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Inversion of the Radon Transform on the
Free Nilpotent Lie Group of Step Two
Jianxun He and Jinsen Xiao

Abstract. Let F2n,2 be the free nilpotent Lie group of step two on 2n generators, and let P denote the
affine automorphism group of F2n,2. In this article the theory of continuous wavelet transform on F2n,2

associated with P is developed, and then a type of radial wavelet is constructed. Secondly, the Radon
transform on F2n,2 is studied, and two equivalent characterizations of the range for Radon transform
are given. Several kinds of inversion Radon transform formulae are established. One is obtained
from the Euclidean Fourier transform; the others are from the group Fourier transform. By using
wavelet transforms we deduce an inversion formula of the Radon transform, which does not require
the smoothness of functions if the wavelet satisfies the differentiability property. In particular, if n = 1,
F2,2 is the 3-dimensional Heisenberg group H1, the inversion formula of the Radon transform is valid,
which is associated with the sub-Laplacian on F2,2. This result cannot be extended to the case n ≥ 2.

1 Introduction

In the past decades, the research of Radon transforms has made considerable progress
due to its wide applications in partial differential equations, X-ray technology, radio
astronomy and so on (see [10, 18]). We first recall some preliminaries of the Radon
transforms on the Euclidean space and of the Heisenberg group, respectively.

The case of Radon transform on the Euclidean space The Radon transform on Rn

is defined by

(1.1) R f (τ ) =

∫
τ

f (x)dmτ (x),

where τ may be parameterized by (θ, s) ∈ Σn−1×R so that τ = {x ∈ Rn : 〈x, θ〉 = s}
and mτ is the Euclidean measure on τ . Let δ be the Dirac delta function, then (1.1)
can be rewritten in the form

R f (θ, s) =

∫
Rn

f (x)δ
(

s− 〈x, θ〉
)

dx.

Since Radon obtained the inversion of the Radon transform in 1917, many different
inverse methods, such as Fourier inversion and convolution back-projection inver-
sion, have been developed. The wavelet is a useful tool that has been introduced to
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the inversion formula of Radon transforms in recent years. The first result in this area
is due to Holschneider who considered the Radon transform on the two-dimensional
plane (see [12]). Rubin extended to the cases of k-dimensional Radon transform [19].

The case of Radon transform on the Heisenberg group The Heisenberg group, de-
noted by Hn, is the most well-known example of a two-step nilpotent Lie group with
the underlying manifold Cn × R and the multiplication law (see [6, 22, 25])

(z, t)(z ′, t ′) =
(

z + z ′, t + t ′ − 1

2
Im zz̄ ′

)
.

The Radon transform on the Heisenberg group is called the Heisenberg Radon trans-
form, which is defined by

R f (z, t) =

∫
Cn

f
(

(z, t)(w, 0)
)

dw =

∫
Cn

f
(

w, t − 1

2
lm(z · w̄)

)
dw.

The hyperplane {(w, t − 1
2 lm(z · w̄)) : w ∈ Cn} can be written as{

(w, s) : s = t +
1

2
Re
(

(iz) · w̄
)}

,

so it is transversal to the last variable. Let δ2(t) be the Dirac delta function in the t
variable, then one has another version of the Heisenberg Radon transform:

R f (z, t) = f ∗ δ2(t).

In [7] Geller and Stein studied this equation and proved that the operator (∂/∂t)nR
can be extended to the space L2(Hn) of square integrable functions on Hn. Moreover,

‖(∂/∂t)nR f ‖2
2 = (4π)2n‖ f ‖2

2.

Strichartz [24] observed that this formula yields the inversion formula:

R−1 = (4π)−2n(∂/∂t)nR(∂/∂t)n.

In fact, the Heisenberg Radon transform is just a special case of the transversal Radon
transform on Euclidean space shown by [20] by Rubin. Also, by such relation an
inversion formula for the Heisenberg Radon transform was obtained. Through a
different method, called the wavelet transform defined in [14], another inversion is
established by He in [8]. Related works on the more general context of nilpotent Lie
groups and Siegel type Lie groups were studied by Felix [4], Nessibi and Trimèche
[16], and Peng and Zhang [17].

For the free nilpotent Lie group of step two on 2n generators denoted by F2n,2,
the related harmonic analysis and Radon transform were studied by Strichartz [24].
Inspired by this work, the best constant for the Friedrichs–Knapp–Stein inequality
on F2n,2 was discussed by Domokos and Franciullo [3]. For more general research on
free nilpotent Lie groups of step two, we refer the reader to [1, 5].
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We devote this paper to studying the inversion Radon transform on F2n,2. In Sec-
tion 2 we review and present some properties of the group Fourier transform associ-
ated with the Schrödinger representations. Moreover, we introduce a unitary repre-
sentation of the affine automorphism group of F2n,2. The direct sum decomposition
of L2(F2n,2) under such unitary representation allows us to define the continuous
wavelet transform and obtain the Calderón reproducing formula in Section 3. Also,
we give an example for the radial wavelet by which we can simplify the Calderón
reproducing formula. In Section 4 we study the inversion of the Radon transform
on the free nilpotent Lie group of step two. We introduce a Semyanistri–Lizorkin
type space, on which the Radon transform is a bijection. The inversion of Radon
transform are obtained in different ways. One is from the Euclidean Fourier trans-
form; another is from the group Fourier transform. We show that these descriptions
are equivalent. In this case the Plancherel measure is no longer a monomial but a
complicated homogeneous polynomial, so the proof for the equivalence of two de-
scriptions is different from that in [9]. In addition, if n = 1 we can deduce an inverse
Radon transform related with the sub-Laplacian operator. This result cannot be ex-
tended to the case n ≥ 2. In the last section we make use of the wavelet transform to
achieve a new inversion formula for the Radon transform on F2n,2. The differentia-
bility on f can be neglected if the wavelet function is smooth. Of course, an inversion
formula of the Radon transform related to the sub-Laplacian operator is valid only if
n = 1.

2 Free Nilpotent Lie Group of Step Two

Let Gn be the free nilpotent Lie algebra of two step (or the free two-step nilpotent
Lie algebra) with n generators. The definition used for the universal property can
be found in [13]. Roughly speaking, Gn is a two-step nilpotent Lie algebra with n
generators X1, . . . ,Xn, such that the vectors X1, . . . ,Xn, and X jk = [X j ,Xk]( j < k)
form a basis of the vector space Gn. Let V and Z be the vector spaces generated by the
families of vectors X1, . . . ,Xn, and X jk(1 ≤ j < k ≤ n), respectively; these families
become the canonical bases of V and Z. Thus Gn = V⊕ Z is a stratified algebra, and
Z is the center of the Lie algebra Gn. The simply connected nilpotent Lie group that
corresponds to Gn is called the free two-step nilpotent Lie group denoted by Fn.

Let Λ2(R2n) be the set of 2n × 2n skew-symmetric real matrices. For y, y ′ ∈
Λ2(R2n), the inner product of y and y ′ is given by

(2.1) y · y ′ =
1

2

∑
j,k

y jk y ′jk.

Here the factor 1/2 is present to compensate for the redundancy involved in using
both y jk and yk j as distinct coordinates, although y jk = −yk j . For x, x ′ ∈ R2n, we
can write x ∧ x ′ for the skew-symmetric matrix by the law

(2.2) (x ∧ x ′) jk = x jx
′
k − xkx ′j .

In this paper we consider the free nilpotent Lie group of step two on 2n generators,
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that is, F2n,2 = R2n ⊕ Λ2(R2n), which equipped with the group law

(x, y)(x ′, y ′) =
(

x + x ′, y + y ′ − 1

2
x ∧ x ′

)
.

It is easy to see that the dimension of F2n,2 = R2n⊕Λ2(R2n) is 2n+(2n2−n) = 2n2+n.
The homogeneous dimension is 2n + 2(2n2 − n) = 4n2. The vector fields

X j =
∂

∂x j
+

1

2

2n∑
k=1

xk
∂

∂y jk
, j = 1, · · · , 2n,

Y jk =
∂

∂y jk
, 1 ≤ j < k ≤ 2n

form a basis for the Lie algebra of left-invariant fields on F2n,2, and the sub-Laplacian
operator is

L = −
2n∑
j=1

X2
j

= −
( 2n∑

j=1

∂2

∂x2
j

+
2n∑
j=1

2n∑
k=1

xk
∂

∂x j

∂

∂y jk
+

1

4

2n∑
j=1

( 2n∑
k=1

xk
∂

∂y jk

) 2
)
.

(2.3)

We note that for n = 1, the group F2,2 is the 3-dimensional Heisenberg group H1,
but for n > 1 there are important differences between F2n,2 and Hn, especially arising
from the size of the vertical subspace of the Lie algebra spanned by the commutators.
From this point of view F2n,2 can be considered maximal and Hn minimal.

3 Fourier Analysis on F2n,2

The group Fourier transform on F2n,2 is similar to that of the Heisenberg group,
which is related to the so-called Schrödinger representation. Note that for any η ∈
Λ2(R2n), one has the canonical form

η =

n∑
j=1

λ ja j ∧ b j ,

where λ j ≥ 0 and {a1, · · · , an, b1, · · · , bn} is an orthonormal basis of R2n. It can be

verified that | det η|1/2
=
∏n

j=1 λ j .

Proposition 3.1

(i) For x, x ′,w,w ′ ∈ R2n, we have

(3.1) (x ∧ x ′) · (w ∧ w ′) = (x · w)(x ′ · w ′)− (x · w ′)(x ′ · w).
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(ii) For the skew-symmetric matrix η =
n∑

j=1
λ ja j ∧ b j , we have

(3.2) (x ∧ x ′) · η =

n∑
j=1

λ j

(
(x · a j)(x ′ · b j)− (x · b j)(x ′ · a j)

)
.

Proof By (2.1) and (2.2) we have

(x ∧ x ′) · (w ∧ w ′) =
1

2

∑
j,k

(x jx
′
k − xkx ′j)(w jw

′
k − wkw ′j)

=
1

2

∑
j,k

(x jx
′
kw jw

′
k − x jx

′
kwkw ′j − xkx ′jw jw

′
k + xkx ′jwkw ′j)

= (x · w)(x ′ · w ′)− (x · w ′)(x ′ · w).

Formula (3.2) can be easily obtained by substituting the canonical form of η into
(3.1).

Now let η ∈ Λ2(R2n), det η 6= 0. The Schrödinger representation πη is defined on
L2(Rn) by

πη(x, y)ϕ(ξ) = exp

(
2πi y · η + 2πi

n∑
j=1

λ jξ j(x · a j) + πi
n∑

j=1

λ j(x · a j)(x · b j)

)

× ϕ
(
ξ +

n∑
j=1

(x · b j)e j

)
,

where {e1, . . . , en} is a standard basis of Rn. By Proposition 3.1 and the group law of
F2n,2, we then obtain

πη(x, y)πη(x ′, y ′) = πη
(

(x, y)(x ′, y ′)
)
,

which indicates that πη is unitary. In addition, analogues to the proof of [25, Theo-
rem 1.2.1], we deduce that πη is irreducible.

Suppose that f ∈ L1(F2n,2). The Fourier transform of f is an operator-valued
function acting on L2(Rn) by

(3.3) f̂ (η)ϕ(ξ) =

∫
F2n,2

f (x, y)πη(x, y)ϕ(ξ)dxdy.

If we write πη(x) = πη(x, 0) and

f η(x) = F2 f (x, η) =

∫
Λ2

f (x, y) exp(2πi y · η)dy,
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then we can rewrite (3.3) as

f̂ (η) =

∫
R2n

f η(x)πη(x)dx = Wη( f η),

where Wη is the Weyl transform. By the same argument of the theory of Weyl trans-
forms on the Heisenberg group we have

(3.4) ‖ f η‖2
L2(R2n) = | det η|1/2‖ f̂ (η)‖2

HS.

From this identity we obtain the Plancherel formula

(3.5) ‖ f ‖2
L2(F2n,2) =

∫
Λ2

‖ f̂ (η)‖2
HS| det η|1/2dη

and the Parseval identity

〈 f , g〉L2(F2n,2) =

∫
Λ2

tr(ĝ(η)∗ f̂ (η))| det η|1/2dη,

where ĝ(η)∗ is the adjoint of ĝ(η), and tr is the trace of an operator. Moreover, we
have the inversion Fourier transform

f (x, y) =

∫
Λ2

tr
(

f̂ (η)π∗η (x, y)
)
| det η|1/2dη.

Let f ∗ g denote the convolution for f and g on F2n,2 by

f ∗ g(x, y) =

∫
F2n,2

f (x ′, y ′)g
(

(−x ′,−y ′)(x, y)
)

dx ′dy ′.

From the definition of the group Fourier transform we have

(3.6) ( f ∗ g)̂(η) = f̂ (η)ĝ(η).

Let O(2n) be the orthogonal group consisting of all 2n× 2n orthogonal matrices.
For u ∈ O(2n), we see that u(x ∧ x ′)u−1 = ux ∧ ux ′. Then the action

(x, y) 7→ (ux, uyu−1)

is an automorphism of F2n,2. The following proposition is useful here.

Proposition 3.2

(i) Let f̃ (x, y) = f (−x,−y), then ̂̃f (η) = f̂ (η)∗.

(ii) For ρ > 0, let fρ(x, y) = ρ−2n2

f
(

x√
ρ ,

y
ρ

)
, then f̂ρ(η) = f̂ (ρη).

(iii) For u ∈ O(2n), let fu(x, y) = f (u−1x, u−1 yu), then f̂u(η) = f̂ (u−1ηu).
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(iv) For u ∈ O(2n), ρ > 0, let

fρ,u(x, y) = ρ−2n2

f
( u−1x
√
ρ
,

u−1 yu

ρ

)
,

then f̂ρ,u(η) = f̂ (ρu−1ηu).

Let MF2n,2 denote the semi-direct product of F2n,2 and O(2n). Then MF2n,2 forms
a motion group endowed with the group law

(x, y, u)(x ′, y ′, u ′) = (x + ux ′, y + uy ′u−1 − 1

2
x ∧ ux ′, uu ′).

Strichartz in [24] used the “polar coordinate” to obtain the decomposition of
L2(F2n,2) into an integral of irreducible representations of MF2n,2. Now in the fol-
lowing, we will decompose L2(F2n,2) into the direct sum of the irreducible invari-
ant closed subspaces under the unitary representations of the affine automorphism
group.

For the free nilpotent Lie group F2n,2, we define the translation, dilation, and ro-
tation operators respectively by

T(x,y) : (x ′, y ′) 7→
(

x + x ′, y + y ′ − 1

2
x ∧ x ′

)
,

Tρ : (x, y) 7→ (
√
ρx, ρy), ρ > 0,

Tu : (x, y) 7→ (ux, uyu−1), u ∈ O(2n).

Write (x, y, ρ, u) for T(x,y)TρTu, and let

P =
{

(x, y, ρ, u) : (x, y) ∈ F2n,2, ρ > 0, u ∈ O(2n)
}
.

Then an element (x, y, ρ, u) ∈ P acts on F2n,2 by

(x, y, ρ, u)(x ′, y ′) =
(

x +
√
ρux ′, y + ρuy ′u−1 − 1

2
x ∧√ρux ′

)
.

Now the group law of P is given by

(x, y, ρ, u)(x ′, y ′, ρ ′, u ′) =
(

x +
√
ρux ′, y + ρuy ′u−1 − 1

2
x ∧√ρux ′, ρρ ′, uu ′

)
.

It is easy to see that P is a locally compact non-unimodular group with the

left and right Haar measures denoted by dml(x, y, ρ, u) = dxdydρdu/ρ2n2+1 and
dmr(x, y, ρ, u) = dxdydρdu/ρ, respectively. We now consider the unitary repre-
sentation U of P on L2(F2n,2) defined by

U (x, y, ρ, u) f (x ′, y ′) = ρ−n2

f
(

T−1
u T−1

ρ T−1
(x,y)(x ′, y ′)

)
= ρ−n2

f

(
u−1(x ′ − x)
√
ρ

,
u−1(y ′ − y + 1

2 x ∧ x ′)u

ρ

)
.
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Then by Proposition 3.2 we calculate that

(3.7)
(

U (x, y, ρ, u) f
)̂(η) = ρn2

πη(x, y) f̂u(ρη).

Let Z+ be the set of all nonnegative integers, and let α = (α1, α2, · · · , αn) ∈ Zn
+.

We choose the orthonormal basis in L2(Rn) to be the Hermite functions (see [6])

hα(ξ) =
n∏

j=1

21/4√
α j !

(
−1

2
√
π

)α j

eπξ
2
j

dα j

dξ
α j

j

(e−2πξ2
j ).

From [24, (6.8)] we find that the entry functions 〈πη(x, y)hα, hβ〉 as α, β ∈ Zn
+ give

a family of eigenfunctions for the sub-Laplacian defined by (2.3), namely

L〈πη(x, y)hα, hβ〉 =

(
2π

n∑
j=1

λ j(1 + 2αi)

)
〈πη(x, y)hα, hβ〉.

From this formula we then have

(3.8) L̂ f (η)hα =

(
2π

n∑
j=1

λ j(1 + 2αi)

)
f̂ (η)hα.

Notice that this case is similar to that of the Heisenberg group if and only if n = 1.
Now we consider the space Hl spanned by {hα : |α| = l}. It is clear that the

dimension of Hl is dl = (n + l− 1)!/((n− 1)!l!), which just equals the dimension of
Pl discussed in [23, p. 138]. Moreover, we have L2(Rn) =

⊕∞
l=0 Hl. Let Pl denote

the orthogonal projection operator from L2(Rn) to Hl. We define the operator Pl on
L2(F2n,2) in terms of the Fourier transform by

P̂l f (η) = f̂ (η)Pl

and the subspace Hl of L2(F2n,2) by

Hl = { f ∈ L2(F2n,2) : f̂ (η) = f̂ (η)Pl}.

By an argument analogous to [14, Theorem 1] we have the following theorem.

Theorem 3.3 Let Hl be defined as above. Then Hl is an irreducible invariant closed
subspace of L2(F2n,2) under the unitary representation U of P. Moreover, we have the
orthogonal direct sum decomposition L2(F2n,2) =

⊕∞
l=0 Hl.

4 Continuous Wavelet Transforms

In this section we will develop the theory of continuous wavelet transforms on F2n,2

and then obtain the Calderón reproducing formula. In addition, we shall give an
example for radial wavelets on this group.
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Suppose φ ∈ Hl, not identically zero. If there exists a constant Cφ such that for all
η ∈ Λ2(R2n),

Cφ =
1

dl

∫ ∞
0
‖φ̂(ρη)‖2

HS
dρ

ρ
<∞,

then we say that φ is an admissible wavelet, and write φ ∈ AWl. Now suppose that
φ ∈ AWl, f ∈ Hl. The continuous wavelet transform Wφ of f with respect to φ is
defined by

Wφ f (x, y, ρ, u) =
〈

f ,U (x, y, ρ, u)φ
〉

L2(F2n,2)
.

Theorem 4.1 Suppose that φ ∈ AWl, f , g ∈ Hl. Then we have

〈Wφ f ,Wφg〉L2(P,dml) = Cφ〈 f , g〉L2(F2n,2).

In particular, we obtain

(4.1) ‖Wφ f ‖L2(P,dml) = C1/2
φ ‖ f ‖L2(F2n,2).

Proof Let φ ∈ AWl, f ∈ Hl. It follows from (3.7) that∫
F2n,2

〈
f ,U (x, y, ρ, u)φ

〉
L2(F2n,2)

πη(x, y)dxdy = ρn2

f̂ (η)φ̂u(ρη)∗.

By the Parseval formula, we have∫
P

Wφ f (x, y, ρ, u)Wφg(x, y, ρ, u)dml(x, y, ρ, u)

=

∫
O(2n)

∫ ∞
0

(∫
Λ2

tr
(

ĝ(η)∗ f̂ (η)φ̂u(ρη)∗φ̂u(ρη)
)
| det η|1/2dη

)
dρdu
ρ

=

∫ ∞
0

{∫
Λ2

∑
|α|=l

〈(∫
O(2n)

φ̂u(ρη)∗φ̂u(ρη)du

)
hα, f̂ (η)∗ĝ(η)hα

〉∣∣ det η
∣∣ 1/2

dη

}
dρ
ρ
.

Writing ∫
O(2n)

φ̂u(ρη)∗φ̂u(ρη)du =

∫
O(2n)

̂̃
φu ∗ φu(ρη)du = ψ̂(ρη),

where

ψ(x, y) =

∫
O(2n)

φ̃u ∗ φu(x, y)du,

it is clear that for all u ∈ O(2n), ψu(x, y) = ψ(x, y). Moreover, we have ψ ∈ Hl since

φ ∈ Hl. It follows that ψ̂(η) = ψ̂(η)Pl. Then by Schur’s lemma (see [2, p .78]), we
have ∫

O(2n)
φ̂u(ρη)∗φ̂u(ρη)du =

1

dl
tr
(
φ̂(ρη)∗φ̂(ρη)

)
Pl =

1

dl
‖φ̂(ρη)‖2

HSPl.
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Therefore,

〈Wφ f ,Wφg〉L2(P,dml) =

∫
Λ2

∫ ∞
0

1

dl
‖φ̂(ρη)‖2

HS
dρ

ρ
tr
(

ĝ(η)∗ f̂ (η)
) ∣∣ det η

∣∣ 1/2
dη

= Cφ〈 f , g〉L2(F2n,2).

Setting f = g then gives (4.1).

Now let S (F2n,2) be the Schwartz space that coincides with the Schwartz space on
R2n × Rn(2n−1). Then we have the following theorem.

Theorem 4.2 Let φ ∈ AWl and f ∈ Hl. Then the Calderón reproducing formula

(4.2) f (x ′, y ′) =
1

Cφ

∫
P

Wφ f (x, y, ρ, u)U (x, y, ρ, u)φ(x ′, y ′)dml(x, y, ρ, u)

holds in the L2-sense. Moreover, if f ∈ Hl ∩ S (F2n,2), then formula (4.2) is valid
pointwise.

From Theorem 4.2 we see that the reproducing formula holds for functions in Hl,
since the wavelets are restricted to the subspace Hl. We claim that these restrictions
can be removed. Now suppose that φ ∈ L2(F2n,2); we write φ = Σl∈Z+φl, where
φl ∈ Hl. If there exists a non-zero constant Cφ, which is independent of l such that
for all η ∈ Λ2(R2n),

(4.3)
1

dl

∫ ∞
0
‖φ̂l(ρη)‖2

HS
dρ

ρ
= Cφ <∞,

then we write φ ∈ AW. The continuous wavelet transform for f ∈ L2(F2n,2) with
respect to φ is defined by

Wφ f (x, y, ρ, u) =
〈

f ,U (x, y, ρ, u)φ
〉

L2(F2n,2)
.

Theorem 4.3 Suppose that φ ∈ AW and f ∈ L2(F2n,2). Then we have

‖Wφ f ‖2
L2(P,dml)

= Cφ‖ f ‖2
L2(F2n,2).

Moreover, the Calderón reproducing formula

(4.4) f (x ′, y ′) =
1

Cφ

∫
P

Wφ f (x, y, ρ, u)U (x, y, ρ, u)φ(x ′, y ′)dml(x, y, ρ, u)

holds in the L2-sense. If f ∈ S (F2n,2), then formula (4.4) holds pointwise.

Proof For f ∈ L2(F2n,2), by Theorem 3.3 we can write f = Σ fl, where fl ∈ Hl.
From Theorem 4.1 together with (4.3) we have

‖Wφ f ‖2
L2(P,dml)

=

∞∑
l=1

Cφ‖ fl‖2
L2(F2n,2) = Cφ‖ f ‖2

L2(F2n,2).

Then by the same argument as Theorem 4.2, we obtain (4.4).
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Now we are going to construct a type of radial wavelets satisfying condition (4.3).
The Calderón reproducing formula can be simplified by using the radial wavelets. We
will use c to denote the positive constant, which is not necessarily the same at each
occurrence.

Suppose that f ∈ L2(F2n,2). Similar to [24, (6.17)], we can write the Plancherel
formula (3.5) in the integration of the “polar coordinate” form

(4.5) ‖ f ‖2
L2(F2n,2) = c

∫
O(n)

∫
S

∥∥ f̂ (Σλ ja j ∧ b j)
∥∥ 2

HS

n∏
j=1
λ j

×
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλnd(a, b),

where d(a, b) represents the Haar measure on O(n), S denotes the simplicial cone
0 < λ1 < · · · < λn in Rn, and the constant c depends on the normalization of Haar
measure.

Let h satisfy

(4.6)

∫
S

∣∣h(Πn
j=1λ j

) ∣∣ 2 n∏
j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn <∞

and

(4.7) Ch =

∫ ∞
0

∣∣h(ρ)
∣∣ 2 dρ

ρ
<∞.

We set

(4.8) φ̂h(η) =

∞∑
l=0

h
(

d2n
l | det η|1/2

)
Pl.

We claim that φh ∈ AW. Noticing that
∑∞

l=0 d−(4n2−1)
l <∞, together with (4.5) and

(4.6), we have

‖φh‖2
L2(F2n,2) = c

∫
S

∞∑
l=0

dl

∣∣h(d2n
l Πn

j=1λ j

) ∣∣ 2 n∏
j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn

= c
∞∑
l=0

d−(4n2−1)
l

∫
S

∣∣h(Πn
j=1λ j

) ∣∣ 2 n∏
j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn

= c

∫
S

∣∣h(Πn
j=1λ j

) ∣∣ 2 n∏
j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn <∞.

Now write φh =
∑∞

l=0 φh,l, where φh,l ∈ Hl. Then

φ̂h,l(η) = h
(

d2n
l | det η|1/2

)
Pl.
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Thus we have

Cφh =
1

dl

∫ ∞
0
‖φ̂h,l(ρη)‖2

HS
dρ

ρ
=

∫ ∞
0

∣∣h(d2n
l ρ

n| det η|1/2)
∣∣ 2 dρ

ρ

=

∫ ∞
0

∣∣h(ρ ′)
∣∣ 2 dρ ′

ρ ′
= Ch.

Note that the radial wavelet defined above is independent of the action of rotation
operators, that is, (φh)u(x, y) = φh(x, y). For brevity we write Wφh f (x, y, ρ) and
U (x, y, ρ) instead of Wφh f (x, y, ρ, 1) and U (x, y, ρ, 1), respectively.

Theorem 4.4 Suppose the radial wavelet φh defined above and f ∈ L2(F2n,2). Then
we have ∫

F2n,2

∫ ∞
0
|Wφh f (x, y, ρ)|2 dxdydρ

ρ2n2+1
= Ch‖ f ‖2

L2(F2n,2).

Moreover, the Calderón reproducing formula

(4.9) f (x ′, y ′) =
1

Ch

∫
F2n,2

∫ ∞
0

Wφh f (x, y, ρ)U (x, y, ρ)φ(x ′, y ′)
dxdydρ

ρ2n2+1

holds in the L2-sense. If f ∈ S (F2n,2), then formula (4.9) holds pointwise.

In the following we shall give a concrete example of radial wavelets on F2n,2.

Example 4.5 Let λ = (λ1, . . . , λn) ∈ S and η = Σλ ja j ∧ b j . We define

(4.10) h(| det η|1/2) =

{
| det η|1/2 exp{−| det η|1/2}, λ1 > 2,

0, others.

Then φh defined by (4.8) belongs to AW .

In order to prove that φh defined by (4.8) belongs to AW , we need to show that
h(| det η|1/2) satisfies (4.6) and (4.7). First we claim that if 2 < λ1 < · · · < λn, then
Πn

j=1λ j ≥ Σn
j=1λ j . In fact, we set λk = 2 + αk, αk ≥ 0, k = 1, 2, . . . , n. If n = 2, we

can verify the inequality directly: λ1λ2 = (2 +α1)(2 +α2) ≥ 4 + (α1 +α2) = λ1 +λ2.
By the induction we have the desired result. Substituting (4.10) into (4.6), we have∫

S

∣∣h(Πn
j=1λ j

) ∣∣ 2 n∏
j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn

=

∫
S

∣∣∣∣ n∏
j=1
λ j exp{−Πn

j=1λ j}
∣∣∣∣ 2 n∏

j=1
λ j
∏
j<k

(λ2
j − λ2

k)2dλ1 · · · dλn

≤
∫

S
exp{−2Πn

j=1λ j}
n∏

j=1
λ3

j

n∏
j=1
λ

4( j−1)
j dλ1 · · · dλn

≤ c

∫
S

exp{−2Σn
j=1λ j}

n∏
j=1
λ

4 j−1
j dλ1 · · · dλn

≤ c

∫
Rn

exp{−2Σn
j=1λ j}

n∏
j=1
λ

4 j−1
j dλ1 · · · dλn = c

n∏
j=1

Γ(4 j) <∞.
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On the other hand, we can see that

Ch = c

∫ ∞
0

ρ2n det η exp{−2ρn| det η|1/2}dρ

ρ
= cΓ(1) <∞.

This implies that φh ∈ AW .
Liu and Peng [14] constructed admissible wavelets on the Heisenberg group, and

gave the explicit expressions of wavelet functions by using group Fourier transforms.
In present case, the explicit expression can be calculated in a similar way. We omit
the details.

5 The Radon Transform on F2n,2

The Radon transform R on F2n,2 is defined by

(5.1) R f (x, y) =

∫
R2n

f
(

(x, y)(x ′, 0)
)

dx ′ =

∫
R2n

f
(

x ′, y − 1

2
x ∧ x ′

)
dx ′.

The hyperplane {(x ′, y − 1
2 x ∧ x ′) : x ′ ∈ R2n} can be written as{

(x ′, y ′) : y ′jk = y jk +
1

2
(x jx

′
k − xkx ′j), 1 ≤ j < k ≤ 2n

}
.

Clearly, when n = 1, (5.1) is just the Radon transform on the Heisenberg group H1.
Strichartz [24] obtained two inversion formulas for the inversion Radon trans-

form by means of the Euclidean Fourier transform. However, he did not indicate on
which spaces these formula hold. One such formula is

R−1 = F−1 JF2,

where F is the Euclidean Fourier transform for all variables and J is an operator
defined by

J f (x, y) = f (−2y−1x, y).

Another is

(5.2) R−1 = (−1)n(4π)−2n Pf(∂/∂y)R Pf(∂/∂y),

where Pf denotes the Pfaffian, which will be discussed later. He also pointed out that
even if f ∈ S (F2n,2), the Radon transform R( f ) may not rapidly decrease at infinity.
In this section we will find a subspace of S (F2n,2) on which the Radon transform is
a bijection.

Let ys = Π1≤ j<k≤2n y
s jk

jk , where s ∈ Z2n2−n
+ , we define the subspace S∗(F2n,2) of

S (F2n,2) by

S∗(F2n,2) =
{

f ∈ S (F2n,2) :

∫
Λ2

f (x, y)ysdy = 0 for all x ∈ R2n, s ∈ Z2n2−n
+

}
.
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Write

∂s
y f (x, 0) =

∂|s|

Π1≤ j<k≤2n∂y
s jk

jk

f (x, y)|y=0

and define another subspace S ∗(F2n,2) by

S ∗(F2n,2) =
{

f ∈ S (F2n,2) : ∂s
y f (x, 0) = 0 for all x ∈ R2n, s ∈ Z2n2−n

+

}
.

By argument analogous to [20, Proposition 5.1], we also find that f ∈ S∗(F2n,2)
if and only if F2( f ) ∈ S ∗(F2n,2), and F2 is an isomorphism from S∗(F2n,2)
onto S ∗(F2n,2). The spaces S ∗(F2n,2) and S∗(F2n,2) are regarded as Semyanistyi–
Lizonkin type spaces that have many applications (see [16, 18, 21]).

Let f ∈ S∗(F2n,2). Similar to [20, Theorem 2], we conclude that the Radon trans-
form R is a bijection on S∗(F2n,2). We also have the following theorem.

Theorem 5.1 Let f ∈ S∗(F2n,2). Then R−1 f = F−1 JF2 f holds pointwise.

Now we give another proof of the formula (5.2) by using of the group Fourier
transform on F2n,2. The next theorem shows the relation between the Radon trans-
form and the group Fourier transform.

Theorem 5.2 Suppose f ∈ L2(F2n,2). Then we have

R̂ f (η)hα(ξ) = (−1)|α|| det η|− 1
2 f̂ (η)hα(ξ).

Proof Note that the Radon transform of f can be written as

R f (x, y) = f ∗ δ2(x, y),

where δ2 is the Direct delta function with respect to the second variable. By (3.6) we
have

R̂ f (η)hα(ξ) = f̂ (η)δ̂2(η)hα(ξ).

Here,

δ̂2(η)hα(ξ) =

∫
R2n

hα

(
ξ +

n∑
j=1

(x · b j)e j

)

× exp

(
2πi
( n∑

j=1

λ jξ j(x · a j) +
1

2

n∑
j=1

λ j(x · a j)(x · b j)
))

dx

=

∫
R2n

hα

(
ξ +

n∑
j=1

(x · b j)e j

)

× exp

(
2πi
(
ξ +

n∑
j=1

(x · b j)e j

)
· 1

2

n∑
j=1

λ j(x · a j)e j

)

× exp

(
2πi
( 1

2

n∑
j=1

λ j(x · a j)e j · ξ
))

dx.
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In view of the Euclidean Fourier transform and its inversion, we get

δ̂2(η)hα(ξ) =
n∏

j=1
λ jhα(−ξ).

By the definition of the Hermite function we have hα(−ξ) = (−1)|α|hα(ξ). As de-
sired, we finish the proof of this theorem.

Now for y ∈ Λ2(R2n), the Pfaffian of y is defined by

Pf(y) =
1

2nn!

∑
σ∈S2n

sgn(σ)yσ(1)σ(2) yσ(3)σ(4) · · · yσ(n−1)σ(n),

where S2n is the set of all permutations on 2n letters, and sgn(σ) is the signature of
σ. Indeed, the determinant of y can be written as the square of a polynomial in the
entries of y, that is det y = Pf(y)2. Thus the determinant of a real skew-symmetric
matrix is always non-negative. Suppose that A is an 2n× 2n matrix, then one has

(5.3) Pf(At yA) = Pf(AyAt ) = det A Pf(y),

where At denotes the transpose of A. Moveover, for ρ > 0,

(5.4) Pf(ρy) = ρn Pf(y).

For more properties of the skew-symmetric matrix and the Pfaffian, we refer the
reader to [11, 15].

Now we write
∂

∂y
=

(
∂

∂y jk

)
.

A direct computation shows that

F2

(
(2π)−1i∂/∂y jk f

)
(x, η) = η jkF2( f )(x, η).

It follows that

F2

(
(2π)n−2n2

Pf
(

i∂/∂y
)

f
)

(x, η) = Pf(η)F2( f )(x, η).

Set L = (2π)n−2n2

Pf
(

i∂/∂y
)
, then

(5.5) L̂ f (η) = Pf(η) f̂ (η).

Notice that if f ∈ S (F2n,2), then Lk f ∈ L2(F2n,2) for all k ∈ Z+. This means that

(5.6)

∫
Λ2

‖ f̂ (η)‖2
HS

∣∣ det η
∣∣ k+ 1

2 dη <∞ for all k ∈ Z+.
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Now let Rk be the k-th Radon transform. By Theorem 5.2 we have

(5.7) ‖R̂k f (η)‖2
HS

∣∣ det η
∣∣ k

= ‖ f̂ (η)‖2
HS.

By (5.6) it is natural to define the space SR(F2n,2) by

SR(F2n,2) =

{
f ∈ S (F2n,2) :

∫
Λ2

‖ f̂ (η)‖2
HS

∣∣ det η
∣∣−k+ 1

2 dη <∞ for all k ∈ Z+

}
.

Obviously, the Radon transform R on SR(F2n,2) is a bijection. Moreover, by Theo-
rem 5.2 and (5.5) we have(

(LR)2 f
)̂(η)hα(ξ) = f̂ (η)hα(ξ),

from which we deduce that R−1 f = LRL f holds pointwise in SR(F2n,2).
Now for µ ∈ R, by (5.5) we have

(5.8) L̂µ f (η) = Pf(η)µ f̂ (η).

It is clear that LµRk is well defined for all µ ∈ R and k ∈ Z+ on SR(F2n,2). Then we
have an extension of (5.2).

Theorem 5.3 Suppose f ∈ SR(F2n,2). Then for any k ∈ Z+, we have

(5.9) ‖LkRk f ‖L2(F2n,2) = ‖ f ‖L2(F2n,2).

Moreover, for µ, ν ∈ R and µ + ν = k + 1 ∈ 2Z+, then

(5.10) R−1 f = LµRkLν f

holds pointwise.

Proof Formula (5.9) follows from (5.7) and (5.8). Formula (5.10) can be easily de-
rived from (5.9).

The following theorem will indicate that our two treatments about the Radon
transform are essentially equivalent.

Theorem 5.4 SR(F2n,2) = S∗(F2n,2).

Proof Let η = (η jk) ∈ Λ2(R2n). We say that η → 0 if all the η jk → 0, and the
symbol (η0

jk) represents that all the elements except η jk ( j 6= k) are equal to zero.
From (3.4) we know that

‖ f̂ (η)‖2
HS = | det η|−1/2‖ f η‖2

L2(R2n).

If f ∈ SR(F2n,2), then for all k ∈ Z+,

lim
detη→0

| det η|−k

∫
R2n

|F2 f (x, η)|2dx = 0.
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In particular, we have

lim
η→0
| det η|−k

∫
R2n

|F2 f (x, η)|2dx = 0,

which implies that∫
R2n

|F2 f (x, 0)|2dx = lim
η→0

∫
R2n

|F2 f (x, η)|2dx = 0.

Therefore we deduce∫
R2n

|∂η jkF2 f (x, 0)|2dx = lim
η jk→0

η−2
jk

∫
R2n

∣∣F2 f
(

x, (η0
jk)
) ∣∣ 2

dx = 0.

By induction, we obtain that for all s ∈ Z2n2−n
+ ,∫

R2n

|∂s
ηF2 f (x, 0)|2dx = 0.

This proves that F2 f ∈ S ∗(F2n,2), and equivalently f ∈ S∗(F2n,2).
Conversely, suppose that f ∈ S∗(F2n,2), i.e., F2 f ∈ S ∗(F2n,2). Then we get for

all x ∈ R2n,

lim
η→0

∫
R2n

|F2 f (x, η)|2dx =

∫
R2n

|F2 f (x, 0)|2dx = 0.

Then we have

lim
η→0
| det η|−1

∫
R2n

|F2 f (x, η)|2dx =

lim
η→0

∫
R2n

∣∣∣∣ ∑
1≤ j<k≤2n

η jk

| det η|1/2
∂η jkF2 f

(
x, (θη jk)

) ∣∣∣∣ 2

dx = 0,

where 0 < θ < 1. Inductively, for all k ∈ Z+,

lim
η→0
| det η|−k

∫
R2n

|F2 f (x, η)|2dx = 0.

Hence f ∈ SR(F2n,2). This completes the proof.

Now we are going to find another inversion formula for the Radon transform
on the group F2,2, which is homogeneous to the Heisenberg group H1. First, Theo-
rem 5.2 tells us that for f ∈ L2(F2,2), we have

(5.11) R̂ f (η)hl(ξ) = (−1)lλ−1 f̂ (η)hl(ξ),

where hl(ξ) denotes a one dimensional Hermite function. On the other hand, in

Theorem 3.3 we have proved that L2(F2,2) =
∞⊕
l=0

Hl. Then given a function f ∈ Hl,

we have by (3.8) that

(5.12) L̂ f (η)hl = 2πλ(1 + 2l) f̂ (η)hl.
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Theorem 5.5 Let f ∈ Hl ∩SR(F2,2). Then for any k ∈ Z+ we have

‖LkRk( f )‖2
L2(F2,2) = Cl,k‖ f ‖2

L2(F2,2),

where Cl,k = (2π(1 + 2l))2k. Moreover, for µ, ν ∈ R and µ + ν = k + 1 ∈ 2Z+, then

R−1( f ) = C−1
l,k+1 L

µRkLν( f ).

Proof It is easy to see that LkRk( f ) is well defined for all k ∈ Z+, since f ∈ Hl ∩
SR(F2,2). By (5.11) and (5.12) we get

L̂kRk( f )(η)hl = (−1)kl(2π(1 + 2l))k f̂ (η)hl.

Then

‖LkRk( f )‖2
L2(F2,2) =

∫
Λ2

‖(2π(1 + 2l))k f̂ (η)‖2
HS| det η|1/2dη

= (2π(1 + 2l))2k‖ f ‖2
L2(F2,2).

This indicates that for µ + ν = k + 1 ∈ 2Z+,

R−1( f ) = C−1
l,k+1 L

µRkLν( f ).

The desired result is proved.

From expression (3.8) of eigenvalues for sub-Laplacian L we can see that Theo-
rem 5.5 will not hold on the group F2n,2 when n ≥ 2.

6 Inverse Radon Transform by Using Wavelets

Note that the inversion formulas of the Radon transform in Section 5 require the
smoothness of functions. In this section we will establish an inversion formula of the
Radon transform in L2-sense by using the inverse wavelet transform. This formula
does not require the smoothness of functions. Instead, we will use smooth wavelets.

Let

L2
] (F2n,2) =

{
f ∈ L2(F2n,2) :

∫
Λ2

‖ f̂ (η)‖2
HS| det η|−1/2dη <∞

}
,

L2
\ (F2n,2) =

{
f ∈ L2(F2n,2) :

∫
Λ2

‖ f̂ (η)‖2
HS| det η|3/2dη <∞

}
.

It is easy to see that if f ∈ L2
] (F2n,2), then R f ∈ L2(F2n,2) and if f ∈ L2

\ (F2n,2), then
R−1 f ∈ L2(F2n,2). Suppose that φ ∈ AW

⋂
SR(F2n,2) and f ∈ L2

] (F2n,2). Then
WLµRkLνφR f is well defined for all µ + ν = k + 1 ∈ 2Z+, and we have the following
theorem.
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Theorem 6.1 Let µ + ν = k + 1 ∈ 2Z+. Suppose φ ∈ AW ∩ SR(F2n,2) and f ∈
L2
] (F2n,2). Then WLµRkLνφR f = ρnWφ f .

Proof The wavelet transform can be written in the form

Wφ f (x, y, ρ, u) = ρn2

f ∗ φ̃ρ,u(x, y).

By a direct computation we have∫
F2n,2

Wφ f (x, y, ρ, u)πη(x, y)dxdy = ρn2

f̂ (η)φ̂ρ,u(η)∗.

Note that if u ∈ O(2n), then u−1 = ut and det u = ±1. Since µ + ν = k + 1 is an
even number, by Proposition 3.2 together with (5.3) and (5.4), we then have(

WLµRkLνφR f
)̂(η) = ρn2

R̂ f (η)(LµRkLνφ)ρ,û(η)∗

= Pf(ρu−1ηu)k+1ρn2

R̂ f (η)R̂kφ (ρu−1ηu)∗

= ρn det(u)k+1| det(u)|−k ρn2

f̂ (η)φ̂ (ρu−1ηu)∗

= ρn

∫
F2n,2

Wφ f (x, y, ρ, u)πη(x, y)dxdy,

from which we deduce the desired result.

By this theorem together with the Calderón reproducing formula (4.4), we have
the following theorem.

Theorem 6.2 Let µ + ν = k + 1 ∈ 2Z+. Suppose φ ∈ AW ∩ SR(F2n,2) and f ∈
Hl ∩ L2

] (F2n,2). Then

(6.1) f (x ′, y ′) = C−1
φ

∫
P

WLµRkLνφR f (x, y, ρ, u)U (x, y, ρ, u)φ(x ′, y ′)
dxdydρdu

ρ2n2+n+1

in the L2-sense. Furthermore, if f ∈ S (F2n,2) ∩ L2
] (F2n,2), then (6.1) holds pointwise.

Equivalently, if f ∈ L2
\ (F2n,2), then

(6.2) R−1 f (x ′, y ′) =

C−1
φ

∫
P

WLµRkLνφ f (x, y, ρ, u)U (x, y, ρ, u)φ(x ′, y ′)
dxdydρdu

ρ2n2+n+1

in the L2-sense. Furthermore, if f ∈ S (F2n,2) ∩ L2
\ (F2n,2), then (6.2) holds pointwise.

Suppose that h is given by (4.10) and φh is defined by (4.8). It is easy to verify that
φh ∈ SR(F2n,2). Then by Theorem 4.4, we have the following theorem.
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Theorem 6.3 Let µ+ν = k + 1 ∈ 2Z+. Suppose h is given by (4.10) and φh is defined
by (4.8). Then for f ∈ L2

] (F2n,2),

(6.3) f (x ′, y ′) =

C−1
h

∫
F2n,2

∫ ∞
0

WLµRkLνφh
R f (x, y, ρ)U (x, y, ρ)φh(x ′, y ′)

dxdydρ

ρ2n2+n+1

in the L2-sense. Furthermore, if f ∈ S (F2n,2) ∩ L2
] (F2n,2), then (6.3) holds pointwise.

Equivalently, if f ∈ L2
\ (F2n,2), then

(6.4) R−1 f (x ′, y ′) =

C−1
h

∫
F2n,2

∫ ∞
0

WLµRkLνφh
f (x, y, ρ)U (x, y, ρ)φh(x ′, y ′)

dxdydρ

ρ2n2+n+1

in the L2-sense. Furthermore, if f ∈ S (F2n,2) ∩ L2
\ (F2n,2), then (6.4) holds pointwise.

In fact, the wavelet transform on the group F2,2 can be defined in the obvious way.
Then we have the Calderón reproducing formula

f (x ′, y ′) =
1

Cφ

∫
F2,2

∫ ∞
0

Wφ f (x, y, ρ)U (x, y, ρ)φ(x ′, y ′)
dxdydρ

ρ3
,

which is a special case of the formula (4.2). Moreover, by Theorem 5.5 we have the
following inversion of the Radon transform associated with the sub-Laplacian.

Theorem 6.4 Let µ + ν = k + 1 ∈ 2Z+. Suppose φ ∈ AWl ∩ SR(F2,2) and f ∈
Hl ∩ L2

] (F2,2). Then

(6.5) f (x ′, y ′) =

C−1
φ C−1

l,k+1

∫
F2,2

∫ ∞
0

WLµRkLνφR f (x, y, ρ)U (x, y, ρ)φ(x ′, y ′)
dxdydρ

ρ4

in the L2-sense. Furthermore, if f ∈ Hl∩S (F2,2)∩L2
] (F2,2), then (6.5) holds pointwise.

Equivalently, if f ∈ Hl ∩ L2
\ (F2,2), then

(6.6) R−1 f (x ′, y ′) =

C−1
φ C−1

l,k+1

∫
F2,2

∫ ∞
0

WLµRkLνφ f (x, y, ρ)U (x, y, ρ)φ(x ′, y ′)
dxdydρ

ρ4

in the L2-sense. Furthermore, if f ∈ Hl∩S (F2,2)∩L2
\ (F2,2), then (6.6) holds pointwise.
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