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ON WEIGHTED NORM INEQUALITIES FOR 
FRACTIONAL AND SINGULAR INTEGRALS 

T. WALSH 

0. Introduction. In a recent paper [12] Muckenhoupt and Wheeden have 
established necessary and sufficient conditions for the validity of norm in
equalities of the form || \x\aTj \\q ^ C\\ \x\af \\p, where Tf denotes a Calderôn 
and Zygmund singular integral of / or a fractional integral with variable 
kernel. The purpose of the present paper is to prove, by somewhat different 
methods, similar inequalities for more general weight functions. 

In what follows, for p ^ 1, p' is the exponent conjugate to p} given by 
l/p + l/pr = 1. 12 will always denote a locally integrable function on Rw 

wThich is homogeneous of degree 0, QT will denote a measurable function on 
Kn X R72 such that for each x £ Rn, 0~(x, .) is locally integrable and homo
geneous of degree 0. \\ti\\u is the Lu norm of 0, restricted to the unit sphere 
Sn~1 = {x Ç Kn: \x\ = 1), with respect to Euclidean surface measure a on 
Sn~K If u = 1 

||Q||i* = 1 + \\%\\[L\og+L(S"-1)] + HOxllx, 

where O0, 121 denote the even and odd parts of 12, respectively (see [3, Theorem 1] ). 
| ||12~|||W will denote ess sup{||l2~(x, .)||M: x £ Rn}> Wo, Wi and co0) &i denote non-
negative measurable functions on Rw and R+ = (0, oo), respectively. For 
x G Rw, coo(x), for instance, has the same meaning as coo(|x|). 

Let x denote the characteristic function of the interval ( | , 2). Z will 
denote the set of integers. For any integer z, the quantities MT(wo, Wi, 12, z), 
M*rtV(wo, Wi, z), NT(wo, 12~, z), N*rtV(w0, z) are defined as follows: 

(1) Mr(wo, wi, 12, z) = ess sup Wo(x)~ 
2^-i<|a;i<2^ 

suppn\ x(\x - y\/\x\)wi(x - y)dy\ 
• P > 0 J\y\<\V(y)\r/nP J 

(2) M*riV(wQ, wi, z) = ess sup w0(x) 

- f (sup p~n f x(|* + ty'\/\x\)wi(x + ty'^dtY'daty') 
^p>0 

(3) Nr(wo, 12~, 2) = ess sup sup a 
2z-l< |z |<2z a>0 

1/» 

a x ( k - y\/\x\)wo(x - y)dy) ; 
tt>oCr-w)<m~(z)y)M?/|-n/ra-1 / 
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908 T. WALSH 

(4) N*r,v(wo, z) = ess sup I ( s u p a r I 

• xfl* + ty'\/\x\)w0(x + ty'^d^daWj. 

If 0 = 1 or Q~ = 1, the notation will be abbreviated to Mr(w0, Wi, z), Nr(w0, z), 
respectively. For any real numbers ru r2, let rx V r2 = max(ri, r2), fi A r2 = 
min(ri, r2), and rx

+ = ^ V 0. C denotes a positive constant, not necessarily the 
same at each occurrence. 

The following results will be proved. 

PROPOSITION 1. For u0, ux > 0, define 

a» \ I / M O / /» \ i / w i 

wo(*rVfc) ( wi(*r<foe) . 
\x\<s / \ « / | r c | > s / 

Suppose that l<r^co,l<p<r', 1/q = 1/p — 1/r', and set 
Tf(x) =S\x-y\-""f(y)dy. 

Then 

(6) \\WlTf \y\\w0f | | , g jc[!T'<(W(f \ | • P V ) + £ w > i , | • P ' W 1 ) ] 

+ CPlS sup Jlfr(w0*,wi',«i),/Wr(wo*,22)r/,,'J-. 

Ora Â̂e o/Âer hand, 

(7) S ' ' ' (« / . - \ | • r/r
Wl) + Bm'(wu I • p W ) ^ Csup ( I K r / H . / l ^ l l , ) . 

PROPOSITION 2. For ^0, ^i , z>o, z>i > 0, awrf any real a, de/me 

(8) Ba
U0U1V0V1(w0)w1) = s u p ( S ( 2~w* f Wo(x)BO*cV0/B02tt*,lo)1/MO 

2€Z V = - o o \ * /2^ - l< | ^ |<2^ / / aoo / n \ui/vi \ 1/wi 

.. UB .-iwi( / f )'v<rt t )/ raui~ldj • 
Suppose that l<r<co,l<p<r', 1/q = 1/p — 1/r', and set 

(9) Tf ( * ) = / « ( * - y)|x - y p " / (y)dy. 

Then 

(io) |Kr/11,/1ko/11, g c||a||,[fC ,08>0-\ «n) + ^'""(«-i,»,-1) 

+ ^ l t sup J l f* r . , (W, Wi, zi)T/tN*T,t(-u>0', z2)
rlv' , 

lei—sslël J 
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provided that 

1/u + 1/v = 1/r, 1/ao + 1/fli = l/6o + I/61 = 1/», 1/ff Û 1/u + 1/ai ^ 1/r, 

1/P' ^ 1/u + l /ôi ^ 1/r, 

a i = n/p' + (» - l ) ( l / a 0 - W ) + , 

«o = ^ / g + ( » - l)(l /6o - l /g) + . 

COROLLARY 1. Suppose that 1 ^ r < oo, 1 < p < r', 1/q = l / £ — 1/r', 
u ^ r. If r = 1, suppose further that 0, has mean value 0 ow 5W~"1. Le/ T 6e defined 
by (9) or 63/ 

Tf(x) = £.v. f Q(* - y)I* ~ y|"7(y)dy =lîm f ^(y)\y\~nf(x - y)dy, 

according as r > 1 or #0/. Finally, suppose that 

(11) «,(*)/«,(/) ^ 5 , for 1/2 < 5// < 2, i = 0, 1< 

and that for any s > 0, 

a * \ W / /»co \ l / f l 

m(t)Qro'ldtj ( J «o(0"p'r3,'ao-1*J ^i4, 

«! = » / / > ' - ( » - l ) ( l / « - l /g)+ , 

ao = w/g - (w - l ) ( l /w - l / £ )+ . 

(14) | | « i r / | | , ^ £ 4 ( 1 + ^ .^* ) | | f l | | . | | «o / |U 

where ||0||K 0» i/?e right-hand side must be replaced by |[fi||i* if u = 1. 

(13), (12) are, in particular, satisfied for some .4 < 00 if (11) holds and as 
5 — » 0 o r + 0 0 , 

(is) ( J" ^(ty r^dt)1" = o(cc0(s)sao), 

(16) ( J " «o(0" rrn ,0-1<ftj1" = O(co1(s)-1^ao), 

(i7) ( f woity'r^dt/" = O(»X(J)-1*"1), 

Uœ \ 1/r 

aittyr""--1^ = o(co0(s)5-ai). 
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Conditions (15), (18) are of a weaker form than those of [4; 5] for the case 

Remark 1. For r < u S p' A g, ||fi||« in (14) can be replaced by ||Œ||W„ where 
fl-i = (f-1 — u~l)(q/pf V pr/q)- (For the definition of Lorentz norms see, 
e.g., [2; 7].) 

PROPOSITION 3. For r(>1), £, g as afoz/e, se£ 

f/(*) = JV(* f * - y)|x - y\-n/rf(y)dy. 

Suppose that p' < u < oo, 1/a = l/pf — 1/u, /3 = n/p' — (n — l)/u, 
r/v < 1 — p'/u. Then 

(19) IKf/||,/IK/||^c|| |^|| | t t: Bf9aq(w0'\ w0 + B%'q
qa(wl9 wo'1) 

+ CP,q,u,v sup Mr(w0
p,w1

q,z1y
/ttWrA*>ov,Z2)T/p' 

COROLLARY 2. Suppose that l ^ r < c o , 1 < p < /, l/a = 1/p — 1/V, 
u ^ p'. If r = 1, suppose further that £2~(x, .) ftas1 mean value Q on Sn~l for any 
x G Rw. Define 

Tf(x) = (p.v.) j QT(x,x - y)\x - y\~nlrf{y)dy. 

Suppose that (11) is satisfied and that for any s > 0, 

i w^yf^dt) ( J o1(tyret-1dtj ÛA, 

(2i) ( J mityr-^tj ( J M0~p'tnp'"'~1dtj SA, 

where j3 = n/p' — (n — l)/u. Then 

(22) lk r / | | t g c^a + i^c^llisrliyiuo/ll,. 

As always, the proof of these results starts with the decomposition 
T = T± + T2 + T3, where 

T.fix) = f 0(x - o0|* - yr/rf(y)dy, 

T2f(x) = f 0(* -y)\x- yr/rf(y)dy, 

with a similar decomposition 7\ + T2 + T3, in the case of T. The major part 
of the present paper is concerned with proving that 7\ and T2(T1} T2) satisfy 
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(6) or, equivalently (for positive 12,12~), that S3, S2 defined by 

(23) Si(o~, w0} w1)(f)(x) = Wl(x)|xrw/r f o~(z, x - yîwoCyrVCy)^ 
J\v\û\x\/2 

(24) 5 2 ( ^ , wo, wi) (/)(*) = Wi(x) f Q~(*f x - y^r^woiy)'1 f(y)dy, 

are bounded from Lp to LQ. 
The proof is by interpolation between two cases. In the first case, the condi

tions on Wo, W\ are as weak as possible compared to those satisfied by 0. In the 
second case, no additional condition beyond those required for the boundedness 
of T between unweighted IP and Lq spaces is imposed on 12, and it is found that 
the conditions obtained in the first case for the dimension n equal to 1 are 
nearly sufficient. 

In Propositions 1, 2, 3, the required inequality for T6 is obtained by simpli
fication of the conditions for T\ to be of restricted weak type at the end points 
p = 1 and p = r' with respect to the measures Wo^n and ^iifK, where ££n 

denotes Lebesgue measure on Kn, and application of the Marcinkiewicz 
Interpolation Theorem. 

In Corollaries 1 and 2, the required norm inequalities for T%, Tz follow from 
well known results except possibly for the case r > 1 in Corollary 2. Corollary 2 
also provides an answer to a question left open in [12]. 

1. An extension of Hardy's inequality. If T is an operator from Lv of 
some measure space Y to the space of measurable functions on some measure 
space X, define the {IP, Lq) norm of T by 

11711,., = s u p { | | r / | | , / | | / | | , : / eU(Y)}. 

LEMMA 1. Suppose that (X, ju), (F, v) are a-finite measure spaces, that ^ , & 
are classes of measurable subsets of X and Y, respectively, which are linearly 
ordered by inclusion, and that R is a relation with domain ^ and range & which 
is order-reversing in the sense that if FiRGu i = 1, 2, then Fi C F2 implies 
Gi 2 G2 and d C G2 implies F\ Z) F2. (Unless otherwise indicated, the 
containment is strict.) Define an initial segment ^ ' of Ĵ ~ as a subset such that for 
every element F\ of £F' and every element F2 of 3^ <^&~', it is true that Fx CI F2. 
Suppose that & contains a dense countable subset &\ in the sense that for every 
initial segment &' of ^ and &~u = ^ ~ #~' 

(25) viUiFiFe^'} ~ U{F:Fe^' nJ^o}) 

and that this property is shared by &. 
For u, v > 0 set 

(26) BUV(R) = sup{fx(F)1/uv(Gy/v:FRG} 

~ n{F:Fe^V 
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(where 0° = 0, 0 • oo = 0 ) . Define the operator H on non-negative measurable 
functions on Y by 

0) = sup j J Hf(x) = sup^ J f(y)dv(y):x € F, FRG 

Then for 1 ^ p ^ q g oo, \/p' + 1/g = 1/V 

(27) 1 ^ \\H\\VJB^{R) £ (^)1/3,/21/ffr-1/r. 

This can be considered as a (self-dual) generalization of Hardy's inequality 
(X = Y = R+, dju(x) = r ^ d x , d*>(x) = %-v-Hx fora, fi >0,p = qy a/pr = 0/£, 

^ = {[x, oo): x > 0}, ̂  = {(0, * ] : * > 0}). The inequality (27) for the real 
line, intervals, and p — q has been established by several authors (see [10]). 
The present proof although similar to that of Muckenhoupt makes the result 
appear as a natural consequence of the semi-trivial end point results (for p = 1 
or q = oo ) and the following simple inequality. 

LEMMA 2. Suppose that (X, fx) is a totally finite measure space and that <ï> is a 
function from X to the set of measurable subsets of X such that for each x,x £ $(x), 
the range of <î> is linearly ordered by inclusion, the union of any subset &~' of the 
range of <Ê> differs from the union of a countable subset of &~' by a set of measure 0, 
and n($) is measurable. Then for any a > 0, 

(28) f M($(*)) a - 1^(x) ^ oTlp(X). 

Equality holds if and only if the range of JJL(^) is dense in the interval (0, n(X)). 

Proof. The point is that ju($) - 1 is in weak L1 (L100(X, fi)) and hence in 
Ll~a{X, fi), since n(X) < oo . More precisely, let X denote the distribution func
tion of M ( $ ) - 1 ; i.e., for t > 0, \(t) = v(Et), where Et = {x: M ( ^ ) " 1 > t). Let 
Ft = U{ $(x): x G Et] ; then Et C 7^, and the hypotheses further imply that 

li{Ft) = S U P { M ( $ ( * ) ) : x Ç £*}. 

Hence, X(/) = /*(£,) ^ r 1 . Clearly, X(/) = /z(Z) for 0 < t < ^(X)-1. More
over (see, e.g., [20, p. 117]), 

f !JL($(x))a-%(x) = - r f-*d\{t) 
Jx «7o 

J"»oo 

\{t)t~adt 

£li(X)a+ ( 1 - a ) f° r1"^/ 

= ûT /x(X)a. 

Since X is monotonie, strict inequality holds in (28) if and only if X(t) < t~l 

for some t G (JU(X)_ 1 , co). It is easy to see that this occurs if and only if M ( $ ) 

does not assume any value in some subinterval (a, /3) (a < /3) of (0, n(X)). 
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For 0 < u, v ^ oo and any measurable function K on X X F, define the 
double norm XUYVK by 

XUY*K = | | F ^ | | M , where F ^ ( x ) = ||i£(x, .)||„. 

It is well known that for 5 defined by Sf (x) = J K(x, y)f (y)dv(y), 

(29) \\S\\p§q £ X'Y>'K if 1 ^p ^ o o , g > 0, 

(30) | | 5 | | , , , ^ Y*'X*K if 1 g ^ ( z ^ ° ° , 

with equality holding in (29) if g = oo and in (30) if p = 1 (see, e.g., [18, 
Lemma 2]). Furthermore, if K = K^K^, where K0, K1 ^ 0 , 0 ^ ^ 1, then 
by interpolation (or Holder's inequality), 

(31) \\S\\p,q S (X''Y*''K0y-t(Yn'X"K1y, 

provided that 1/p = (1 - t)/p0 + t/pi, l/q = (1 - /)/g0 + t/qi(p0, pu qi ^ 
l,<Zo> 0). 

Note that the kernel i£ of J3" is the characteristic function XE of the set 
E = U { ^ X G:FRG}. Hence, 

(32) X°°F r^ = ess sup sup{v(G)1/r: x £F, FRG}, 
X 

(33) Y°°XrK = ess sup sup{n(F)1/r: y £G, FRG}. 
y 

It is easy to see that X00 7 rX = Bœr(R). Thus, by (29) and (30), the right-hand 
inequality of (27) holds if p = r' or p = 1. 

In general, the idea is to write 

(34) X = Ko^'K^, 

and to determine 2£0, i£i in such a way that X°°Fri£o and YcoXrKi agree with 
each other as closely as possible. For this purpose, define two functions <Ê> and ^ 
on X and F, respectively, by 

The hypotheses on J^~, @ imply that <ï> and \F have the properties stipulated in 
Lemma 2. Next, let 

Ko(x,y) = XE(x1y)^(x)y^^(y))w-'/rJ 

Ki(x,y) = XE(xty)fx(^(x)y/^/rp(^(y)y^1 

so that (34) is satisfied. Moreover, 

XœYrK0 = esssup/z($(x))1 /e( f K * ^ ) ) ' ' * ' " 1 ^ ) ) '• 

F™Xrii:1 = esssupK*(>'))1/P '( f M($(x)) r / 4 _ 1^(x)) . 
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Hence, by Lemma 2, 

r r J C o ^ (q/r)1/r ess sup ix(t>(x))1"'sup{i>(G)1'p':FRG,x Ç F\, 
X 

Analogously, 

^ Gz/fO^supMtir 'MG) 1 

rarJd g (2/f)1/rsupyu(/;")1/pV(G)1/î. 

Thus, the right-hand inequality in (27) now follows from (31) and (34). 
The left-hand inequality in (27) follows by evaluation of the ratio 

11flj | |ff/| 1/||p for/ = XF, the characteristic function of any F Ç J^ , in which case 
Hf ^ »(F)XG for any G such that FRG. 

2. Inequalities for Tu T2. 

LEMMA 3. Suppose that 1 ^ r ^ oo awrf / t o Si(w0, Wi) is defined by 

(35) Si(w0,wi)(j)(x) = ̂ (x)|xp / r f /Cv^oCvr^Cy). 

Then, for 1 g £ ^ r'f 1/g = 1/p - 1/r', 

(36) 1 g ||5i(w0l WOHP.J/B^CWO- 1 , I -|-w/rwi) ^ (p'y'*'qv<r-u*. 

By duality, if 

(37) 52(w0,wi)(/)(*)=wiW f bP^oCyryCv)^, 
then 

(38) 1 ^ WStiwoiWJWpJBv'iwu l-l^'wo-1) £ (p'yiv'qi/tr-vr. 

Proof. Inequalities (36) follow from Lemma 1, if X = Y = Rn, dn(x) = 
Wi(x)q\x\-nq,Tdx, and dv(y) = w0(y)-p'dy. &~ consists of all closed balls with 
centre at the origin, ^ of their complements, and FRG if G = ~F. Hence, 
Sif = wx\ • \-n,rH(wQ

v'-lf ), and the L*and U norms of/, S i / with respect tOe£?» 
are equal to the norms of w/~xf, H(yo/~lf ) with respect to p, /z, respectively. 

Inequalities (38) follow similarly, or because S2(w0, w\) is the adjoint of 
S1(wr1,w0~

1). 

LEMMA 4. Define 

Au(w) (0 = ( J n-i Mtifda^)) , t > 0, 

/ pas \ 1 / M / /*œ X1 /^ 

C(«o, «o = sup(Jo owr-ty (J <c1(tyr,-1dt) , 
and for a, fr > 0 

5i,a,6(Q, wo, Wi) ( / ) (*) = wi(x)\x\~n,r J 12(x - y)woCy)_1/(y)^. 

https://doi.org/10.4153/CJM-1971-100-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-100-1


NORM INEQUALITIES 9 1 5 

Then, for 1 ̂  p ^ r', 1/q = 1/p — 1/r', q ̂  u ^ oo, 1/z/j + 1/w = 1/g, 

(39) \\Si,a,b(Q,W0,Wi)\\P,q ^ C a ^ l l Q l l ^ / J / . a ^ C w o " 1 ) , ^ . ^ ^ ) ) . 

S2,a,&(Û~, Wo, Wi) ( / ) ( * ) = 

wiW I sr(*, x - y)bl~"/rwoCy)~VCy)^. 
then for the same p, q and p' S u ^ oo, l/v2 + 1/w = l/p', 

(40) p 2 , a , & ( O ~ , W 0 , ^ l ) | U ^ C a ^ l H î r l U ^ a ^ ^ W i ) , ^ ^ " 1 ) ) . 

Proof. Consider (40) first. Define the isomorphism r, from the space of 
functions on Rn ~ {0} onto that of functions on R+ with values in the space of 
functions on Sn~\ by r(f)(t) ( / ) = / (ty'), t > 0, y' £ Sn~\ Note that 

S2,aA&~,Wo,Wi)(f)(sx') = 

wi(sx') I I Q~(s>e', sx' - */)w0(//)~"V(fo/k*' - ty'Dfity^daiy^t^dt, 

where <p is the characteristic function of the interval [0, 1]. 
The diffeomorphism yf/XtU defined by \I/Xtt{yf) = \yr — t~1x\~l{yf — t~lx), of 

the subset of Sn~1,DXtt = {yf: \yr — t~xx\ ^ frlxjr-1}, into Sn~1, has the property 
that \I/Xt*(r, the image of the measure cr under the mapping ^Px,u satisfies 
C~V ^ fa,** ^ C<T on DXt t for any t ^ a -1 |x|. It follows that 

(41) \\rS2,aA^^oiwl)(f)(s)\\q 

„/a 

Also, (40) is equivalent to 

|| | |TSS .B ,6(U~, WO, w1)(f)\\[L"(Sn-1)]\\[L'(R+, S^ds)] 

^ ^ .̂.1110-111,11 ||T/||[L'(5-1)]||[i'(R+f r 1 ^ ) ] -
But this follows from (41) and Lemma 1 applied to the case X = Y = R+ , 

dn(s) =Aq{w1) (s)sn~Hs, dv(t) =AV2 (wo-^-W, R = {((0, as] X [s, oo )): s >0} . 
To prove (39), observe that if QT = 12 is independent of the first variable and 

0 ^ 0 , then Sita>b is bounded by the adjoint of S2>a,b/a(^i wf1, Wo-1) (on the 
set of positive measurable functions), where IT(x) = Œ( —x), because \y\ ^ a\x\ 
and \x — y\ è &|#| imply that |x — y| ^ b\y\/a. 

LEMMA 5. Suppose that Xi, X2, Yh Y2 are measurable spaces, that /*i, v\ are 
(totally a-finite) measures on X\, Y±, that s/u & t denote the a-algebras of 
measurable subsets of Xi, Yu respectively, and that M(N) is a non-negative real 
valued function on Xi X ^ 2 ( ^ 1 X êë 2) such that for any Xi G -^1(^1 G Ti), 
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M(xi, .)(N(yi, .)) is a {totally <r-finite) measure on X2(Y2) and for any set 
i 2 G s/2(B2 € ^2)1 M(., A2)(N(., B2)) is a measurable function on Xi(Yx) 
(see, e.g., [14, p. 73]). Denote by n the measure onX~XiXX2 determined by 

(41) ^ ( i i X i 2 ) = f M(xhA2)dfi1(x1)1 At es/{. 
J Al 

The measure v on Y — Y\ X Y2 is defined analogously. 
Let K( = K(xi, x2;yi, y2)) be a locally integrable function on X X Y and let 

\\K\\[LPY, LQ(X)] denote the norm of the integral operator S defined by 

Sf(xhx2) = K(xhx2;yhy2)f(yhy2)dv(yhy2), 

between LV(Y) and LQ(X) (with respect to the measures n, v). Then 

\\K\\[L*{Y),V(X)} g \\\\K\\[L^Yi),U(Xi)]\\[^{Yl),U{X1)](p > Q,q^ l ) , 

where \\K\\[LV(Y2)1 LQ(X2)] (xi,yi) denotes the norm (quasi-norm if p < 1) of the 
integral operator with kernel K(xi, . ; yi, .) from LP(Y2, N(yu .)) to 
L«(X2,M(xu.)). 

Proof. By Minkowski's inequality for integrals, since a ^ 1, 

\\Sf(xll.)\\q=X2
(1Sf(x1)= J j JK(x1,.;yhy2)f(yhy2)dN(y1,y2)dv1(y1) 

^ K(xh.;yhy2)f(yhy2)dN(yljy2)\\ dvi(yi) 
• / II «/ 11 q 

where H/lbG'i) denotes the norm oîf(y1, .) with respect to the measure N(yi, .) 
on Y2. Hence, 

| | 5 / | | 5 = X1'Xs<Sf è || \\K\\{U{Y2),L^X2)]\\[L'>{Yl),U{X1)]\\f\\p. 

Remark 2. More generally, if u S p, v § q, it follows similarly, by use of the 
obvious generalization of [19, Lemma 3 and Corollary] from the case of 
product measures to the more general types of measure denned in (41), that 

\\K\\lIS>(y),L«(X)] ^ C\\ \\K\\[IS"(Ys),L<'(Xi)]\\[I?(y1),L<(X1)l 

LEMMA 6. Define 

( z ( /»2* \u/w \ l / « / f*ca \l/v 

bu
a

vw(mi coO = s u p ( j C \2~J2k , "o(t)wdtJ 2aku) (̂  J a1(tyr"-1dt) . 

Suppose that 1 S r S oo, 1/q = 1/p - 1/V. Then for Sx defined by (23), 

(42) ||Si(Q, coo, « O I U ^ C\\9\\rJ)X^(^\ coO, for 1 < p < r\ 
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For p = 1 or q = oo , this is still valid provided that the left-hand side is replaced 
by \\Si(Qi, a>o, coi)||pit(7co or if, instead, the right-hand side is replaced by | | 0 | | r . 

Dually, 

(43) | |S2(Q, coo, « i ) | U ^ CllOH^f/^Ccoi, coo"1), 

with analogous results if p = 1 or q = oo. 

Proof. This is by application of the preceding lemma. By duali ty, it suffices 
to consider 5 2 . L e t X i = Z, provided with the measure v\ such t h a t vi({z) ) = 2Z 

for any z G Z. X2 is the subset of Rn, {x : l / 2 < \x\ ^ 1}, which together with 
the cr-algebra s/2 of Lebesgue measurable subsets becomes a measure space. 
For z £ Z and A2 G J / 2 , let M(2, 4 2 ) = 2<n-1>lSfn(,42). Next, let Y1 = R+, 
F 2 = 5W_1 , ^ 1 , ^ ? 2 be the o--algebras of measurable subsets with respect to«5? l 

or a, respectively, and let N(t, B2) = tn-l<j(B2) for B2 G £§ 2. 

Note t ha t if the measures \x, v on X = Z X X 2 , F = R + X 5W""1, are as in 
Lemma 5, then there are isomorphisms F\, F2 between the measure spaces 
(X, n),(Y, v) and ( R n , i f n ) defined by F^z, x) = 2zx, F2(t, y) = ty, respectively. 
Therefore, (43) is equivalent to the boundedness between LP(Y) and LQ(X) of 
the integral operator whose kernel is 

K(z,x;t,y) = <p{2z+l\x\t-l)&{2zx - /3;)rw/rcoi(22 |x|)coo(0~1. 

T o deduce the latter, it will be shown tha t if 

k0(z,t) = \\K\\[L^(Sn-')9L
œ(X2)]9k1(z9t) = \\K\\[L^Sn^),L^(X2)}, 

then for i = 0 , 1 , 

(44) &,0M) ̂  C | |O | | r œ ^(2 0 r 1 ) r 1 / r co o (O~ 1 esssup coi(22^). 
1/2<W<1 

Now 

k0(z,t) = ess sup \\K(z, x; ., .)l|r«x>(0 
0:6X2 

(see, e.g., [19, Lemma 1]). I t is easy to see t ha t the Z / œ norm with respect to 
the measure N(t, .) = tn~la is t{n~1),r t imes the Z/°° norm with respect to a. 
Thus , for 22 + 1 |x | ^ *, 

(45) & 0 (M) ̂  C T ^ c o o W ^ e s s s u p ^(2z\x\)\\il(2zx - t.)\\[Lrœ(Sn-1)]. 
Z£X2 

B u t for 2zrl\x\ ^ i 

| |Q(2's - / . ) | | [ L - ( 5 ^ ) ] = | | Q ( 2 « r ^ - O l l t ^ ^ C ^ 1 ) ] ^ C||Q||rœ> 

and (44), for i = 0, follows by subst i tut ing this in (45). T o establish (44) for 
i = 1, note t ha t 

ki(z,t) ^ Cess sup ||i£(., .;*,:y)||rco(s) 

= Cr w / r 2 ( n - 1 ) 2 / r coo(0~ 1 esssupo; 1 (2^) sup ||Q(. - 2-zty)\\[LTco(X2)]. 
1 / 2 < M < 1 y£Sn~l 
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But the last norm is at most equal to 

\\Q\\[L"»({x:t2r* - 1 < |*| < * 2 - + 1})] ^ C||0||roo, 

for t ^ 2Z+1. Hence, 

ki{z,t) S C\\Q\\rjT
 /rco0(/)~ ess sup coi(2zw). 

1/2<M<1 

Inequality (44) and the Marcinkiewicz Interpolation Theorem for Lorentz 
spaces imply that 

\\K\\[Lp(Sn-1),L\X2)Kz,t) £ C 2 , l , | | a | | r ^(2 8 r 1 ) r 1 / r «o(0" 1 esssup m&u). 
1/2<M<1 

Hence, by Lemma 5, the proof of (43) will be finished if it can be shown that 
for 

k(z,t) = <p(2T1)r1/rœo(t)~1esssup ui(2zu), 
1/2<M<1 

||*||[£'(R+>^1)fi«(Z, w)] è Cbtfriai, "o-1). 

This is a consequence of Lemma 1. For, replace X, F by Z, R+ , respectively, n 
by the measure assigning mass 2Z ess supi/2<w<i œi(2zu) to the one-point set {z}, 
dv by ^""1/rcoo(0_1^> a n d ^ > ^ by the collection of intervals of the form 
$(s) = {siisi 6 Z, *i 2g 2} and ^( / ) = [t, 00 ) for z 6 Z, / > 0, respectively. 
The relation i? is denned by R = {($(2), tf (*)):2* ^ £ < 28+1, s € Z, / > 0J. 

The restricted weak type results for S2 mentioned in Lemma 4 follow similarly 
if use is made of Remark 2. It follows, similarly, that 

\\K\\[Lr\Sn~1),Lco(X2)](z,t) g C | |0 | | ^ (2*r 1 ) r 1 / r «o(0" 1 esssup coi(2*y). 
1/2<M<1 

Hence, by Lemma 1, 

||S2(Î2, «0, «OU,,,» g ClIOll^^Ccoi, coo"1). 

The same inequality for H-Ŝ Hi.r *s proved similarly. 

Remark 3. The essentially new result, going beyond Lemma 4, is (44) for 
i = 1. The preceding argument is just a possible way of interpolating between 
this result and Lemma 4 in case 12 Ç Z/°°. It was obtained in an attempt to 
apply Lemma 5 with Xx = Fi = R+, MI = 1̂ = ^ J X2 = F2 = S*1-1, and 
M(t,E) = N(t,E) = r ~ V ( £ ) . This, however, presents the difficulty that 
the Z/°° norm of 12(5 — £y) on 5%~1(3; G .S^-1) for 5 < £ need no longer be finite, 
due to the contribution from a neighbourhood of the (n — 2) dimensional 
sphere onS71"1 defined by {£:£ 6 S*"""1, £ • (s£ — ty) = 0}. If a>i is not essentially 
bounded locally, then ki(z, .), for suitable 12 Ç Z/°°, z (~ Z, will be infinite for £ 
in a set of positive measure. It is in applying Lemma 5 that accuracy is lost 
even at the end points p = 1, p = r'\ fo r / 6 LrCO(Xi X X2) does not require 
that X1

rX2
TCOf < 00. 
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Interpolation between Lemma 4 and Lemma 6 for fixed p, q yields: 

LEMMA 7. Suppose that l<p<r', \/q = 1/p - 1/r', 1/u + l/v0 + l/vt = 1/r, 

(46) l / 2 g 1/u + 1/vx £ 1/r, 1/s = l/u - (1 - p'/v*){l/r). 

Then (see [8]) 

(47) | |5i(0, wo, wi)||„ff â C| |0 | |MX/^(U)/ ,o(^o"1 , wi). 

If instead of (46), 

(48) W g 1/tt + l A i £ 1/r, 1/5 = 1/tt - (1 - gAo)(l/r) , 

(49) | |5,(O fWo,wi)|U ^ C,||Q||„#B?;fl?g-.1)/,0(wllze;o"1). 

Proof. It suffices to consider 52. Since | j | è 2|x| implies that |y — x| § |#|, 
by Lemma 4, for 1/w + l/vx = l /£ ' , 

(50) | |5 a (0^o,wi) |L f f ^ CIIOlluB^Cwi.wo-1). 

By Lemma 6, 

(51) l l ^ ^ o ^ O l U ^ C||O|| r toB?/~(wi,w0"1). 

Inequality (49) follows from (50), (51), by interpolation. 
In fact, let X = 1 — q/vQ and l/u0 = (v0/q)(l/u) — (v0/q — l ) ( l / r ) . Then 

Lus = (L«o)i-x(ir«)x# Further, wf = w ^ - ^ a N * = 0, 1; for 

woo(y) = wo(y)VQ/Qw0(y)l-Vo/Q\y\'YO
y 

7o = (1 - g/vo)7t 

7i = - (q/i>o)y, 

7 = ( n - l ) ( l / £ ' - 1/r), 
and for 2*"1 < |*| ^ 2*, 

^io(x) = Wi(x)Co/^u(x)1-Po/î2fc50, 

wn(*) = (2-** f w i ( y ) ^ ) 1 / f l 2&Sl 

50 = - ( n - 1) (1/a — l/»o), 

ô i = (w — 1)/J>0, 

and 

B&«<,m/ t )(wio, woo-1), S Ï ^ ( W l l , Wo!-1) ^ C f i f / X U / ^ i , Wo-1). 

LEMMA 8. Suppose that 1/r' ^ l / £ = 1, 1/q = l /£ - 1/r'. Then 

(52) | |5i(Q-, «o,roi) |U = C|| | ir | | |1 , .«'y^(«o-1 , i l ,(a'i)). 
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Proof. The proof is similar to that of Lemma 6. Let Z, X2, M, N be as there, 
and let 

K(t,y;z,x) = <p(2'+1\x\tr1)tr*/rw1(ty)Qr(ty, ty - 22x)co0(22|x|)-1. 

Then, by the proof of Lemma 6, it suffices to show that for 

k,(t, z) = \\K\\[U{Xt), L«(5*-i)], IfkP^r', 

(53) *,(*, 2) £ C | | | a - | | | J ,^(2T 1 ) r 1 / , ' ^ , (af i ) (0 ess sup W0(2 ,M)~1. 
1/2<«<1 

In fact, for 2l ^ t, 

Ut,z) = \\K\\[L\Xt),L\S*-1W,z) 

g C|||SÎ-| | |00r* / resssup « o ( 2 , « ) _ 1 ^ r ( w i ) ( 0 ^ I ) / r 

1/2<«<1 

g c\\\ar\|Ur^rWW ess sup Wo(2*«)"1. 
1/2<W<1 

On the other hand, for p = r' and 22 ^ /, similarly, as in the proof of Lemma 4, 

^4co(^i)(0 i ess sup o)0(2
zu) 

L 1/2<M<1 

g Crw/r22(*-1) / r sup | |a~ftMy - 2\) | | r (s) ^ C | | | ^ | | | r r 1 / r . 

Thus, (53) holds for p = 1 and r'. The general case then follows by inter
polation. 

LEMMA 9. Suppose that 1 g /> g r', 1/g = l / £ - 1/r', 0 g l / « <; l /£ ' . Then 

(54) | |5i(ÎT, wo, wi)| |P , , ^ C| | \QT\ I I ^ ^ V D / ^ ^ O - 1 , WI), 

wÂ6re l/v0 = l / £ ' — 1/w. 

Proof. This is by interpolation between Lemmas 4 and 8. In fact, as a 
consequence of Lemma 4 (or Lemma 3), 

||Si(ir,Wo,wi)|U ^ cillirlll^^^o"1 ,^). 
By Lemma 8, 

Inequality (54) then follows by interpolation between the preceding two 
inequalities, similarly, as in the proof of Lemma 7. 

3. Inequalities for Tz. 

LEMMA 10. If w is a non-negative measurable function on Rn, let \\.\\Uv.w denote 
the Luv norm with respect to the measure w^£n on Rw. Suppose that r > 1. Then for 

r 
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T%, defined in the Introduction, 

(55) C~x g S u p ( | | r 3 / | | r c o , w l / | K / [ | i ) / s u p M r ( w o , w 1 ) n ) Z ) g C, 

(56) CTX Ik sup( | | f , /m/ | l / l \ r - i . m ) /supNr(w0, 0~2) g C, 

and for 1 < p < r', 1/q = 1/p - 1/r', 

(57) \\wiT,f\\t g Cp,t sup Afr(woP
>wi8

>0)2l)
r/8iVr(woP,fi,Z2)r/P ' |K/|U 

Proof. Observe that (since r > 1) 

supfllfa/IL^/IK/ilO = r°x'°x, 

where X = F = Rw and X, F are provided with the measures W\f£n, w§f£n, 
respectively, and 

K(x,y) = x(M/M)û~(*f * - 30k - y^WoCy)""1. 

But for ST = 12, 

F - X - X = esssup | | x ( | . | / b l )0 ( . - y ) | . - y r ^ o - ' l k . » ! , 

which is equivalent to (see [7]) 

esssupsupl I x(M/bl)wi(ff)d#) . 
y a>0 \ •y\nÇx-y)\\x-y\-n/rwo(y)-1>a / 

Hence, (55) follows if, for Wo(y) 9e 0, WQ(y)~lp~nlr is substituted fora. Similarly, 

T°Y-K = esssup| |x(U/|*|)Q~(*,* - .)\x - ^n,rw,-%^m. 
X 

The latter is equivalent to 

esssupsupf _ x(M/l*l)wo(y)d:y) = 
« a \ •/|fi (x,x—y)\\x—y\"-n/rwo(ky)-1>a / 

isupsupf I . x(|ff — :y|/|ff|)w>o(ff ~ jO^y ) . 
x a>0 \ Jv>o(x-v)û\Q (x,y)\\y\-n/ra-^ / 

ess i 

Inequality (57) can be proved by means of Lemma 5. For, let Xi = Y\ — Z, 
Mi = v\ and such that m({z\) = 1 for any z £ Z. Further, let X2 = F2 = 5 = 
{#:l/2 < |x| g 1}. Then for /*, Ï> defined by 

M({sj X £ ) = M(z, E) = f «/!(*)&, *>({*} X £ ) 

= # ( * , £ ) 

= I w0(x)dx, 
J 2?E 
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(Z X S, /*), (Z X S, v) are isomorphic to (Rn, w^£n), ( R w , ^ 0 i ^ ) , respectively, 
and Tz is equivalent to an integral operator with kernel 

(58) K(zlt x; z2l y) = x(221-22 |x1 | / |x2 |)0-(2^x1, 2 ^ - 2f»x2) 

•|22ixi - 2z*x2\-
n/rWo(2z*x2)-

1 

on (Z X S)2. 
By the preceding estimates for \zi — z2\ ^ 1, 

\\K\\[L^S)9L
ra(S)](zuz2) S Mr(w09wl9Q9z2)9 

\\K\\[L''i(S),L<°(S)](zuz2) ^ Nr(w0,V~,z1), 

while, if \zi — z2\ > 1, these norms are 0. Hence, by the Marcinkiewicz 
Interpolation Theorem for Lorentz spaces, 

(59) I M L ^ S ) , L<(S)](zu z2) g CPM\*i - **\)Mr(w0, wl9 0, z*)"* 

X Nr(wo, 0, Si)r /p/. 

(To obtain the bound CPtQM(wQ9 Wi)r/QN(w0)
r/p/, replace ^0 , ^ i by 

Wo = N(w0)
r'wo,Wi = MiwoyW^-'NiwoY^w^ThenMiwo^W!^ = N(w0') = 1 

and, e.g., ||/||p«>o' = ^ (^o) r / 2 ? | | / \\P wo, so, by the form of the Marcinkiewicz 
Theorem in [7], \\K\\[L*(S), L'(S)j(zlf z2) £ CPM\*i ~ z2\)Mr«*NS'*-"'«, 
i.e., (59) is satisfied.) 

To complete the proof of (57), it remains to observe that for k(zi, z2) = 
<p(\zi — z2\), \\k\\[Lp(Z)9 LQ(Z)] S 3, and to replace w0, w\ by wop

9 wx
q
9 respec

tively. 

LEMMA 11. Suppose that 1 < p < r', l/q = 1/p — 1/r', r g u g oo and 
1/u + 1/v = 1/r. Then 

l k i r 3 / | | ^ CP,Q\M\U( sup M\Aw0\w1\z1y
/"N\^op

1z2y
/p,)\\wof\\P1 

w/zere ikf*r>P, N*TiV are defined by (2), (4). 

Proof. MT(w09Wi9Çl, z) is defined as the essential supremum in {x:2z~l < 
\x\ < 2Z) of 

w0(x)~1(sup p~n I x ( k — y|/|tf |)wi(* — 3>)d;y) ^ 
\ p > 0 «^l?/l^|fiC2/)lr/nP / 

«OWH f ioc/)r sup P- P xd* - '̂i/ixi)Wi(x - ^of-^a^o)1^-
\ *Jsn~l P>O «/o / 

By Holder's inequality, Mr(wo, W\, 12, z) ^ ||fl||wikf*r>z,(ze;o, Wi, z). 
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Moreover, 

ess 
2< 

^sssup supa( I Wo(x — y)dy) 
~l<\x\<2z a>0 \ Jwo(x-y)^\a(y)\\y\-n/ra-l / 

^ ess sup ( I supar|Q(3>)|r 
2» —l<|a?|<2* \ Js71'1 

X f x(\x - ty'\/\x\)w0(.x - tyy-'dtdaiy'))'* 

= ||0||JV*r.,(Wo,2). 

To complete the proof of Proposition 2, it is necessary to consider Tz again. 

LEMMA 12. Suppose that 0 < 1/u < 1/p', 1/v < ( l / r ) ( l - p'/u), 1/r' < 
1/p < 1, l/a = l /£ - 1 / / . rAe» 

I M V | | , ^ CPiffi l l i,|||ir||| sup ( M r ( ^ , ^ ^ i ) r / W / ( W o P , ^ ) r / 2 ? ' ) | k o / | | , . 
I z i — Z 2 I S I 

Proof. By the proof of Lemma 10, it suffices to show that for K as in (58), 

(60) \\K\\[LHS),L^S)](z1,zi) ^ C ^ ^ I H s r l l U d z ! - zi\)Mr(w0,w1,Z2y^ 

X N*T,v(w0",Zly^. 

By (55) of Lemma 10, 

\\K\\[L^S),L^(S)](zltz2) ^ Cm~\\UMT(wo,w1,z2), 

and by (56) and the proof of Lemma 11, 

(61) \\K\\[U'i(S),L'»(S)](z1,z2) ^ C\\\Qr\\\rulpa,N*riV(m,z1), 

where p'/(ru) + 1/fl = 1/f. Hence, by interpolation (see [2]), 

(62) \\K\\[D"*(S),L"œ(S)] = C| | |12-| | |^ r(^o,^i^2) r / c°iV%,„(^o^i)^0 # 

(l/g0 = l/po — 1/r'). Since r < po, |||Œ~||U/p0' can be replaced by |||Œ~|||M in 
(61). Inequality (60) then follows from (61), (62) by the Marcinkiewicz 
Interpolation Theorem. 

4. Proof of Propositions 1, 2, 3 and Corollaries 1, 2. Inequality (6) of 
Proposition 1 follows from (36), (38) of Lemma 3 and (57) of Lemma 10, for 
0 = 1. For the proof of (7), notice that Si (w0, Wi) (f ) and S2 (wo, w{) (f ) defined 
by (35), (36), are both at most equal to CwiTÇwtT1/). Hence, (7) follows from 
the left-hand inequalities of (36), (38). Proposition 2 follows from Lemmas 
4, 7, 11, and Proposition 3 from Lemmas 8 and 12. 

Remark 4. Conversely, there is a constant CVtTtn, depending only on the 
indicated variables, such that for any 12 = 0 and if 

| | r | | =sup{\\w1Tf\\q/\\w0f\\P:wofeL^, 
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then, for r > 1, 

(63) ||fi||iwi £ CPirin\\T\\wo a.e. 

For, suppose that a > 0 and that the set of x where Wi(x)/wo(x) > a has 
positive measure. Then there are a, p > 0 for which p/a > a and Wo S a, 
Wi ^ P on a set £«# of positive measure. Suppose that x0 is a point of density 1 
of Eap. For p > 0, let 2? (x0, p) denote the open ball of radius p about x0. For 
any e > 0, there exists p such that J£?n(B(xoJ p) ~ £aJg) < €(un/n)pn, where 
cora/w is the volume of the unit ball. Also, for / the characteristic function of 
B(xo, p) H Eaj8, and |# — x0| < p/2 

Tf(x)^ f v(y)\yr/rdy-g*xaAx), 
*J\y\<p/2 

where g(x) =12(x)\x\~n/r and Xa$ is the characteristic function of B (x0, p) ^ Eap. 
Note that the first term on the right-hand side of the preceding inequality 
equals C,

re||Œ||ipn/r\ Suppose first that | |0 | | r < oo. Then \\g\\rco è Cn\\Çl\\r (see, 
e.g.,[13]). Thus, the non-increasing rearrangement of g on R+ satisfies 
g*(f) = Cn\\tt\\rt-

1/r. Hence, 

\g*x*\ = cn\\Q\\r fr
1/rdt <; cn\\Q\\re1/T'pn/r\ 

where the limits of integration are 0 to ££n(Ea$). 
It follows that for \x — x0\ < p/2, 

Tf(x) ^ CnP»/r'(Hflllx- €1/r '||Q||r). 

Thus, if e < 2"*-1, then 

WwtTfWi è Cnfip"""*1»') (llQUx - e^'HQll,), 

and, also, | | ^o / | | P ^ «11/UP = Cnapn,v. Hence, 

I k i r / I U H w o / l k è C»GS/a)(||û||i - €^' | |Q| | r) , 

and so 

Os/aXIlolli-e^llall,) g C||r||. 

Since e > 0 may be arbitrarily small, it follows that (jS/a)||fl||i = Cn | |r | | . 
Hence, a||Q||i = C i | | r | | and (wi/w0)||Q||i S Cn\\T\\ a.e. If | |0 | | r = oo, this holds 
for Qk = Q, A k. Hence, by Fatou's Lemma, for 0 likewise. 

In the case of fractional integration (r > 1), Corollary 1 is a consequence of 
Proposition 1; for, if a0 = b = v, a,\ — b± = oo, then 1/ao — 1/p' = 1/r 
— 1/w — 1/^' = l/q — 1/u; hence, «i = w/£' + (« — 1)(1/<Z ~~ V w ) + and, 
similarly, a0 = w/g + (n - l)(l/pf - l/u)+. Thus, Ba*'*'00^1, Wi), 
-Sa0

ff2?/cOO(îe;i» ^(T1) are at most equal to constant multiples of the left-hand sides 
of (12) and (13). 
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Also, (11) and (12), (13) imply that 

(64) sup coofcrVW S CAB2, 
l/2<s/t<2 

for s> 0. 
It follows easily that M*TtV(ù)0

p, w1
ç)r/W*r,,(co0

p)r/2,/ ^ CAB\ An examination 
of the proof of Lemma 10 leads to the conclusion that 

(65) \\<*iT*\\q ^ CAB*\\mf\\P. 

This can be deduced directly from (64). For, the kernel K of WiT^WcT1 

satisfies 

\K(x,y)\ = x(\y\/\x\)<*i(x)\Q(x - y)\ \x - y^'uoiy)-1 

^ CAB2\Q(x - y)\\x - y\~n/r 

= CAB*g(x-y), 

where \\g\\Ta> g C||0||r and \\ff\\q g C||g||roo||/ ||„ (see, e.g., [7; 13]). 
Iff = 1, (65) is a consequence of well known results of Calder on and Zygmund 

[3, Theorem 1] and, e.g., [19, Lemma 4]. The required inequalities for Tly T2 

are, of course, contained in Lemmas 4 and 7. Remark 1 follows from Lemma 7. 
For if, e.g., in (46), l/v0 = l /a0 = 1A — 1/w, then 1/s = pr /q(l/r — 1/w). 
The fact that, e.g., (15), (16) imply (18) follows from the logarithmic 
convexity of the function l//> —HI/UP (Holder's inequality); hence of 
VP -> 11/ I U I S L for/ (0 = *>(*/*)«! (0*"°, g(0 = <p(s/t)<**{t)-iir°\ 

Corollary 2 follows similarly from Lemma 8 with ax = oo, [3, Theorem 2] 
and, e.g., [19, Lemma 4] for the middle part Tz'iir = 1. If r > 1, the proof that 

is completed by the following. 

LEMMA 13. Suppose that 1 < r < OD , 1 < p < rf, 1/q = 1/p - 1/V, and T 
is as defined in Proposition 3. Then 

(66) ||?/||, s cilloilWim (c = c9.t). 

Proof. This is very similar to the argument for [9, Theorem 9] in the case 
that QT(x, y) does not depend on x. In fact, for 0 ^ Re z < 1 a n d / in the class 
Cc1 of continuously differentiate functions of compact support, define 

T,f(x) = c(z) j sgnÇl~(x,y)\iï~(x,y)r\y\-n2f(x - y)dy, 

where c(z) = (2 - 1) (2 - 2)~2, sgn G~ = ÎT/|îT|. For any * G Rw, r . / (*) is a 
holomorphic function in {z:0 < Re z < l j , continuous in {2: 0 ^ Re £ < 1}, 
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and has a continuous extension to the closed strip {z: 0 S Re z ^ 1}, which is 
uniformly bounded for x £ Rw. 

For, if e > 0, T2f (x) can be written 

T2f(x)=c(z) f Srz{x,y)\y\-nzf{x-y)dy 

- n~\z - 2)-V(1-j)/(x) f 0~,(*,/)<W) 
*J gn-l 

+ c(z) f QTz(x, y)(f(x - y) - /(*))*y, 

where &~2(x, y) = sgn 12~(x, ;y)|^~(tfi y)\rz. The last term on the right-hand side 
approaches 0 uniformly in z as e goes to 0 due to the integrability of |0(x, .)\T 

and since \f (x — y) — f (x)\ ^ C\y\, while, for any fixed e > 0, the first and 
second terms are bounded continuous functions of z in the closed strip and 
these statements hold uniformly for x G R*. 

If Ti+ivf(x) denotes the value of the continuous extension of Tzf(x) at 
1 + irj, —oo < rj < oo, clearly 

Ti+inf(x) = lim 
M L 

c(l + iv) f Û ~ W * , y)\yr(1+ill)f(x - y)dy 

- n-\iV - irv*'7(«) f o-w*. /) w ) l • 
By the results of [9] and [3], 

(67) T1+ivf(x) = f Qrg(x,y')Jin(x,y')d<r(y'), 

where for \y'\ = 1, 77 ^ 0, 

Jt,(x,y') = c(l + ^ ) limf r r 1 " ^ / ^ - *y')<ft ~ (inv)-\-
in'f(x)) 

(if 7? = 0,fo(x, yf) = —n~lf(x)). From [9, Theorem 6], it follows that 

(68) l l / „ C , / ) | | . ^ Ca\\f\\„ Ks<co. 

By precisely the same argument as in the proof of [3, Theorem 2], (67), (68) 
imply 

(69) l i r w n . s c|||îr1+<,|||.,||/||. = c||||sr|11MI/IU 
Furthermore, 

(70) H7VIL g \c(h)\ ll/Hi s c/ix + \v\)\\f\\i. 
Let now s = q/r; then l/p = ( l / r ) ( l / s ) + (1 - 1/r), 1/g = ( l / r ) ( l A ) , 

I /5 ' = r//>', and (69) becomes 

(71) \\Ti+iJ\\s è C|| |a~|| | , . ' | | / | | . . 
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Since Tz is an analytic family of operators of admissible growth on Cc
l satis

fying (70), (71), a theorem of Stein (see [15, Theorem 2; 20, p. 110]) implies 
that T = c(\/r)~lT1/r satisfies 

(72) | | f / | | t £ Cr|||Q~||WI/IU / € Cc\ 
It clearly suffices to prove (72), in general, for non-negative/, 0~. Since any 

non-negative function/ in I? is the limit a.e. of a sequence { fn] in Cc
l, which is 

bounded in I? by \\f\\v, the general validity of (72) follows from Fatou's 
Lemma. 

Remark 5. It does not seem unlikely that the preceding result on positive 
kernels can be proved without the use of singular integrals. The weaker result 

(73) \\Tj\\a^ C^IUirllUI/IU lovu>p'% 

which is [12, Lemma 7], follows from the Marcinkiewicz Interpolation Theorem, 
and the restricted weak type result 

(74) llî/IU g CIIMIUI/IU. 
If p = 1, this is nothing but a well known result about the fractional integral 

J > - y\~n/rf (y)dy. HP = r', \Tf (x)\ ±g C\\Qr(x, . ) l | r | | / | | r ' i , as a result of the 
duality between Z/œ and L7"1 (see [6; 7; 13]). It follows by the complex method 
of interpolation, that (74) is generally valid (see [2, § 13]). Suppose now 
u > p\ and let p0 = u' < p and pi = r' > p; then (73) follows from (74) for 
po, pi and the Marcinkiewicz Interpolation Theorem. 
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