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Discrete Series of Classical Groups
Yuanli Zhang

Abstract. Let Gn be the split classical groups Sp(2n), SO(2n + 1) and SO(2n) defined over a p-adic field F or
the quasi-split classical groups U (n, n) and U (n + 1, n) with respect to a quadratic extension E/F. We prove
the self-duality of unitary supercuspidal data of standard Levi subgroups of Gn(F) which give discrete series
representations of Gn(F).

1 Introduction

Let F be a non-archimedean local field of characteristic zero. Let Gn be a classical split
group Sp(2n), SO(2n + 1), SO(2n) defined over F, or a unitary group U (n, n),
U (n + 1, n) with respect to a quadratic extension E/F. We fix a Borel subgroup B defined
over F. For a standard parabolic subgroup P of Gn defined over F with P = MN as its Levi
decomposition, we have

M � Hm1 × · · · × Hmr × Gm0 ,

r∑
i=1

mi + m0 = n.

Here Hmi = GLmi when Gn is a split classical group, and Hmi = ResE/F GLmi when Gn is a
unitary group. We allow the possibility that m0 = 0, in which case we let Gm0 = 1. Note
Hmi (F) � GLmi (E), when Gn is a unitary group. Suppose that

τ = ρ1 ⊗ · · · ⊗ ρr ⊗ σ

is a unitary supercuspidal representation of M(F). When m0 = 0, we let σ = {1}.
In this paper we study the problem of when τ is special with respect to Gn. By τ being

special with respect to Gn, we mean that there exists a λ ∈ a∗ such that the parabolically
induced representation I(λ, τ ) has a discrete series composition factor. The notation a∗ will
be explained in the next section. In general, for a connected reductive group defined over
F, Silberger [13] gave a criterion for this question. What we will do here is to give a more
concrete criterion on the specialty of τ , for the classical groups Gn by applying Silberger’s
result. Let m(ρ) be the number of the times with which ρ appears among {ρ1, . . . , ρr}. The
following is our result.

Theorem Let

M � Hm1 × · · · × Hmr × Gm0 ,

r∑
i=1

mi + m0 = n
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be the Levi factor of a standard parabolic subgroup of Gn, and

τ = ρ1 ⊗ · · · ⊗ ρk ⊗ σ

be a unitary supercuspidal representation of M(F). Then τ is special with respect to Gn if and
only if

(1) ρ̃i � ρi , (resp. ˜̄ρi � ρi , for unitary groups), for 1 ≤ i ≤ r, and
(2) if m(ρi) = 1, then ρi ⊗ σ is special with respect to Gmi +m0 .

There have been several approaches to classifying discrete series representations of classi-
cal groups (e.g. [14], [6]). A similar result was obtained by Tadic for Sp(2n) and SO(2n + 1)
in [14], and by Ban for SO(2n) in [1]. Casselman’s criterion in [3] for discrete series repre-
sentations was applied in their proof, which is a different approach from ours. Here we shall
pursue the original approach of Harish-Chandra and Silberger [11], [12], [13]. From the
construction theory of admissible representations of a connected reductive p-adic group
(see [3]), every irreducible admissible representation is isomorphic to a composition factor
of the parabolically induced representation from a supercuspidal representation of a Levi
factor of a standard parabolic subgroup. Moreover every supercuspidal representation is a
twist of a unitary supercuspidal representation by a element λ of a∗. So now the problem of
classifying the discrete representations of a classical group Gn(F) is to find all λ ∈ a∗ such
that the induced representation indeed has a discrete series representation as a composition
factor of it. Note that the cardinality of the set of the candidates λ who may give a discrete
series representation is only finite. So theoretically, Casselman’s criterion on discrete series
representations can be applied to test which λ indeed gives a discrete series representation.
We are planning to pursue this as our future work. Moreover, part (1) of the Theorem is
among the ingredients necessary for the proof of the holomorphy of certain L-functions
[9] attached to tempered representations of classical groups which is given in [4] (Theo-
rem 4.1 of [4]) and one significance of this paper is to provide a proof of this following
Harish-Chandra’s work. Recently Zhang [15], using the results here, proved some results
about the support of a supercuspidal representation of Gn(F) in the general linear group.

I would like to thank F. Shahidi for suggesting this problem to me, for many helpful con-
versations on this work, and for his support and help. Also I would like to thank D. Gold-
berg and A. Roche for useful conversations. This work was done during my stay in the
Department of Mathematics, Purdue University. Here I would like to thank the Depart-
ment of Mathematics for its hospitality. Meanwhile, I would like to thank the referee for
carefully reading this paper.

2 Silberger’s Criterion

In this section, we recall Silberger’s criterion in [13] on the specialty of a unitary supercus-
pidal representation.

Let G be a connected reductive quasi-split group defined over a p-adic field F, and G(F)
be the group of the F-rational points of G. We fix a Borel subgroup B = TU of G defined
over F, where T is a maximal torus of G and U is the uniponent radical of B. Let Φ be
the F-roots of G with respect to a maximal F-split subtorus Ao contained in T. We denote
by Φ+ the set of positive roots of Φ with respect to B, and ∆ the set of simple roots of
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it. Now any standard parabolic subgroup G defined over F with respect to B (i.e., the one
containing B) is of the form P = MN with M the centralizer of a subtorus A of Ao and N
the uniponent radical of P. Let X(A) be the abelian group of F-rational characters of A, i.e.,
the morphisms of A to the multiplicative group Gm which are defined over F. Then one
defines

a∗ = X(A)⊗Z R,

and denote by a∗C the complexification of a∗.
For a given tempered representation τ of M(F), one can associate a function µ(ν, τ ) on

a∗C, which is called the Plancherel measure. See [11] for this. Let
∑

(G,A) denote the set
of the roots of A in G. Its elements can be identified with the elements of Φ which do not
vanish on A modulo the restriction to A. Let

∑
r(G,A) be the reduced roots of

∑
(G,A). In

general,
∑

r(G,A) may not be a root system, but it generates a∗/z∗, where z∗ = X(Z)⊗Z R
and Z is the connected component, where the identity element lies, of the center of G. We
call the dimension of A/Z which is also the dimension of a∗/z∗, the rank of

∑
r(G,A).

For β ∈
∑

r(G,A), let Aβ be the maximal subtorus contained in the kernel of β, and Mβ

be the centralizer of Aβ in G. Then M(N ∩Mβ) is a maximal parabolic subgroup of Mβ

over F with its Levi factor M. Then for this rank one case, we have the Plancherel measure
µβ(ν, τ ) associated to these data.

Suppose that τ is a unitary supercuspidal representation of M(F). We say τ is special
with respect to G, if there is a λ ∈ a∗ perpendicular to z∗, such that the induced repre-
sentation IG

P (λ, τ ) has a discrete series representation as a composition factor. When P is a
maximal standard parabolic subgroup of G, let β be the unique simple root in N . Then we
know that τ is special if and only if µβ(λ, τ ) vanishes at zero, and that if τ is special, then
there is a unique positive λ ∈ a∗ such that I(λ, τ ) has a discrete series composition factor.

For a given β ∈
∑

r(G,A), we say β is special, if µβ(ν, τ ) vanishes at zero. Let
∑ ′ ′

(τ ) be

the set of all special roots in
∑

r(G,A). Observe that
∑ ′ ′

(τ ) is a root system in the space

spanned by the elements of
∑ ′ ′

(τ ). Then Silberger’s result says that τ is special if and only
if there exist enough special roots. We record the his result in the following theorem.

Theorem 2.1 (Silberger, [13]) τ is special if and only if there exist r linear independent spe-
cial roots, where r is the rank of

∑
r(G,A).

The proof of this theorem is based on a result in [11] and by exhibiting a λ ∈ a∗ which
gives a discrete series subquotient. Such a particular λ used by Silberger corresponds to the

set of simple roots of
∑ ′ ′

(τ ). As Silberger remarked in his paper, there is a serious question
that if every discrete series representation comes from one of these λ corresponding to the

set of simple roots in
∑ ′ ′

(τ ). For general linear groups, it does from Berstein’s result on
the classification of discrete series representations of GLn(F).

3 The Special Roots

From now on, we let G = Gn be a split classical group Sp(2n), SO(2n + 1), SO(2n) defined
over F, or the unitary group U (n, n) or U (n + 1, n) with respect to a quadratic extension
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E/F. Let P = MN be a standard parabolic subgroup of Gn defined over F, with its Levi
factor M. In this section we first study

∑
r(G,A), as well as the Levi embedding of M into

Mβ for every β ∈
∑

r(G,A) and determine the specialty of the root β.
We call the roots in

∑
r(G,A) which are restrictions of simple roots in∆ simple roots of∑

r(G,A), and use
∑o

r (G,A) for the set of simple roots of
∑

r(G,A). Some times later we
may identify

∑o
r (G,A) with a subset of ∆, instead of saying “the restriction of a subset of

∆”. Let

∆ = {α1, α2, . . . , αn}

indexed as in the corresponding Dynkin diagram. Suppose that P = Pθ corresponds to the
subset

θ = ∆− {αn1 , αn2 , . . . , αnr}, with ni < n j for 1 ≤ i < j ≤ r.

Let βi be the restriction of αni on A, 1 ≤ i ≤ r. Then

Σo
r (G,A) = {β1, β2, . . . , βr},

and the rank of
∑

r(G,A) is r.
In this section we always assume that βr �= αn−1 when Gn = SO(2n). The situation of

βr = αn−1 and Gn = SO(2n) can be deduced to the situation here. This will be explained
in the end of Section 5. Now we assume

M � Hm1 × · · · ×Hmr × Gm0 .

Here Hm = GLm when Gn is a split classical group, and Hm = ResE/F GLm when Gn is a
unitary group with respect to E/F.

To apply Silberger’s criterion, we need to study the linear relations among the elements
of
∑

r(P,A). For simplicity, we define the following notations. Set

β ′i = 2(βi + · · · + βr−1) + βr, 1 ≤ i ≤ r − 1

β ′ ′i = 2(βi + · · · + βr−2) + βr−1 + βr, 1 ≤ i ≤ r − 2

βi, j = βi + βi+1 + · · · + β j , 1 ≤ i < j ≤ r

βi, j,r = βi + · · · + β j−2 + βr, 1 ≤ i < j ≤ r − 2

βi, j,r−1,r = βi + · · · + β j + βr−1 + βr, 1 ≤ i < j ≤ r − 2

β ′i, j = βi + βi+1 + · · · + β j−1 + 2(β j + · · · + βr), 1 ≤ i < j ≤ r

β ′i, j,r = βi + βi+1 + · · · + β j−1 + 2(β j + · · · + βr−1) + βr, 1 ≤ i < j ≤ r − 1

β ′i, j,r−1,r = βi + · · · + β j−1 + 2(β j + · · · + βr−2) + βr−1 + βr, 1 ≤ i < j ≤ r − 2.

When Gn = Sp(2n), SO(2n + 1), SO(2n),Φ is of the type Cn, Bn, Dn, respectively. When
Gn = U (n, n), the unrestricted root system Φ̃ is of the type 2A2n−1, and the F-root system
Φ is of the type Cn. When Gn = U (n + 1, n), the unrestricted root system Φ̃ is of the type
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2A2n, and the F-root system Φ is of the type BCn which is not a reduced root system, the
reduced roots Φr of Φ is of the type Bn. Since all the roots we will consider are reduced F-
roots, it is enough to only consider the situations of Gn = Sp(2n) or SO(2n + 1) or SO(2n).
Actually, in the rest of this paper, we will read τ g−1 and ρ̃ as τ ḡ−1 and ˜̄ρ, respectively for the
situation of unitary groups, in the all conclusions and their proofs in this paper. Here τ g is
the transpose of g with respect to the second diagonal, and ḡ is the conjugation of g under
the action of the nontrivial element of the Galois group of E/F.

Lemma 3.1

(1) When Gn = SO(2n + 1), or Gn = Sp(2n) and βr �= αn, or Gn = SO(2n) and βr �= αn

and βr−1 �= αn−1, then we have

Σr(P,A) = {βi ; 1 ≤ i ≤ r} ∪ {βi, j ; 1 ≤ i < j ≤ r} ∪ {β ′i, j ; 1 ≤ i < j ≤ r}.

(2) When Gn = Sp(2n) and βr = αn, we have

Σr(P,A) = {βi ; 1 ≤ i ≤ r} ∪ {βi, j ; 1 ≤ i < j ≤ r}

∪ {β ′i, j,r ; 1 ≤ i < j ≤ r − 1} ∪ {β ′i ; 1 ≤ i ≤ r − 1}.

(3) When Gn = SO(2n) and βr = αn and βr−1 = αn−1, we have

Σr(P,A) = {βi ; 1 ≤ i ≤ r}

∪ {βi, j ; 1 ≤ i < j ≤ r, (i, j) �= (r − 1, r)} ∪ {βr−1,r ; mr−1 > 1}

∪ {βi,r−2,r ; 1 ≤ i < r − 2} ∪ {β ′i, j,r−1,r ; 1 ≤ i < j ≤ r − 2}

∪ {β ′ ′i ; 1 ≤ i ≤ r − 2,mi > 1}.

(4) When Gn = SO(2n) and βr = αn and βr−1 �= αn−1, we have

Σr(P,A) = {βi ; 1 ≤ i ≤ r} ∪ {βi, j ; 1 ≤ i < j ≤ r}

∪ {β ′i, j,r ; 1 ≤ i < j ≤ r − 1} ∪ {β ′i ; 1 ≤ i ≤ r − 1,mi > 1}.

Proof We compute all the positive roots of Φr which do not vanish on A, and look at their
restriction on A. Then we use the tables in [2] to get the lemma.

For each β ∈
∑

r(P,A) we can compute Aβ and Mβ = ZGn (Aβ). Then by comparing
M and Mβ , we can see the following lemmas on the embedding of M(F) as a maximal
Levi into Mβ(F), as long as we fix a certain form defining Gn (see [5]). Remember that we
assumed in this section that βr �= αn−1 when Gn = SO(2n).

Lemma 3.2 Let β ∈
∑

r(P,A).

(1) If β = βi with 1 ≤ i ≤ r − 1, then β corresponds to GLmi +mi+1 and its maximal Levi
GLmi ×GLmi+1 with the embedding

(gi , gi+1) 
→

(
gi

gi+1

)
.
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(2) If β = βi, j with 1 ≤ i < j ≤ r − 1, then β corresponds to GLmi +m j+1 and its maximal
Levi GLmi ×GLm j+1 with the embedding

(gi, g j) 
→

(
gi

g j+1

)
.

(3) If β = β ′i, j with 1 ≤ i < j ≤ r, then β corresponds to GLmi +m j and its maximal Levi
GLmi ×GLm j with the embedding

(gi , g j) 
→

(
gi

τ g−1
j

)
.

Lemma 3.3 Let β = βr.

(1) If Gn �= SO(2n) and βr �= αn, or Gn = SO(2n) and βr �= αn and βn−1 �= αn−1, then β
corresponds to Gmr +m0 and its maximal Levi GLmr ×Gm0 with the embedding

(gr, g0) 
→


gr

g0
τ g−1

r


 .

(2) If Gn �= SO(2n) and βr = αn, or Gn = SO(2n) and βr = αn and βr−1 �= αn−1, then β
corresponds to Gmr and its maximal Levi GLmr with the embedding

gr 
→




(
gr

τ g−1
r

)
, for Gn �= SO(2n + 1)


gr

1
τ g−1

r


 , for Gn = SO(2n + 1).

(3) If Gn = SO(2n) and (βr−1, βr) = (αn−1, αn), then β corresponds to GLmr−1+mr , (here
mr = 1), and its maximal Levi GLmr−1 ×GLmr with the embedding

(gr−1, gr) 
→

(
gr−1

g−1
r

)
.

Lemma 3.4 Let β = βi,r, 1 ≤ i ≤ r − 1.

(1) If Gn �= SO(2n) and βr �= αn, then β corresponds to Gmi +m0 and its Levi GLmi ×Gm0

with the embedding

(gi, g0) 
→


gi

g0
τ g−1

i


 .
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(2) If Gn = Sp(2n) and βr = αn, or Gn = SO(2n) with βr = αn and βr−1 �= αn−1, then β
corresponds to GLmi +mr and its Levi GLmi ×GLmr with the embedding

(gi, gr) 
→

(
gi

τg−1
r

)
.

(3) If Gn = SO(2n + 1) and βr = αn, then β corresponds Gmi and its Levi GLmi with the
embedding

gr 
→


gi

1
τ g−1

i


 .

(4) Suppose that Gn = SO(2n) and (βr−1, βr) = (αn−1, αn). Then for i, 1 ≤ i ≤ r − 2, β
corresponds to GLmi +mr−1 and its Levi GLmi ×GLmr−1 with the embedding

(gi, gr−1) 
→

(
gi

τ g−1
r−1

)
.

For i = r− 1 and mr−1 > 1, β corresponds to Gmr−1 and its Levi GLmr−1 with the embedding

gr−1 
→

(
gr−1

τ g−1
r−1

)
.

Lemma 3.5 Let Gn = SO(2n) and (βr−1, βr) = (αn−1, αn).

(1) If β = βi,r−2,r and 1 ≤ i ≤ r − 2, then β corresponds to GLmi +mr and its Levi
GLmi ×GLmr (here mr = 1) with the embedding

(gi , gr) 
→

(
gi

τ g−1
r

)
.

(2) If β = β ′i, j,r−1,r and 1 ≤ i < j ≤ r − 2, then β corresponds to GLmi +m j and its Levi
GLmi ×GLm j with the embedding

(gi, g j) 
→

(
gi

τ g−1
j

)
.

(3) If β = β ′ ′i and mi > 1, 1 ≤ i ≤ r− 2, then β corresponds to Gmi and its Levi GLmi with
the embedding

gi 
→

(
gi

τ g−1
i

)
.

Lemma 3.6 Let Gn = SO(2n) and βr = αn and βr−1 �= αn−1.
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(1) If β = β ′i, j,r , 1 ≤ i < j ≤ r−1, then β corresponds to GLmi +m j and its Levi GLmi ×GLm j

with the embedding

(gi , g j) 
→

(
gi

τ g−1
j

)
.

(2) If β = β ′i and mi > 1, 1 ≤ i ≤ r − 1, then β corresponds to Gmi and its Levi GLmi with
the embedding

gi 
→

(
gi

τ g−1
i

)
.

Suppose that

τ = ρ1 ⊗ · · · ⊗ ρr ⊗ σ

where each ρi is a unitary supercuspidal representation of Hmi (F) and σ is a unitary super-
cuspidal representation of Gm0 (F). By the lemmas above and the known result on discrete
series representations of general linear groups, we have the following propositions.

Proposition 3.1

(1) If β = βi and 1 ≤ i ≤ r − 1, then β is special if and only if ρi � ρi+1.
(2) If β = βi, j and 1 ≤ i < j ≤ r − 1, then β is special if and only if ρi � ρ j+1.
(3) If β = β ′i, j and 1 ≤ i < j ≤ r − 1, then β is special if and only if ρi � ρ̃ j .

Proposition 3.2 Let β = βr, or βi,r.

(1) Suppose that Gn �= SO(2n) and βr �= αn, or Gn = SO(2n) and βr �= αn and βr−1 �=
βn−1. Then βr (resp. βi,r) is special if and only if ρr ⊗ σ (resp. ρi ⊗ σ) is special with
respect to Gmr +m0 (resp. Gmi +m0 ).

(2) Suppose that Gn �= SO(2n) and βr = αn, or Gn = SO(2n) and βr = αn and βr−1 �=
αn−1. Then βr is special if and only if ρr is special with respect to Gmr ; βi,r is special if and
only if ρi � ρ̃r when Gn = Sp(2n) or SO(2n); and βi,r is special if and only if ρi is special
with respect to Gmi when Gn = SO(2n + 1).

Proposition 3.3 Suppose that Gn = Sp(2n) and βr = αn or Gn = SO(2n) and βr = αn

and βr−1 �= αn−1. Then

(1) β ′i, j,r, 1 ≤ i < j ≤ r − 1, is special if and only if ρi � ρ̃ j ,
(2) β ′i (if Gn = SO(2n) then mi > 1), 1 ≤ i ≤ n − 1, is special if and only if ρi is special

with respect to Gmi .

Proposition 3.4 Let Gn = SO(2n) and (βr−1, βr) = (αn−1, αn). (In this case, mr = 1.)

(1) βi,r−2,r, 1 ≤ i ≤ r − 2, is special if and only if ρi � ρ̃r.
(2) β ′i, j,r−1,r, 1 ≤ i < j ≤ r − 2, is special if and only if ρi � ρ̃ j .
(3) β ′ ′i with mi > 1, 1 ≤ i ≤ r − 2 is special if and only if ρi is special with respect to Gmi .
(4) βi,r, 1 ≤ i ≤ r − 2, is special if and only if ρi � ρ̃r−1.
(5) βr−1,r with mr−1 > 1 is special if and only if ρr−1 is special with respect to Gmr−1 .
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4 The Proof of Theorem when m0 �= 0

In this section, we assume

M � Hm1 × · · · × Hmr × Gm0 ,

r∑
i=1

mi + m0 = n,

with m0 �= 0. This is equivalent to that βr �= αn for Gn �= SO(2n), and βr �= αn, αn−1 for
Gn = SO(2n).

We first study two simple cases when mi = m j = m for any 1 ≤ i, j ≤ r. The general
situation will be reduced to these cases. We need an easy lemma on the ramification of a
supercuspidal representation of a maximal Levi of Gn(F) with respect to Gn(F). Let τ be an
irreducible admissible representation of M(F), then we say that τ is ramified with respect
to Gn, if there is a non-trivial element w in the Weyl group W (G,A) such that w fixes τ .

Lemma 4.1 Let M � Hm×Gm0 with n = m+m0, and τ = ρ⊗σ be a unitary supercuspidal
representation of M(F). Then τ is ramified with respect to Gn, if and only if

(1) ρ̃ � ρ, when Gn �= SO(2n), or Gn = SO(2n) and m is even.
(2) ρ̃ � ρ and s(σ) � σ, when Gn = SO(2n) and m is odd. Here s is the automorphism of

SO(2m) determined by the element in O(2n)(F)


Im−1

1
1

Im−1


 .

Proof Let w0 be the longest element of the Weyl group W (G,Ao) modulo the Weyl group
W (M,A). When Gn �= SO(2n) or Gn = SO(2n) and m even, w0(ρ ⊗ σ) = ρ̃ ⊗ σ. So τ is
ramified if and only if ρ̃ � ρ. When Gn = SO(2n) and m odd, w0(ρ⊗σ) = ρ̃⊗ s(σ), where
s is as in the Lemma. So τ is ramified with respect to Gn if and only if ρ̃ � ρ and s(σ) � σ.

Remark Let τ be as in the last lemma. Then the lemma implies that for all cases, if τ is
special with respect to Gn, then ρ̃ � ρ.

Proposition 4.1 Let

τ =

r︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ⊗σ

be an irreducible unitary supercuspidal representation of M(F). Then the Theorem is true
for τ .

Proof When r = 1, M is a maximal Levi of Gn. So by the remark above, we see ρ̃ � ρ.
Hence Theorem is true for τ .
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Suppose r > 1. Suppose that τ is special. If ρ̃ �� ρ, then by Propositions 3.1 and 3.2 we
see

Σ
′′

(τ ) = {βi ; 1 ≤ i ≤ r − 1} ∪ {βi, j ; 1 ≤ i < j ≤ r − 1}.

So the root system Σ
′ ′

(τ ) is of the type Ar−1, hence the maximal number of linear inde-
pendent elements of Σ

′ ′
(τ ) is r − 1, not r. This contradicts with the assumption that τ is

special. So ρ̃ � ρ. Now we suppose ρ̃ � ρ. From Proposition 3.1, we always have

{βi ; 1 ≤ i ≤ r − 1} ∪ {βi, j ; 1 ≤ i < j ≤ r − 1} ⊂ Σ
′ ′

(τ ).

Since r > 1, β ′r−1,r ∈ Σr(P,A). By Proposition 3.2, ρ̃ � ρ implies β ′r−1,r ∈ Σ
′ ′

(τ ).
Therefore

{βi ; 1 ≤ i ≤ r − 1} ∪ {β ′r−1,r}

is a set of r linear independent elements in Σ
′′

(τ ). Note r is the rank of Σr(P,A). So τ is
special with respect to Gn.

Remark Let τ be as in Proposition 4.1. Suppose τ is special. From the proof of Proposi-
tion 4.1, we see that

Σ
′ ′

(τ ) = Σr(P,A)

if ρ⊗ σ is special with respect to Gm1+m0 , and

Σ
′ ′

(τ ) = Σr(P,A)− {βr, βi,r; 1 ≤ i ≤ r − 1},

otherwise. When τ is not special, Σ
′′

(τ ) is of the type Ar−1.

Proposition 4.2 Let

τ =

k︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ⊗

k ′︷ ︸︸ ︷
ρ̃⊗ · · · ⊗ ρ̃⊗σ

be an irreducible unitary supercuspidal representation of M(F), k + k ′ = r. Then the Theorem
is true for τ and Gn.

Proof When r = 1, it is clear.
Assume r > 1. Let

β̃k = β
′
k,r.

We always have

{βi ; 1 ≤ i ≤ r − 1, i �= k} ∪ {β̃k} ⊂ Σ
′ ′(τ ).
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Suppose that τ is special. If ρ̃ �� ρ, then neither ρ⊗ σ is special with respect to Gm+m0 and
nor is ρ⊗ ρ̃ special with respect to GL2m. So by Propositions 3.1, 3.2, we see

Σ
′ ′

(τ ) = {βi ; 1 ≤ i ≤ r − 1, i �= k}

∪ {βi, j ; 1 ≤ i < j ≤ k− 1 or k + 1 ≤ i < j ≤ r − 1}

∪ {β ′i, j ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ r}.

We claim that every element β ∈ Σ
′ ′

(τ ) is a linear combination of the r − 1 elements of
the subset S of Σ

′′
(τ ), where

S = {βi ; 1 ≤ i ≤ r − 1, i �= k} ∪ {β̃k}.

Indeed, if

β ∈ {βi, j ; 1 ≤ i < j ≤ k− 1 or k + 1 ≤ i < j ≤ r − 1},

β is a linear combination of the elements of

{βi ; 1 ≤ i ≤ r − 1, i �= k}.

If

β = β ′i, j ∈ {β
′
i, j ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ r},

then

β = βi + · · · + βk−1 + β̃k + β j + · · · + βr−1.

Therefore the maximal number of linear independent elements of Σ
′ ′

(τ ) is r − 1. This is
not possible, since we assumed τ is special. So we must have ρ̃ � ρ. The sufficiency of the
proposition was proved in Proposition 4.1.

We now state the following result for our further study of a unitary supercuspidal rep-
resentation of M(F) to be special with respect to Gn.

Proposition 4.3 For w ∈W (G,Ao) such that w(P) is still a standard parabolic subgroup of
G, then τ is special with respect to G if and only if w(τ ) is special with respect to G.

Proof For λ ∈ a∗, since the induced representations I(wλ,wτ ) and I(λ, τ ) have the same
composition factors (see [3]), the proposition is true.

From this proposition, when Gn is not SO(2n) we may assume that

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗σ,
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with ρi �= ρ j , ρ̃ j for i �= j. For G = SO(2n), since a single sign change is not in W (Gn), we
can not always assume τ has the form above. In this situation we can assume

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗

k ′1︷ ︸︸ ︷
ρ̃1 ⊗ · · · ⊗ ρ̃1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗

k ′t︷ ︸︸ ︷
ρ̃t ⊗ · · · ⊗ ρ̃t ⊗σ,

with ρi �= ρ j , ρ̃ j for i �= j. Set

τi =

ki︷ ︸︸ ︷
ρi ⊗ · · · ⊗ ρi ⊗σ,

τ ′i =

ki︷ ︸︸ ︷
ρi ⊗ · · · ⊗ ρi ⊗

k ′i︷ ︸︸ ︷
ρ̃i ⊗ · · · ⊗ ρ̃i ⊗σ

for 1 ≤ i ≤ t .
For each τi , we let

∑
r(Pi ,Ai) be the reduced roots of Gmi ki +m0 with respect to Ai . Here

Pi is the standard parabolic subgroup of Gmi ki +m0 with

ki︷ ︸︸ ︷
GLmi × · · · × GLmi ×Gm0

as its Levi factor which is the centralizer of a torus Ai . Then we can embed
∑

r(Pi ,Ai) into∑
r(P,A) such that for each β ∈

∑
r(Pi ,Ai) is special with respect to Gmi ki +m0 and τi if and

only if the image of β is special with respect to Gn and τ . We use
∑ ′ ′

(τi) for the set of

special roots of τi with respect to Gmi ki +m0 , also for the image of
∑ ′ ′

(τi) in
∑ ′ ′

(τ ). Similar
notations and explanations are applied to each τ ′i , for 1 ≤ i ≤ t .

Proposition 4.4 Suppose

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗σ

is a unitary supercuspidal representation of M(F) with ρi �� ρ j , ρ̃ j for i �= j, 1 ≤ i, j ≤ r.
Then τ is special with respect to Gn if and only if every τi is special with respect to Gmi ki +m0 , for
1 ≤ i ≤ t.

Proof Since ρi �� ρ j , ρ̃ j for i �= j, it follows from Propositions 3.1 and 3.2 that

Σ
′ ′

(τ ) = Σ
′ ′

(τ1) ∪ · · · ∪ Σ
′ ′

(τt ).

Note that every Σ
′ ′

(τi) has at most ki linear independent elements, and that k1 + · · · +
kt = r. So we see that τ is special with respect to Gn implies each τi is special with respect
to Gmi ki +m0 for 1 ≤ i ≤ t .

Conversely, suppose that every τi is special with respect to Gmi ki +m0 for 1 ≤ i ≤ t . Let

β̃k1+···+ki =

{
βk1+···+ki ,r if ki = 1

β ′k1+···+ki−1,k1+···+ki
if ki > 1.
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for 1 ≤ i ≤ t . From the remark of Proposition 4.1 we see that for each i, β̃k1+···+ki ∈ Σ
′ ′

(τi).
And it is clear that

{βi ; 1 ≤ i ≤ r} − {βk1+···+ki ; 1 ≤ i ≤ t} ⊂ Σ
′ ′

(τ ).

For every i, 1 ≤ i ≤ t , we put

Si = {βk1+···+ki−1+1, βk1+···+ki−1+2, . . . , βk1+···+ki−1, β̃k1+···+ki}.

S = S1 ∪ · · · ∪ St .

It is easy to see that S is a subset of Σ
′ ′

(τ ) consisting of r linear independent elements.
Hence τ is special with respect to Gn.

Proposition 4.5 Let

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗

k ′1︷ ︸︸ ︷
ρ̃1 ⊗ · · · ⊗ ρ̃1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗

k ′t︷ ︸︸ ︷
ρ̃t ⊗ · · · ⊗ ρ̃t ⊗σ

be a unitary supercuspidal representation of M(F) with ρi �� ρ j , ρ̃ j for i �= j, 1 ≤ i, j ≤ t.
Then τ is special with respect to Gn if and only if each τ ′i is special with respect to Gmi (ki +k ′i )+m0

.

Proof The proof of the necessary conclusion is similar with that of the last proposition.
Suppose that every τ ′i is special with respect to Gmi (ki +k ′i )+m0

. Then ρ̃i � ρi for 1 ≤ i ≤ t ,
from Proposition 4.2. Proposition 4.4 gives the specialty of τ with respect to Gn.

Now we have proved the Theorem when m0 �= 0, by combining all the propositions in
this section together.

5 The Proof of Theorem, when m0 = 0

In this section we assume m0 = 0, i.e.,

M � GLm1 × · · · × GLmr .

When Gn �= SO(2n), this assumption is equivalent to βr = αn. When Gn = SO(2n), it is
equivalent to βr = αn or αn−1.

As we did in the last section, we also need a lemma on the ramification of a supercuspidal
representation of the Levi of a standard maximal parabolic subgroup of Gn.

Lemma 5.1 Let ρ be a supercuspidal representation of M(F) = GLn(F). Then when Gn �=
SO(2n), ρ is ramified with respect to Gn if and only if ρ̃ � ρ; when Gn = SO(2n), ρ is ramified
with respect to Gn if and only if n is even and ρ̃ � ρ.
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Proof When Gn �= SO(2n) or Gn = SO(2n) with n even, the Weyl group W (G,A) =
{1,w} and w(ρ) � ρ̃. So in this case, ρ is ramified with respect to Gn if and only if ρ̃ � ρ.
When Gn = SO(2n) with n odd, W (G,A) = 1. So in this case, ρ is unramified with respect
to Gn.

Remark Let ρ be as in the lemma above. Then ρ is special with respect to Gn implies
ρ̃ � ρ.

We first consider the situation that Gn �= SO(2n), or Gn = SO(2n) and βr = αn.
When Gn = SO(2n) and βr = αn, there are two cases to be treated separately. One is that
βr−1 �= αn−1, the other one is that βr−1 = αn−1.

Now we suppose that Gn �= SO(2n), or Gn = SO(2n) and βr = αn and βr−1 �= αn−1.

Proposition 5.1 Assume βr = αn, and additionally βr−1 �= αn−1 when Gn = SO(2n). Let

τ �

r︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ

be a unitary supercuspidal representation of M(F). (Now mi = m, for 1 ≤ i ≤ r.) Then the
Theorem is true for τ and Gn.

Proof When r = 1, it is obvious from the remark of Lemma 5.1.
Assume r > 1. As we see before,

{βi ; 1 ≤ i ≤ r − 1} ⊂ Σ
′ ′

(τ ).

It is obvious that ρ̃ �� ρ implies that ρ is not special with respect to Gm, from the remark of
Lemma 5.1. If ρ �� ρ̃, then by Propositions 3.1, 3.2, 3.3, we have

Σ
′′

(τ ) = {βi ; 1 ≤ i ≤ r − 1} ∪ {βi, j ; 1 ≤ i < j ≤ r − 1}.

Hence the rank of Σ
′ ′

(τ ) is r − 1, not r. So τ is not special with respect to Gn.
Suppose ρ � ρ̃. If ρ is special with respect to Gm, then Σ

′ ′
(τ ) = Σr(P,A), hence τ is

special with respect to Gn. If ρ is not special with respect to Gm, then

Σ
′ ′

(τ ) = Σr(P,A)− {βr, β
′
i ; 1 ≤ i ≤ r − 1}

for Gn �= SO(2n + 1), and

Σ
′ ′

(τ ) = Σr(P,A)− {βr, βi,r; 1 ≤ i ≤ r − 1}

for Gn = SO(2n + 1). Therefore

β1, . . . , βr−1, βr−1,r

are r linear independent elements in Σ
′ ′

(τ ) for Gn �= SO(2n + 1), and

β1, . . . , βr−1, β
′
r−1,r

are r linear independent elements in Σ
′ ′

(τ ) for Gn = SO(2n + 1). So τ is special with
respect to Gn.
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Proposition 5.2 Let Gn = SO(2n) and βr = αn, βr−1 �= αn−1. Suppose

τ =

k︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ⊗

k ′︷ ︸︸ ︷
ρ̃⊗ · · · ⊗ ρ̃,

where k + k ′ = r, is a unitary supercuspidal representation of M(F). Then the Theorem is true
for τ and Gn.

Proof If ρ̃ � ρ, then the conclusion is clear from the last proposition. Suppose ρ̃ �� ρ.
Then

Σ
′ ′

(τ ) = {βi ; 1 ≤ i ≤ r − 1, i �= k}

∪ {βi, j ; 1 ≤ i < j ≤ k− 1 or k + 1 ≤ i < j ≤ r − 1}

∪ {βi,r ; 1 ≤ i ≤ k}

∪ {β ′i, j,r ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ r − 1}.

Let

β̃k = βk,r.

Then

β1, . . . , βk−1, β̃k, βk+1, . . . , βr−1

are r − 1 elements in Σ
′ ′

(τ ) such that every element in Σ
′ ′

(τ ) is a linear combination of
these r − 1 elements. Indeed,

βi,r = βi + · · · + βk−1 + β̃k, 1 ≤ i ≤ k

β ′i, j,r = βi + · · · + βk−1 + β̃k + β j + · · · + βr−1, 1 ≤ i ≤ k, k + 1 ≤ j ≤ r − 1.

Therefore τ is not special.

Now suppose

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ,

or

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗

k ′1︷ ︸︸ ︷
ρ̃1 ⊗ · · · ⊗ ρ̃1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗

k ′t︷ ︸︸ ︷
ρ̃t ⊗ · · · ⊗ ρ̃t .

We define τi and τ ′i similarly as we did in the last section.
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Proposition 5.3 Let Gn �= SO(2n) and βr = αn, or Gn = SO(2n) with βr = αn and
βr−1 = αn−1.

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt

with ρ �� ρ j , ρ̃ j for i �= j. Then τ is special with respect to Gn if and only if every τi is special
with respect to Gmi ki , for 1 ≤ i ≤ t.

Proof For Gn = SO(2n + 1), the proof is the same as that of Proposition 4.4. For Gn =
Sp(2n) or SO(2n), the proof is the same as that of Proposition 4.4 after we make the fol-
lowing changes in the proof of Proposition 4.4. For i with 1 ≤ i ≤ t − 1, let

β̃k1+···+ki =

{
β ′k1+···+ki

if ki = 1

β ′k1+···+ki−1,k1+···+ki ,r
if ki > 1.

For i = t , k1 + · · · + kt = r. We let

β̃r =

{
βr, if kt = 1

βr−1,r if kt > 1.

Proposition 5.4 Let Gn = SO(2n), and βr = αn, βr−1 �= αn−1. Suppose

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗

k ′1︷ ︸︸ ︷
ρ̃1 ⊗ · · · ⊗ ρ̃1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗

k ′t︷ ︸︸ ︷
ρ̃t ⊗ · · · ⊗ ρ̃t .

Then τ is special with respect to Gn if and only if each τ ′i is special with respect to Gmi (ki +k ′i ),
for 1 ≤ i ≤ t.

Proof Since ρi �� ρ j , ρ̃ j for i �= j, we see the necessary conclusion as we did before.
Suppose that every τ ′i is special with respect to Gmi (ki +k ′i ), then ρ̃i � ρi for 1 ≤ i ≤ t

from Proposition 5.2. Therefore by Proposition 5.3, τ is special with respect to Gn.

Putting all the propositions above in this section together, we have proved the Theorem
for the case that Gn �= SO(2n) and βr = αn, or Gn = SO(2n) and βr = αn and βr−1 �=
αn−1.

Now we consider the situation that Gn = SO(2n) and (βr−1, βr) = (αn−1, αn). For

M � GLm1 × · · · × GLmr

corresponding to {β1, . . . , βr−1, βr}, if there is some i, 1 ≤ i ≤ r such that mi > 1, then
our study can be reduced to the situation that βr = αn and βr−1 �= αn−1, by Proposi-
tion 4.3. Therefore what we have to consider here is the situation that P = MN is the fixed
Borel subgroup of SO(2n). So we assume that we are in such a situation:

M �

n︷ ︸︸ ︷
GL1× · · · × GL1,

τ � ρ1 ⊗ · · · ⊗ ρn,

https://doi.org/10.4153/CJM-2000-046-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-046-7


Discrete Series of Classical Groups 1117

with each ρi a unitary character of GL1(F), for 1 ≤ i ≤ n. Now

Σr(P,A) = {βi ; 1 ≤ i ≤ n}

∪ {βi, j ; 1 ≤ i < j ≤ n, (i, j) �= (r − 1, r)}

∪ {βi,n−2,n; 1 ≤ i < j ≤ n− 2}

∪ {β ′i, j,n−1,n; 1 ≤ i < j ≤ n− 2}.

Proposition 5.5 Let Gn = SO(2n), n > 1, P be the Borel subgroup of Gn and

τ �

n︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ

be a unitary character of M(F). Then the Theorem is true for τ and Gn.

Proof It is obvious that

{βi ; 1 ≤ i ≤ n− 1} ∪ {βi, j ; 1 ≤ i < j ≤ n− 1} ⊂ Σ
′ ′

(τ ).

And βn ∈ Σ
′ ′

(τ ) if and only if ρ2 = 1, if and only if
∑ ′ ′

(τ ) =
∑

r(P,A).

Proposition 5.6 Let Gn = SO(2n), n > 1, P be the Borel subgroup of Gn and

τ �

k︷ ︸︸ ︷
ρ⊗ · · · ⊗ ρ⊗

k ′︷ ︸︸ ︷
ρ−1 ⊗ · · · ⊗ ρ−1,

with k + k ′ = n, be a unitary character of M(F). Then the Theorem is true for τ and Gn.

Proof If ρ2 = 1, the proposition was proved by Proposition 5.5.
Suppose that τ is special with respect to Gn, and ρ2 �� 1. Then

Σ
′ ′

(τ ) = {βi ; 1 ≤ i ≤ n− 1, i �= k}

∪ {βi, j ; 1 ≤ i < j ≤ k− 1, or k + 1 ≤ i < j ≤ n− 1}

∪ {βi,n−2,n; 1 ≤ i ≤ k} ∪ {βi,n; 1 ≤ i ≤ k}

∪ {β ′i, j,n−1,n; 1 ≤ i ≤ k and k + 1 ≤ j ≤ n− 3}.

Let β̃k = βk,n−2,n. Remember

βk,n−2,n = βk + · · · + βn−2 + βn.

Then the set

S = {βi ; 1 ≤ i ≤ n− 1, i �= k} ∪ {β̃k}
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is a subset of Σ
′ ′

(τ ) whose cardinality is n− 1. We claim that every element β ∈ Σ
′ ′

(τ ) is
a linear combination of the elements of S. Indeed, if

β ∈ {βi ; 1 ≤ i ≤ n− 1, i �= k}

∪ {βi, j ; 1 ≤ i < j ≤ k− 1} ∪ {βi, j ; k + 1 ≤ i < j ≤ r − 1},

the claim is obvious. If

β = βi,n−2,n ∈ {βi,n−2,n; 1 ≤ i ≤ k},

then

β = βi + · · · + βk−1 + β̃k.

If

β = βi,n ∈ {βi,n; 1 ≤ i ≤ k},

then

β = βi + · · · + βk−1 + β̃k + βn−1.

If

β = βi, j,n−1,n ∈ {βi, j,n−1,n; 1 ≤ i ≤ k and k + 1 ≤ j ≤ n− 3},

then

β = βi + · · · + βk−1 + β̃k + β j + · · · + βn−2 + βn−1.

Therefore, the maximal number of linear independent elements in Σ
′ ′

(τ ) is n − 1, not n.
So τ is not special with respect to Gn.

Proposition 5.7 Let Gn = SO(2n), and βr = αn, βr−1 = αn−1. Suppose

τ =

k1︷ ︸︸ ︷
ρ1 ⊗ · · · ⊗ ρ1⊗

k ′1︷ ︸︸ ︷
ρ̃1 ⊗ · · · ⊗ ρ̃1⊗ · · · ⊗

kt︷ ︸︸ ︷
ρt ⊗ · · · ⊗ ρt ⊗

k ′t︷ ︸︸ ︷
ρ̃t ⊗ · · · ⊗ ρ̃t

is a unitary supercuspidal representation of M(F) with ρi �� ρ j , ρ̃ j for i �= j. Then τ is special
with respect to Gn if and only if τi is special with respect to Gki +k ′i

for 1 ≤ i ≤ t.

Proof The necessary conclusion is clear. Suppose that each τ ′i is special with respect to
Gki +k ′i

, for 1 ≤ i ≤ t . Then ρ2
i � 1 and ki + k ′i > 1. So by Proposition 5.3, τ is special with

respect to Gn.
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Putting Propositions for Gn = SO(2n) and P the fixed Borel subgroup of Gn together,
we have proved the Theorem for Gn = SO(2n) and P is the fixed Borel subgroup of Gn.
Therefore we have proved the Theorem for Gn = SO(2n) and (βr, βr−1) = (αn, αn−1).

Finally we consider the situation that Gn = SO(2n) and βr = αn−1. Let M be the Levi
of Gn corresponding to

{β1, . . . , βr−1, βr},

and M ′ be the Levi of Gn corresponding to

{γ1, . . . , γr−1, γr},

where γi = βi for 1 ≤ i ≤ r − 1, and γr = αn. Let cn be the n-th sign change: en 
→ −en,
where en ∈ X(T), such that en(x) = xn for

x = diag(x1, . . . , xn, x
−1
n , . . . , x

−1
1 ) ∈ T(F).

cn induces an outer automorphism of Gn which is F-rational. Also cn induces a bijection of
{β1, . . . , βr−1, βr} and {γ1, . . . , γr−1, γr} such that βi 
→ γi for 1 ≤ i ≤ r. Suppose that
P ′ = M ′N ′ is the standard parabolic subgroup of Gn corresponding to {γ1, . . . , γr−1, γr}.
Let A ′ be the maximal torus in the center of M ′. Then there is an one to one correspondence
between Φ(P,A) and Φ(P ′,A ′) induced by the map βi 
→ γi and cn

(
M(F)

)
= M ′(F). So,

M(F) � M ′(F) � GLm1 (F)× · · · × GLmr−1 (F)× GLmr (F),

given by

g 
→ cn(g) = diag(g1, . . . , gr,
τ g−1

r , . . . ,
τ g−1

1 ) 
→ (g1, . . . , gr).

Suppose that

τ = ρ1 ⊗ · · · ⊗ ρmr

is a unitary supercuspidal representation of

GLm1 (F)× · · · × GLmr (F).

Under the isomorphisms above, τ induces a unitary supercuspidal representation of τ ′

of M(F) and τ ′′ of M ′(F), respectively. It is obvious that τ ′ ′ = cn(τ ′). Since for rank
one situation, the Plancherel measure of a unitary supercuspidal representation vanishes
at zero if and only if the unitary supercuspidal representation is ramified and the induced
representation is irreducible, we see that for each β ∈ Φ(P,A), µβ(0, τ ′) = 0 if and only if
µγ(0, τ ′ ′) = 0. Therefore β is special with respect to τ ′ and Gn, if and only if β ′ is special
with respect to τ ′ ′ and Gn. It is obvious that the map cn preserves linear relations of the
roots. Hence τ ′ is special with respect to M and Gn if and only if τ ′ ′ is special with respect
to M ′ and Gn. We already proved Theorem for τ ′ ′ with respect to M ′ and Gn. Therefore
Theorem is true for τ ′ with respect to M and Gn. Thus, we have completed the proof of
Theorem.
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