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WEIGHTED LORENTZ NORM INEQUALITIES
FOR THE ONE-SIDED
HARDY-LITTLEWOOD MAXIMAL FUNCTIONS
AND FOR THE MAXIMAL ERGODIC OPERATOR

P. ORTEGA SALVADOR

ABSTRACT.  In this paper we characterize weighted Lorentz norm inequalities for
the one sided Hardy-Littlewood maximal function

1 pxt+h
Mf(x) = sup — .
fw =supy [0

Similar questions are discussed for the maximal operator associated to an invertible
measure preserving transformation of a measure space.

1. Introduction and results. Let M* be the maximal operator defined by
1 pxt+h
(1.1) M*f(x) = supz/ Ifl.
n>0 X
Weighted weak type and Lebesgue-norm inequalities for M* have been studied in [9],

[6], [5] and [1]. The following characterizations have been proved.

THEOREM A. Let u, v be nonnegative measurable functions. The operator M* is of
weak type (1, 1) with respect to the measures udx and v dx if and only if (u,v) € A%,
i.e., there is a C > 0 such that M—u < Cv a.e., where M~ is the left maximal operator
defined analogously.

THEOREM B. Let 1 < p < oo. The operator M* is of weak type (p, p) with respect
to the measures udx and v dx if and only if (u,v) € A,,*, ie., there is a C > 0 such that

/ab u(-[: v]””’)p_1 < C(c—ay

foralla, b, c € Rwitha < b < c, p' being the conjugate exponent of p.

THEOREM C. Let 1 < p < oo and let w be a nonnegative measurable function. The
following statements are equivalent:
i) The operator M* is of weak type (p, p) with respect to the measure w dx.
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ii) The operator M* is bounded in L,(w dx).
iii) The weight w satisfies A,*.

The purpose of this paper is to extend the above results to weighted L, , spaces. The
Lorentz space L, ,(v dx) consists of those functions f for which ||f||,4.w < 00, where

I/q

00 a/p .
Wl = (07 (fy oy 7)) i1 < g <c0and

Wfllp.ooww = S“P)’(/{xl @iy} v dﬂ) l/p.

y>0

A detailed exposition about the L, , spaces may be found in [3].

In connection with the weighted Lorentz norm inequalities for the one sided maximal
function M* we introduce the so called A, ,* condition for pairs (1, v) of nonnegative
weights:

DEFINITION 1. A pair (1, v) of nonnegative measurable functions satisfies the con-
dition A, ;* (or belongs to the class A, ,%), 1 <p<ooandl <g<ooorp=g=1,if
there exists a C > 0 such that

X @ llpau XV lpgrw < Cle — a)

foralla,b,c e Rwitha <b < c.

It is clear that when p = ¢ > 1, A, ," and A,* coincide.

The extension of the weak type results (Theorems A and B) can be found in our first
theorem.

THEOREM 1. Let1 < g < p < 00. Let (u,v) be a pair of nonnegative measurable
functions. The following statements are equivalent:
i) The pair (u,v) satisfies A, 4*.
ii) There is a constant C > 0 such that

1M Fllpcos < Cllf lp.giv

foreveryf € L, ,(v).

In the single weight function case, u = v, and p, g > 1, we can solve completely the
problem of characterizing the good weights for the weak type inequality of M*. More-
over, we see that in this case the weighted weak type inequality is equivalent to the
Lorentz strong type inequality and that A, ;* becomes equivalent to A,*. These facts are
collected in the next theorem.

THEOREM 2. Letl < p < coand 1 < g < oo. The following statements are
equivalent:
i) The function w satisfies Ap ,*.
ii) The function w satisfies A,™.
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iii) Thereis a C > 0 such that

IM*£llp.gow < Cllfllp.gow

foreveryf € L ,(w).
iv) Thereis a C > 0 such that

1M llpoow < Clifllpgw

foreveryf € L ,(w).

The proofs of Theorems 1 and 2 are included, respectively, in Sections 2 and 3. In
the proofs we adapt the arguments of [2] using extensively the techniques of [5]. It is
interesting to note that our results represent an extension of the L, theory of one-sided
weights, but we do not use the L, theory of weights.

The discrete versions of the preceding theorems allows us to improve the results in
[7], where the author studied weighted inequalities for the two-sided ergodic maximal
operator associated to an invertible measure preserving transformation in order to prove
that the uniform boundedness of the averages in a reflexive L, , space implies a.e. con-
vergence.

Throughout the paper, w(E) denotes the integral of w over the set E, C is a positive
constant not necessarily the same at each occurrence and p’ is the conjugate exponent of

p.

2. Proof of Theorem 1. i) = ii). We shall need the following lemma:

LEMMA 1 ([2]). Let1 < g <p < oo and {E;}jen be a sequence of sets such that

> xg(x) <B.
jen

Then,

2 Ixef1lh.g < B,
JEN

The case p = g = 1 is solved in [6] and [5]. Suppose p > 1 and let f be a nonnegative
function supported on a bounded interval. Let A > 0 and let us consider the bounded
open set Oy = {x: M*f(x) > A}. Let (a, b) be a connected component of Oy. Then, for
every x € (a,b)

b
@.1) [ £>x6-x.
Let {x;} be the sequence defined by xo = a and x; be the number in (x;, b) satisfying

2.2) [r= s

Xk
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The sequence {x;} is strictly increasing and converges to b. Let xy_1, X and Xz, three
consecutive terms of the sequence {x;}. It is clear by (2.2) that

2.3) /Xf—lf—4'/mf

It follows from (2.1), (2.3), the Holder inequality (in Lorentz spaces) and A, ;" that

4 K+ 1 p 4P —1
N < (b— f f) < mllf)((xk,xk+.)||ﬁ,q;v X GoranV ™ g

= Xk—1 Mu

X -1
< C'VX(kaxhl)“ﬁ,q;v (/xk_] M) >

ie.,
Xk C
(2.4) '/xk-l u< V”fX(Xk»Xm)”l;,q;v'
Summing up in k and applying Lemma 1 to the sequence of disjoint sets {(xy, Xk+1)}
yields
(2.5) /b = Ap Z ”X(Xk X)X (@, b)f”pq v ="yp ”X(ﬂ blfllpqv

Finally, since inequality (2.5) holds for every connected component of Oy, a new appli-
cation of Lemma 1 allows us to write

fo =2 5 R0 W < 0

ii) = i). Leta, b, ¢ be real numbers with a < b < c. Let {s,} be an increasing
sequence of simple, measurable, nonnegative functions with support of finite v-measure
(this ensures ||s,]|,4,v < 00) which converges pointwise to x( V™. For every n, there
is f, > 0 with ||f,||p4v = 1 such that

C
Isally < € [ s <€ [fvv=c [ fu
Then, if x € (a, b),

Lo s Cllsallyg
M > —— [(f> —— [(fy > Tl

c—a
Therefore

(a,b) C {xER | MHf(x) > _C;"?%Il’aﬂ}

Applying inequality ii), we obtain

b
< ,
[ u s G il

Py
ie.,

b \1/p
([ #) " lsallrrw < Ctc = >
Letting n tend to infinity, we get A, ,*.

REMARK 1. The proof of ii) = i) does not require g < p.
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3. Proof of Theorem 2. The proof requires several lemmas.
LEMMA 2. Letl <p<ooandl <q<oo.Ifw€A,,” thenw € Ap*.
PROOF. It is immediate because of the inequality
Ixbw™ 0w < Nx.owW™ lprgrw-

LEMMA 3. Letp > 1. Thenw € A,," if and only if there is C > O such that

1/p
G.1) || <C( wE) )

c—a — w(a, b)
forall a,b,c € Rwitha < b < c and for every measurable set E contained in (b, c).

PROOF. Let us suppose w € A,;". Let a,b,c € Rwitha < b < candlet E
be a measurable subset of (b, c). Then, Holder’s inequality and A,;* give (3.1) in the
following way:

'C
lEI = /EWW_I =L XEWW—] < “XE”p,l;wnX(b.C)W_l”p’.oo;w

c—a w(E) ) tp
<C 1 =C (c —a).
et = (e

Conversely, suppose we have (3.1) and let a,b,c € Rwitha < b < ¢,y > 0 and
Ey={x€(,c)| w'(x) >y} Then

_ EN /P
ity = [ < [ w151 < cte—a 252",
Le.,
(c —a)”'
w(E,)) < C——————.
y yp, (w(a, b))p'/p

. i . .
If we have taken into account that ||X(p)lp.1:w = (w(a, b)) / ”  the above inequality can
be written as

3.2) ||X(a,h)”§,1;wyp e W9} w<Clc—a).

Since (3.2) holds for every y > 0, taking the supremum over y > 0 we obtain A, ;*.

REMARK 2. Condition A, ;" for a weight w is also studied by the author in [8], where
it is shown that it is equivalent to the restricted weak type (p, p) inequality for M* with
respect to the measure w dx.
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LEMMA 4. Letp>1,1<g<ooandw € A,,*. Thereare C > 0and 3 > 0 such
that

(3.3) w({x € (a,b) | w™'(x) > BA}) = Cw(a, b)

for every X > 0 and every bounded interval (a, b) with

b—a < b—x

3-4) A= b) = wix, b)

for every x € (a, b).

PROOF. Let A > 0,0 < 8 < 1/12 and (a, b) satisfying (3.4). Let {x;} be the
sequence defined by xo = a and x;,; be the middle point of (x;, b).

Let, fori > 1, El = {x € (xi, Xin1) | wl(x) < %%‘f%} Forevery i > 1 we have by
definition of E/,

74
IEil _ /
Xiyl — Xi—1 El Xiy1 — Xi—1

(3.5) </ M)—dx<4ﬂ.

E wxi-1,b)  —
Let E; = (x;, xis1) — E}. Then, (3.5) gives
3.6) |Ei| = xiv1 — xi — |Ej| > X1 — % — 4B(xir1 — Xi—1)

. = Xip1 — X% — 12B(xis1 — x) = (1 — 128)(xi41 — x3).

Since w € Ap,1*, by Lemma 3 we have
1/p
E; E;
(3.7 __|__’l___ < C(L—)
Xip] — Xi— wxi—1,X;)
for i > 1, and (3.7) together with (3.6) and the definition of {x;} give
(3-8) w(E;) > C(1 — 128Y'w(xi—1,X;).

Summing for i > 1 we obtain
[e o]

(3.9) Sw(E) > C(1 — 128Yw(a, b).
i=1

On the other hand,

UE c U{x € x| w(x) > BA} = {x € (x1,b) | w™(x) > BA}.

i>1 i>1
This relation and (3.9) give

w({x € (@x1,b) | w'(x) > BA}Y) = Y w(E) = C(1 — 128Y'w(a, b),

i=]

which implies (3.3).
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LEMMAS. Let1 <p<oo, 1<g<ooandw € Ap,". Thereis a C > 0 such that

— / — 1
(3.10) xasr™ g < Cb = )P (M (xairw™ @)
for every bounded interval (a, b).

PROOF.  Let (a, b) be a bounded interval and let us consider the sequence {x; }, where
xo = b and x4 is the middle point of (a, x;). For the estimation of the (p’, ¢’)-norm of
the function x,»w™!' we will use duality and the fact that the sequence {x; } provides a
partition of (a, b) into disjoint intervals. More precisely, there is f > 0 with ||f||, 4 < 1
such that

(3.11) Ixasm™ ||pqwscffw—w—cz [ pwiw.

INI
Holder’s inequality, the condition A, ;* and the definition of the sequence {x;} allow us
to dominate the right-hand side of (3.11) in the following way:

—a

5 [ 37w < € Wl Il < €35 — 24
k=0 (w(a xk+1))

[e) _ 1/P
3.12) e (_M_) _ /P
/;) w(@, Xg41) (% = a)
1/p
_ Xi+1 RNV
N e BRI

Taking into account the definitions of M, * (x@nw ™' )(a) and {x;}, the last term in (3.12)
is smaller than
(3.13)

C(W(X(a,b)w—l)(a))l/p > (i — )
k=0

k+l

= C(M;(x@pw™' )(a))l/p(b —a)'l” i 277
k=0

/ _ 1
= Cb—a) 17 (M} (xapw @),
and the lemma is proved.
LEMMA 6. Let1 <p < oo, 1 <gq <pandw € A,,". Then, there are constants
C > 0and B > 0 such that
_ 1
(.14) e~ g < O (Eg) """

for every bounded interval (a, b) and for everyy > 0 with y > M,,*(Ww™ X (u»))(@), where
Ey={x€(ab)| wlx) >y}

PROOF. Lety > M, (W™ x(up)(a). By duality,

(3.15) ™ oo < € [ ™
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where f > 0 and ||f]|,.4w < 1. Let Oy = {x € (a,b) | My,* (W™ X ap)(x) > y}. Since E,
is contained in O,, from (3.15) follows

(3.16) e w™ o < C [ f'w.

Let {/;} be the sequence of the connected components of O,. By the choice of y, the
number a cannot be the infimum of any /;. Every I; = (a;, b)) satisfies

bj — a4 < bj —X

w(aj,bj) — w(x, bj)

y=

for every x € (aj, bj). Letus fix I; = (aj, b;). Then, Holder’s inequality, Lemma 5 and the
fact that a; ¢ O, give

/:]fw_]w < C|VX(a,-,bj)“p.q;w ”X(a,‘b,')w_1 ”p’,q’;w
J

< Clf X llpam = a) "7 (M x5y~ (@)
< Cllf xaabpllpgw(b; — a)' 17 y'17.

(3.17) 1/p

If we have taken into account that (b; — aj)(w(a,-, bj))_1 =y, then last term of (3.17)
equals

l 7
CY Xy lpgw(wiass b)) "

Therefore we have shown

b 1/p
(3.18) 7 37 < Olxapllpam (wia, b))
a;
From (3.16) and (3.18) we can write
_ 1/p'
(3 19) “XEVW l”P’v‘l'QW S Cyz IVX(a,-,b,-)”ﬁvq;W (W(al’bl)) /p -
J

Finally, if we apply Holder’s inequality with exponents p and p’ to the last sum and
Lemmas 1 and 4, we obtain

B 1/p 1/p'
e e < (X Wxamllogan) (5w 1)
J J

1/p
< Ol (St b))
(3.20) J

/ ’
< Cy(z w({x € (a;. b)) | w' (x) > ﬂy}))] '

J
<oy (w(tre@n ] vico > 5}) "

LEMMA 7. Let1 < g <p<ooandw € A,,". Thereare C > 1 and§ > 0 such
that

_ 5! _ 5 _ ’
(3.21) IX@sr™ 1w < CM W X@b)@) Ixayw™ I 0

https://doi.org/10.4153/CJM-1994-060-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-060-9

LORENTZ NORM INEQUALITIES 1065

for every bounded interval (a, b), where ¥’ = p' + p'§ /¢’ and s' = q' +6.

PROOF. Lety > 0,8 > 0and E, = {x € (a,b) | w~'(x) > y}. An easy computation
shows

(3.22) 6 [ xS oy = s ™ I g

On the other hand, the preceding lemma and ¢’ /p’ = 5"/ give

o—1 —1)19
'/;;(W_IX(a,b))(a) Y ” XEW ”P"q';w

G239 = C/;;(W“X(um)(a) ys'—l (W({x €(ab) l W_l(x) > :By}))q ’ dy

c " _ i/ C s
<5y (e @p 1w @ >)" = Sl

It follows from (3.23) that
(3.24)

_ _ ! C _ ’ 1 _ § _ ’
/Om Y e w ™ e < ;“X(a,b)w 1||‘f1s';w1‘5(1"15()«11,;))»" N@) X ™ 1% o

Now (3.22) and (3.24) give

1 _ ’ 1 _ h) _ / C Cind
5||X(a.h)W o < E(M:Z(X(a,b)w N@) NIxa@mw™ I o + Slxanw .
ie.,

_ ’ 1 1 — é _ ’
IX@ow™ 0 < 5(1—_—;) (M5 O™ @) xasrv™ 15 g
)

which is (3.21) taking § small enough.
The information provided by Lemmas 5 and 7 can be summarized as:

LEMMA 8. Let1 < g < p < ooandw € A, . There are constants C > 0 and
& > 0 such that

_ — 1/r
(3.25) X ™ s < Cb — )7 (M (xapw™ @)
for every bounded interval (a, b), where ¥’ = p' +p'6 /¢’ and s’ = 4’ +6.
PROOF. The Lemmas 5 and 7 give immediately
iy , _ s+
(3.26) s 17 0 < €O = )7 (M, (@™ @) 7
and (3.25) follows from (3.26) taking into accountthatg’ /p’ = s"/r' andé+¢' /p = 5’/ r.

LEMMA 9. Letl <g<p<ooandw € A,,*. Let§, r and s be the real numbers
associated to w by Lemma 8. Thenw € A, ;"

PROOF. Leta,b,c € R witha < b < c and let us consider the finite decreasing
sequence xo = b > x; > -+ > Xy > a = xy41 such that

(3.27) X W™ e = 25X 00w ™ lvsw
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ifk=0,1,...,Nand

”X(a,C)W_1 llrstw < oM ”X(ILC)W—1 Il 7570

The inequality (3.27), Lemma 8 and Holder’s inequality give

/b W“X(b,c‘)w—l “:’,s’;w — % 2—kr /Xk w ”X(Xk,c)w_l “;’,s’;w
a (c —a)yl” fard e (c—a)l"

N X Ixoow™ 17 .
< 2—kr * g S
<% / PO dy

N X
<CY 2 [F woIMLxeow™)0) dy
k=0

Xkl

(3.28)

N
S C Z 2—kr /xk
k=0

X+

. WM (X . oW ™ () dy

N
< C,;)z_kr“X(xM,xk)”ns;w "M»:(X(XM,C)W_I M s

N
< Clixa@mllrsw Z 2—kr”M:z(X(xkn,C)W—])”r’.S’;w-

The boundedness of M,,* in L ¢(w) and the definition of the finite sequence {x;} allow
us to dominate the last term of (3.28) by

N
C”X(a,b) “r,S',w kZ% 2_,"“)((KM,C)W—1 " rsw

N
< C“X(a,b)”r,s;w Z ke ”X(b,c)w~l ”r’,s';w

< C”X(a,b)”r,s;w ”X(b,C)W—l | EXS
We have shown

w(a, b)

"X(b’c)w—l “;’,s’;w 1/r —1
e S @) Mlxeow Insws

ie.,
(@, 5)" Ixtow ™ s < Clc —a),
which is the expression of A, ;*.

We are ready to prove Theorem 2.

The statement iv) implies i) by Theorem 1 (see Remark 1) and the implication
iii) = iv) is obvious. To prove ii) = iii) we use an argument of interpolation: if w € A,*,
by Lemma 9, there is ¢ > 0 such that w € A,_.*; by Theorem 1 this means that M*
applies L,_.(w) in L,_¢ (W) and Marcinkiewicz’s theorem gives iii). Finally, to prove
i) = ii) let us assume that w € A,,*. We can reduce the problem to the case ¢ < p,
since Ap 4" implies A, " for every s < g. By Lemma 9, there exist r and s with r < p,
s <randw € A,;". Then, by Theorem 1, M* is bounded from L, ;(w dx) to L, oo(w dx)
and interpolation gives that M* is bounded in L,(w dx), which implies immediately that
wE A"
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4. Weights for the ergodic maximal operator and pointwise convergence of the
averages of functions in L, ,. Let (X, M, ) be a o-finite measure space and let T: X —
X be an invertible measure preserving transformation with measurable inverse. Let M7+
be the ergodic maximal operator defined by

Mf(x) = sup | Tomf ()],

where | m
Tomf(x) = —— S f(T'x).
m i=0

+1 iz

If u is a nonnegative measurable function defined on X, u* will denote the function on
Z defined by u*(i) = u(T'x).

DEFINITION 2. A pair (u, v) of positive measurable functions on X satisfies the con-
dition A, ,*(T) (or belongs to the class A,,*(T)), ] < p < coand1 < g < oo or
p = g = 1, if there exists C > 0 such that

”X[O,k]“P,q;u’ ) ”X[k,m]("x)_1 “p’,q';V‘ <Cm+1)
forallk, m e NwithO <k <manda.e.x € X.

THEOREM 3. Let1 < g < p < 0o and u, v be positive measurable functions. The
following statements are equivalent:
i) ”MT+f||p,oo;u < C”f”p,q;v

ii) sup,>g | TomflIpoosu < Cllfllp.gv
iii) The pair (u,v) satisfies Ap 4*(T).

PROOF. The proof is essentially the same as the proof of Theorem 1 in [7]. The
implication i) = ii) is clear and iii) = i) follows by transference from the discrete version
of Theorem 1. The proof ii) = iii) is the larger one and we only sketch it. We shall need
the following lemma which is slightly different from the lemma which appears in [7].

LEMMA 10. Lets, k € Nwith s < k and let B be a measurable set. For every x € B
andn € Z, let H,* = {i € [s,k] | v_(T'x) > 3"}. Let A be the collection of all the
decreasing sequences in Z\U {—oo} with no more than 2*=5*! different terms and with
at least one term in Z. If o = {a,} € A, let Ay be the following set:

Ae={x€B|H =0ifa,=—00and2 < Y w(Tx) < 24*! if g, # —00}.
i€H,*

Then {Aq }aca is countable, its elements are pairwise disjoint and B = Uyep Aq-

PROOF OF THE LEMMA. It is clear that A is countable and that & # (3 in A implies
AeNAg = 0. To see that B = (Juea Aas let x € B and, for every n € Z with H,* # 0, let
an be the only integer such that

2% <3 w(Thx) <24,
i€H,*
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If H,* = 0, let a, = —o0. Then, the sequence o = {ay} is decreasing (since H,—1* D
H,*) with no more than 2¥~5*! different terms (since there are no more than 2¥~**! dif-
ferent H,*) and x € A,.

1i) = iii). Letr,k € N with r < kand let { B;} be the sequence of measurable sets asso-
ciated to X and k by Lemma 2.10in [4]. Let us fix B; and suppose s(i) = k. By Lemma 10,
with s = r, B; = Ugea Aa- Let us fix A, and consider, for each (ng, ny, ..., n) € Z¥,
the set

Hugnyomy = {x € A | 2" <w(T'x) <2"*'i=0,1,...,k}.

It is clear that the sets H,, »,, .», are measurable, their union is A, and they are pairwise
disjoint. Let us fix Hy,», . and let A be a measurable subset of Hyyn, .. Let R =
Uo<j<k T’A, Ri = Up<j<, TPA and Ry = U,<;<, T'A. First we prove the inequality

4.1 llxr, “p,q;u ”XRzV_1 ”p',q';v < Cu(R)

with C independent of k, r and A. To prove (4.1), we see first that

(4.2) el ariv < CBAM | xrsw ™

where w is defined over Z by w(j) = 2" x|, and the (p’, ¢’)-norm of the right hand side
is a norm in the integers. Then we use an argument of duality: there exists w' > 0 with
|W'||p.gw = 1 such that

k
4.3) C”X[r,klw_] llygrw < Zw’(]').

Jj=r
It follows from (4.2) and (4.3) that

, k
4.4) xrY ™ g < CuA'? 3o W),

J=r

Let f be the function defined on X by
k
£ = 3 W 0xa@).
j=r

The function f satisfies ||f]|,qv < Cu(A)'/? and

Tr,w(0) ]

R, C {XGX] |T0kf(x)| >C T 1

so that our hypothesis about Mr* yields

k+1
@.5) u(R) < ¥ )p),,u(m.

(Zh, W)
This inequality together with (4.4) give:

k+1
(+),,: KAY.

4.6) u(Ry) < Co———i—
”XRZV “p’,q’;v
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Raising to 1/p and taking into account that (k + 1)u(A) = pu(R), we obtain (4.1).
The inequality (4.1) can be written as follows:
4.7

(/"jg ur) du) " (ql /(;’" (/A 0e[r,k1|v§—:'(wx>>y} V(zj)) "'/”'y - dy) " < D@,

From (4.7) we shall obtain
4.8)

(g uran)™ [ ([

=0

Cd . NPl
v(T’x))q ' y?! dy) du
{Elrkv-1(Tix)>y}

< Clk+ 1Y Ay,

and then, since A is an arbitrary measurable subset of Hy, », ., the union of the H’s is
A and the union of the A,’s is B;, we shall get

r ) l/p ) q’/p’ , ]/ql
S u(TPx) ( q > w(T'x) yi1 dy) <Ck+1)
<j=0 ) '/000 ({je[r,k]|v—‘(fo)>y} )

for almost every x € B, i.e.,

Ixor g X1 7l gror < Clk + 1)

for almost every x € B;.
Let us consider the second factor on the left-hand side of (4.8) and let us dominate it
by the corresponding in (4.7):

LU

NI, vl
v(fo)) y ! dy) du
{ielr.klv=1(Tx)>y}

o0 3n+l
<J(Z L (
A ¥ Nelr kv T(mn>3)

=</ h

n=—00

: v/d
v(T"x))Wp y! dy) dp

’

BT N
v(fo))q/p y‘l"dy) du

{ielrklv "1 (TVx)>3"}

0 3" A P,/ql
cc[ (£ L 2t

n=—00

) C(":fw / 3“ ([a 2 dﬂ)q,/ply"' -1 d)’)pl/ 7
< C( :zi:o /33: (.[x 2 v(T'x) du)q'/p’yq,_] dy)p /q

{i€lr.klv-1(Tix)>3"}

SC(/:o ([ = v(Tf'x)du)Wp'y"’*‘ dy),,

{ielr.klv-"1(Tix)>y}

I/ql

This proves (4.8).

https://doi.org/10.4153/CJM-1994-060-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-060-9

1070 P. ORTEGA SALVADOR

Let us consider now the case s(i) < k. Once we have fixed B; with s(i) < k, we apply
Lemma 10 for s = 0. We have B; = | J, Aw, Where these A,’s are defined from the H,*’s
associated to s = 0. Fix A, and consider, for every (ng, ny,...,n) € Z*1 the set

Hugnyom, = {x € Ag | 27 <W(T'x) < 2" i=0,1,...,k}.

~~~~~~~~~

Uo<j<x T'A. First, we prove

ng e LetR - UOS]SY(!) WA =

4.9) IR Ipgiu xRV g < Cu(R)

with Cindependentof k and R, as in the previous case. The inequality (4.9) can be written
as

(4.10)

Iy 1/q
W)’ "y dy)

< C(sG) + 1) w(A)

and the Lemma 2.10 in [4] allows us to prove that (4.10) is also valid replacing s(i) by k.
Finally, in the same way as in the case s(i) = k, from (4.10) and using the definition

of H,* we deduce:

4.1

(fgperoan)™ [

=0

(i eeroan)” (4 ()

{€l0.5O1v=1(Tx)>y}

NG rld
v(T/x))q ! yd ! dy) du
{iEl0kIv=1(Tix)>y}
< Clk+ 17 wAy’,
and since (4.11) holds for every measurable subset A of Hy, ,, ., the union of the
Hygn,...n, 'S 18 Ay and the union of the A,’s is B;, it follows

k

()" (7o

J=0

) e, 1 / q
v(T’x))q s dy) < Clk+1)
{El0,k1v"1(Tix)>y}

ae.x € B, ie.,
Ixtollp.gs 110400 i gre < Clh+1)

a.e. x € B;. This inequality implies clearly
.12) IDxto.nllpgser 1xirsa )™ llpgrn < Clhe+ 1.

Therefore, either s(i) = k or s(i) < k, we have proved that (4.12) holds a.e. x € B,.
Since X = |J; By, iii) is proved.

REMARK 3. Observe that i) = ii) and ii) = iii) also hold for 1 < p < oo and
1 <g<oo.
In the single weight case we have the following theorem:
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THEOREM 4. Let1 < p < 00, 1 < g < 00 and w be a positive measurable function.
The following statements are equivalent:

i) ”MT+f Hp,oo;w < C”f”p,q;w

ii) SUP,>0 ”TO,nf up,oo:w < C”f”/hq;w
iii) "MT+f”p,q;w =< C”f”p,q;w
iv) sup,>q ”TO,nf”p,q;w < Cllf”p,q;w
v) we A, (T
vi) w € A,Y(T).

PROOF. The implications i) = ii), iii) = iv) and v) = ii) are clear. To prove the
equivalence between v) and vi) it suffices to write in the integers from the proof of Theo-
rem 2. The implication ii) = v) may be proved as in Theorem 3 (see Remark 3). Finally,
vi) = i) and vi) = iii) follow from Marcinkiewickz’s interpolation theorem and from
the fact that w € A,*(T) implies w € A,_.*(T) for any ¢ > 0 withp —e > 1.

When we work in a finite measure space and T is only a null-preserving transforma-
tion, the equivalence of the weak and strong type inequalities for the maximal operator
reduces to the case in which the measure is equivalent to an invariant measure. Moreover,
the uniform boundedness of the ergodic averages implies a.e. convergence:

THEOREM 5. Let (X, M, v) be a finite measure space and let T be a null-preserving
invertible transformation over X. Let 1 < p < oo and 1 < q < oo. The following
statements are equivalent:

i) 1M1 fllpoo < Clifllpg

ii) sup,>o ”TO,nf”p‘oo < Clfllp.qg
iii) \Mr*fllpq < Cllifllpg
) suP,o | Tonfllpg < Clifllpg-

Moreover, if one of the above conditions holds, then the sequence {7p ./} converges
almost everywhere for every f € L, 4.

PROOF. It works as in Theorem 3 of [7].
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