a contradiction.

∗ If c = 0, then v4 = b+ db, and thus for v4 = ±1 we need b = 1 and d = 0. Then we
have no free parameter, and we are done.

Thus a > 0.

– If c = 0, then v4 = b+ 2ba+ d(b+ ab).

∗ If b > 0, then with a > 0 we have v4 > 2, so we are done.

∗ If b = 0, then v4 = 0, and a contradiction.

We conclude c > 0.

– If b = 0, then v4 = −3c − 2ca + d(−2c − ca), and with c > 0, we get v4 6 −3, a
contradiction. Therefore, b > 0.

Now using the extended non-fibering test on D′, we found that for one twist at crossings 5, 6, 9
the knot is reported (stably) non-fibered.

The proof of Theorem 1.2 is now complete.

Of course, with some more effort, one could characterize the frequency of the occurring
polynomials completely, but we preferred to leave out the technical details, being mainly
interested in showing the qualitative difference of canonical fiber surfaces with regard to the
Alexander polynomial.

For higher genera, it is known from [49] that infinitely many Alexander polynomials occur
for infinitely many canonical fiber surfaces. (Thus Theorem 1.2 does not hold in this sharp form
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for polynomials of higher degree.) However, the frequency of such polynomials as compared to
all monic polynomials of given degree remains unclear.

There is a partial extension to 2-component links.

Theorem 3.1. For almost all monic polynomials ∆ of degree 3/2, there exist only finitely
many canonically fibered 2-component links of genus 1 realizing ∆.

Proof. Let D′ be a diagram of such a link L with a canonical fiber surface. By applying a
clasping at a crossing involving both components of D′, we obtain a knot diagram D of genus
2 with a canonical fiber surface. We choose D to be κ-minimal (that is, with respect to the
order in Definition 3.1) among all diagrams thus obtainable.

Now we can use almost the same criteria as in the proof of Theorem 1.2 to restrict the
diagrams D that come in question. The non-special generators containing a parallel clasp are
62, 63, 76, 814 and 925, and are again easily done with Lemma 3.10. So assume that D (and
hence D′) is special.

Then we apply the selection procedure as for the diagrams D̊′′ in Case 2.6 in the previous
proof. Now there is the exception that when processing the list of 59 diagrams using
Lemma 3.11, we are no longer allowed to exclude diagrams with two linked twist groups.
The thought when our new operation D′ → D changes the conditions of the so modified
Lemma 3.11 leads to exactly the same list (3.8), which is discarded in the same way.

With the relaxed (that is, not considering linked twist groups) test in Lemma 3.11, instead
of the previous list of 8 diagrams in (3.9), we obtain a larger list of 21, which additionally
contains, beside the 8 ‘old’ ones, the following 13 ‘new’ ones.

13 38 8 -14 -20 -18 26 -22 -4 -24 -2 -6 -12 -10 -16

13 38 8 -14 -20 -18 26 22 -4 -24 -2 -6 12 10 -16

13 38 8 -14 20 18 26 22 -4 -24 -2 6 12 10 -16

13 38 8 -14 20 18 26 22 -4 -24 2 6 12 10 -16

13 38 8 -14 20 18 26 22 -4 24 -2 6 12 10 16

13 38 8 14 -20 -18 26 -22 4 -24 2 -6 -12 -10 -16

14 101 4 14 -20 -18 -26 -24 2 -22 -8 -6 -28 -12 -10 -16

14 101 4 14 20 18 -26 -24 2 -22 8 6 -28 -12 -10 -16

14 101 4 14 20 18 26 24 2 -22 8 6 -28 12 10 -16

15 38 10 -14 20 -26 -24 2 -22 -30 -28 6 4 -12 -8 -18 -16

15 38 10 -18 26 22 20 30 -24 28 -4 -2 8 -12 6 16 14

16 101 4 10 -18 -26 2 -24 -22 28 -6 -32 -30 -12 -8 16 14 -20

16 101 4 10 18 -26 2 24 22 28 6 -32 -30 12 -8 16 14 -20

(Again, as in (3.9), the knot identifier indicates the underlying generator.)
This list is easily analyzed in cases. Let us for simplicity use again the Conway polynomial
∇. Note that for 2-component links of genus 1, the variation of a monic polynomial is given
by the value of ∇1 = [∇]1, and this is just the linking number of both components.

Case 1. The two old twelve crossing diagrams in 〈815〉 are again discarded as in the previous
Case 2.6.1, because they have a (2,−1)-tangle with a parallel clasp. (It is again easily observed
that a simpler diagram D would also be possible then.)

Case 2. The three (old) eighteen crossing diagrams in 〈10101〉 are dealt with by the previous
Case 2.6.4, which made use only of Gabai and ∇4 (the latter becoming ∇3 here).

Case 3. Consider the first three (new) thirteen crossing diagrams in 〈938〉, and the three

(new) fourteen crossing diagrams D̊. These diagrams D̊ have a unique parallel clasp, and thus

come from only one D̊′.
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We will apply the following loop move, an isotopy ‘moving through a loop’, which relates
two ∼-equivalence classes.

(3.11)

The convention is that only t̄′2 twists at a, a′, b, c are allowed. One may switch the crossing c,
as well as simultaneously the other four unnamed crossings. We will call these four crossings
loop crossings. Similarly a, a′, b may be switched. The orientation of the strand at c may also
be reverted, as well as, simultaneously, those of the strands involved in a, a′, b. Note that the
loop move preserves the property of a diagram to be special.

Lemma 3.12. Let D′ be a special diagram with χ(D′) < 0 and admitting a loop move, such
that the classes of a, b in (3.11) are non-trivial. Then one can obtain from D′ by loop moves
a diagram D′1 with κ(D′1) < κ(D′).

Moreover, when a clasping is applied at the same of the four loop crossings in (3.11) to
obtain diagrams D, D1 from D′, respectively D′1, then κ(D1) < κ(D).

Proof. Since D′ is special and χ(D′) < 0 (that is, D′ is not a reverse (2, k)-torus link
diagram), we have n1(D′) = c(D′). Thus n1(D′1) 6 n1(D′). If D′1 is not special, then n2(D′1) >
1 = n2(D′). If D′1 is special, then n2(D′1) = n2(D′)(= 1). If one of the ∼-equivalence classes of
a and b in (3.11) is even, it can be eliminated by (applying loop moves and) absorbing it into
the other one, and thus we can have n3(D′) = n3(D′1)+1. Otherwise, for both classes of a and
b odd, we can make one class trivial, and then n3(D′) = n3(D′1) but n4(D′) = n4(D′1)− 1.

It remains to argue about the effect of the clasping. Since all four diagrams are special (and
prime), we have

n1(D′)− n1(D) = n1(D′1)− n1(D1) = −1,

and
n2(D′) = n2(D) = n2(D′1) = n2(D1) = 1.

Also, the clasping changes n3 and n4 by the same quantity for D′ → D and D′1 → D1.

We observe that for the six diagrams D̊ designated in the beginning of the case, after undoing
the clasping to recover D̊′, the two twist groups (∼-equivalence classes) are non-trivial and

can be simplified by loop moves. This again contradicts the κ-minimal choice of D̊ (and D).

Case 4. For the last three thirteen crossing diagrams D̊, in D′, both twist groups involve
strands of different components, and both with the same sign. Thus for any sequence of
diagrams D′ obtained by twists we have ∇1 → ±∞, and any (monic) polynomial occurs
only finitely many times.

Case 5. The two sixteen crossing diagrams have the property that in D′, none of the
twist groups involves crossings of different components. Thus the linking number ∇1 remains
constant, and so at most two monic polynomials can occur.

Case 6. There remain five (three old and two new) fifteen crossing diagrams in 〈938〉. For
them again direct calculation of ∇(D′) and trivial algebra show that if ∇3 = ±1, only finitely
many ∇1 can occur infinitely many times, except for one case.

This diagram D̊ is the second of the three old fifteen crossing diagrams. Let a ∼ {8}, b ∼ {4}
and c ∼ {2}. Then ∇3 = ±1 easily leads to the restriction c = 0, but then ∇1(D′) = b− a− 2,
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and so any value could be realized infinitely many times. It needs a bit of hand manipulation
using wave moves to see that in this case the left diagram D̊′ below is isotopic to the right
one.

(3.12)

(In both diagrams components are oriented so that all clasps are reverse and the diagrams are
special.) This isotopy identifies, after a loop move, both twist groups a, b, and again contradicts

the κ-minimal choice of D̊ by Lemma 3.12. (We also see that the links are indeed fibered, and
their fiber is a Stallings twist of the one of the connected sum of a trefoil and Hopf link.)

With this the proof is complete.

Note also the difference between the two alternatives max cf ∆ = ±1. This distinction is very
unusual in the eyes of algebraic topology, and makes the normalization condition ∆(1) = +1
for knots important. It became apparent already in the proof of Theorem 1.2: for example, with
the 121202 series we have a two-fold twist family with the same polynomial of max cf ∆ = 1,
while for leading coefficient −1 we have no such family.

When considering links, the difference becomes even more drastic. For instance, the
Alexander polynomial of fibered links of three components and genus 0 are ±(t− 1)2/t. While
the (2,−2, 2k)-pretzel links is an infinite family with Alexander polynomial −(t − 1)2/t, for
Alexander polynomial +(t− 1)2/t, there exist only the connected sums of two positive or two
negative Hopf links.

Remark 3.2. As an extension of Morton’s result [28] to links, in [49] a different construction
of infinitely many (even canonical) fiber surfaces of every possible Alexander polynomial was
given for four or more components. The status of two and three components remains unsettled
at this point (even without regard to canonical fiber surfaces). Morton’s construction appears
to possibly adapt to 2 components. One can deplumb a Hopf band from Burde’s knots Morton
begins with; a crossing change in these bands unknots the knot, and the Stallings twists Morton
uses happen to be outside of this Hopf plumbing spot. The JSJ decomposition argument to
distinguish the links would require some extra work, though.
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