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A Szpilrajn–Marczewski Type Theorem for
Concentration Dimension on Polish Space

Józef Myjak, Tomasz Szarek and Maciej Ślȩczka

Abstract. Let X be a Polish space. We will prove that

dimT X = inf{dimL X ′ : X ′ is homeomorphic to X},

where dimL X and dimT X stand for the concentration dimension and the topological dimension of X,

respectively.

1 Introduction

In [11] a new concept of dimension of measures, defined by means of the Lévy con-

centration function (see [7]), has been investigated. This dimension, called concen-

tration dimension, has some important properties. It is related to the mass distribu-

tion principle (see [3]), it is relatively easy to calculate and it is also strongly related

to the Hausdorff dimension. More precisely, the Hausdorff dimension is greater than

or equal to the concentration dimension. Moreover, the Hausdorff dimension of a

compact set K is equal to the supremum of the lower concentration dimension of

measures µ where the supremum is taken over all probability measures µ such that

supp µ ⊂ K.

The connection between the Hausdorff dimension and the topological dimension

was made evident in the case of R
n space by V. G. Nöbeling (see [14]) and in a more

general setting by Szpilrajn in 1937 (see [9, 16]). Similar connections between the

concentration dimension and the topological dimension have been established in the

case of locally compact metric spaces [12]. In this paper we will generalize these re-

sults to the case of Polish spaces. Note also that the relation between the Hausdorff

dimension and the packing dimension was studied in [10] while the generic proper-

ties of the concentration dimension have been investigated in [13].

2 Notation, Preliminaries and Auxiliary Results

Throughout this paper (X, ρ) denotes a Polish (i.e., separable complete metric) space.

By B(x, r) (resp., Bo(x, r), S(x, r)) we denote the closed ball (resp., the open ball and
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the sphere) in X with center at x and radius r. By dimH X and dimT X we denote the

Hausdorff dimension and the topological dimension of X, respectively.

By B(X) we denote the σ-algebra of Borel subsets of X and by M(X) the family

of all finite Borel measures on X. Moreover, by M1(X) we denote the family of all

µ ∈ M(X) such that µ(X) = 1 and by M≤1(X) the family of all measures µ ∈ M(X)

such that 0 < µ(X) ≤ 1.

Given a measure µ ∈ M1(X) we define the lower and upper concentration dimen-

sion of µ by the formulas

dimLµ = lim inf
r→0

log Qµ(r)

log r
,

dimLµ = lim sup
r→0

log Qµ(r)

log r
,

where

Qµ(r) = sup{µ(A) : diam A ≤ r,A ∈ B(X)} for r > 0.

Recall that Qµ is the well-known Lévy concentration function frequently used in the

theory of random variables (see [7]).

The concentration dimension of X is defined by the formula

(1) dimL X = sup
µ∈M1(X)

dimLµ

Finally, recall that dimH µ for µ ∈ M1(X) denotes the Hausdorff dimension of µ,

i.e., dimH µ = inf{dimH A : A ∈ B(X) and µ(A) = 1}.

Given an arbitrary function f : A → [0,∞], where A is a Borel subset of R, we

denote by F f the set of all Borel measurable functions φ : A → [0,∞] such that

φ(λ) ≥ f (λ) for λ ∈ A. By the upper integral of f we mean the value

∫

A

f (λ) dλ = inf
φ∈F f

∫

A

φ(λ) dλ.

The following result can be found in [11].

Proposition 1 For every µ ∈ M1(X) we have

dimH µ ≥ dimLµ.

Moreover

dimH X ≥ dimL X.

The following property of outer measures will be useful for futher considerations.

Lemma 2 Let µ be a nontrivial outer measure. Then there exists a compact set K ⊂ X

such that µ(K) > 0.
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Proof For A ⊂ X and δ > 0 define

µδ(A) = inf
{

∞
∑

n=1

µ(Un) : A ⊂
∞
⋃

n=1

Un,

where Un are closed sets with diam Un ≤ δ
}

and

µ0(A) = lim
δ→0

µδ(A).

It is easy to check that µ0 is a nontrivial outer metric measure (see [15]). Therefore

µ0 restricted to all Borel sets is a measure. From Ulam’s theorem (see [1]) it follows

that there exists a compact set K such that µ0(K) > 0. Hence there exists δ0 > 0

such that µδ0
(K) > 0. Consequently, since K is compact, there exists x ∈ K such that

µ(K ∩ B(x, δ0/2)) > 0.

3 Results

We are in a position to formulate the crucial result for our work. It is similar in

spirit to Frostman’s lemma which says that if Hα(K) > 0, where Hα denotes the

α-Hausdorff measure and K ⊂ R
d is a closed set, then there exists a nonzero Borel

measure µ supported on K such that µ(D) ≤ (diam D)α for all Borel sets D (see [6]).

A proof that is much simpler than Frostman’s original proof (based on the MaxFlow–

MinCut theorem) can be found in [5]. Our approach depends on Banach limits and

the Riesz representation theorem (for futher discussion see [8]).

Proposition 3 Suppose that dimT X ≥ d, where d ∈ N ∪ {0}. Then there exists a

Borel measure µ ∈ M≤1(X) such that

(2) µ(B(x, r)) ≤ rd for every x ∈ X, r > 0.

Proof We use an induction argument with respect to d. For d = 0 condition (2)

obviously holds for every measure µ ∈ M≤1(X). Assume that the statement of

Proposition 3 holds for d = k. We will prove that it holds for d = k + 1. By the

definition of topological dimension (see [2]) there exists x0 ∈ X and λ0 > 0 such

that dimT S(x0, λ) ≥ k for every λ ∈ (0, λ0]. Without any loss of generality we can

assume that λ0 < 1. Fix arbitrary λ ∈ (0, λ0] and set Xλ = S(x0, λ). By the induction

hypothesis there exists a nontrivial Borel measure µ̃λ on Xλ such that

(3) µ̃λ(Xλ) ≤ 1 and µ̃λ(Bλ(x, r)) ≤ rk

for every x ∈ Xλ and r > 0, where Bλ(x, r) stands for the closed ball in the space Xλ

with the center at x ∈ Xλ and radius r.

For every λ ∈ (0, λ0] fix a measure µ̃λ ∈ M≤1(Xλ) satisfying condition (3) and

then define the measure µλ : B(X) → [0, 1] by the formula

µλ(A) = µ̃λ(A ∩ Xλ) for A ∈ B(X).
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Clearly µλ ∈ M≤1(X), supp µλ ⊂ S(x0, λ) and

(4) µλ(B(x, r)) ≤ 2krk for every x ∈ X, r > 0.

Now define the function ϕ : B(X) → R by the formula

ϕ(A) =

∫

(0,λ0)

µλ(A) dλ for A ∈ B(X).

Clearly ϕ(∅) = 0 and ϕ(X \ B(x0, λ0)) = 0. Moreover, from the definition of upper

integrals, it follows that

ϕ(B(x0, λ0)) > 0

and

ϕ
(

∞
⋃

i=1

Ai

)

≤

∞
∑

i=1

ϕ(Ai) for Ai ⊂ X, i ∈ N.

Now consider the function µ̃ : 2X → R given by

µ̃(E) = inf
{

ϕ(A) : A ∈ B(X),A ⊃ E
}

.

It is routine to see that µ̃ is an outer measure and µ̃(B(x0, λ0)) > 0. By Lemma 2

there exists a compact set K ⊂ B(x0, λ0) such that µ̃(K) > 0. Obviously,

(5)

∫

(0,λ0)

µλ(K) dλ > 0.

For n ∈ N and i ∈ {1, . . . , n} we define

αn,i = sup
{

µλ(K) : λ ∈
(

(i−1)λ0

n
, iλ0

n

]}

.

Let

(6) νn =
λ0

n

n
∑

i=1

µn,i for n ∈ N,

where µn,i = µλn,i
with λn,i ∈

(

(i−1)λ0

n
, iλ0

n

]

and such that

(7) µλn,i
(K) ≥

αn,i

2
.

By (6) and (7) we have

(8) 2νn(K) =
2λ0

n

n
∑

i=1

µn,i(K) ≥
λ0

n

n
∑

i=1

αn,i .
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Consider the function ψ : (0, λ0] → (0,∞) given by

ψ(λ) =

n
∑

i=1

αn,i · 1(

(i−1)λ0

n
,
iλ0

n

] (λ).

Clearly ψ is Borel measurable and ψ(λ) ≥ µλ(K) for λ ∈ (0, λ0]. Thus by (8), the

definition of the upper integral, and (5), we have

(9) 2νn(K) ≥
λ0

n

n
∑

i=1

αn,i =

∫ λ0

0

ψ(λ) dλ ≥

∫

(0,λ0)

µλ(K) dλ > 0.

Define the positive linear functional Λ : C(K) → R by the formula

Λ( f ) = L

((
∫

K

f dνn

))

for f ∈ C(K),

where L is a Banach limit (see [4]) and C(K) stands for the space of continuous

functions f : K → R. By the Riesz representation theorem there exists a unique

measure µ∗ such that

Λ( f ) =

∫

K

f dµ∗ for f ∈ C(K).

From inequality (9) it follows that Λ 6= 0 and consequently µ∗ 6= 0. To finish the

proof it sufficies to verify that the measure µ = µ∗/2k+1 satisfies condition (2) with

d = k + 1. To this end, fix an arbitrary x ∈ X and r > 0 and consider the ball B(x, r).

For n ∈ N define

i(n) = min Jn and i(n) = max Jn,

where

Jn =
{

1 ≤ i ≤ n : B(x, r) ∩ S(x0, λn,i) 6= ∅

}

.

If Jn = ∅, we admit i(n) = i(n) = 0. It can be verified that

(10)
λ0

n

(

i(n) − i(n)
)

≤ 2r +
λ0

n
.

Further, by (6) and the construction of measure µn,i we have

νn(B(x, r)) =
λ0

n

n
∑

i=1

µn,i(B(x, r)) =
λ0

n

i(n)
∑

i=i(n)

µn,i(B(x, r))

and now, using (4) and (10) we obtain

(11) νn(B(x, r)) ≤
λ0

n
2krk

(

i(n) − i(n) + 1
)

≤ 2k+1rk+1 +
λ0

n
2k+1rk.
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Fix η ∈ (0, r) and let f ∈ C(K) with | f | ≤ 1 be such that f (y) = 1 for y ∈
B(x, r − η) ∩ K and f (y) = 0 for y /∈ B(x, r) ∩ K. Then

µ∗(B(x, r − η)) ≤ Λ( f ) = L

((
∫

K

f dνn

))

≤ lim sup
n→∞

νn(B(x, r)).

Consequently, by (11) we have

µ∗(B(x, r − η)) ≤ lim sup
n→∞

(

2k+1rk+1 +
λ0

n
2k+1rk

)

= 2k+1rk+1,

and since η ∈ (0, r) and r > 0 were arbitrary, we have

µ∗(B(x, r)) ≤ 2k+1rk+1 for all r > 0.

Keeping in mind the definition of µ we obtain

µ(B(x, r)) ≤ rk+1.

Since x ∈ X was arbitrary, the proof is complete.

Proposition 4 Let X be a Polish space with dimT X <∞. Then there exists a measure

µ∗ ∈ M1(X) such that

dimLµ∗ ≥ dimT X.

Proof We can assume that X 6= ∅. Set d = dimT X. By Proposition 3 there exists a

measure µ ∈ M≤1(X) such that µ(B(x, r)) ≤ rd for every x ∈ X and r > 0. Define

µ∗ = µ/µ(X). Clearly µ∗ ∈ M1(X) and

µ∗(B(x, r)) ≤ (µ(X))−1rd for every x ∈ X, r > 0.

Hence

Qµ∗(r) ≤ (µ(X))−1rd for r > 0

and consequently

dimLµ∗ = lim inf
r→0

ln Qµ∗(r)

ln r
≥ lim inf

r→0

d ln r − lnµ(X)

ln r
= d.

Corollary 5 Let X be a Polish space. Then

dimL X ≥ dimT X.

Proof In the case dimT X < ∞, the assertion follows immediately from Proposi-

tion 4. If dimT X = ∞, then from Proposition 3 it follows that for every n ∈ N there

exists µn ∈ M1(X) such that µn(B(x, r)) ≤ rn for arbitrary x ∈ X and r > 0. Hence

µ̃n = µn/µn(X) satisfies

dimLµ̃n ≥ n

and consequently

dimL X = ∞.
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Corollary 6 (Szpilrajn, [16]) Let X be a Polish space. Then

dimH X ≥ dimT X.

Proof From inequality dimH X ≥ dimH µ, µ ∈ M1(X), Proposition 3 and the

definition of the concentration dimension of X it follows that dimH X ≥ dimL X.

From this and Corollary 5 the statement follows.

Proposition 7 If dimT X = ∞, then there exists µ ∈ M1(X) such that dimH µ = ∞.

Proof Let (µn)n≥1, µn ∈ M1(X), be such that dimLµn ≥ n. Such measures exist by

virtue of Proposition 3. Define

µ =

∞
∑

n=1

µn/2n

and observe that

dimH µ ≥ dimH µn for n ∈ N.

Indeed, fix A ∈ B(X) such that µ(A) = 1. Clearly µn(A) = 1 for arbitrary n ∈ N.

Thus

dimH A ≥ dimH µn ≥ dimLµn for n ∈ N

and consequently dimH A ≥ n. Since A ∈ B(X) with µ(A) = 1 was arbitrary, hence

dimH µ ≥ n. In turn, since n ∈ N was arbitrary, it follows that dimH µ = ∞.

Theorem 8 Let X be a Polish space. Then

dimT X = inf{dimL X ′ : X ′ is homeomorphic to X}.

Proof Set d = dimT X. We can assume that d < ∞. By Proposition 4 for every X ′

homeomorphic to X, we have

(12) dimL X ′ ≥ d.

On the other hand, it follows from [9, Theorem VII.5] that if we let X ′ range over all

the spaces homeomorphic to a given space X, then

(13) inf{dimH X ′} = d.

The assertion of Theorem 8 follows immediately from Proposition 1 and relations

(12) and (13).

Finally we will show that the assumption dimT X <∞ in Proposition 4 cannot be

dropped. Indeed, we have the following counterexample.
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Counterexample Let ((X̂n, ρ̂n))n≥1 be a sequence of compact metric spaces such that

dimT X̂n = n. From Theorem 8 it follows that for every n ∈ N there exists a space

(Xn, ρn) homeomorphic to (X̂n, ρ̂n) such that

(14) dimL Xn ≤ n + 1.

Without loss of generality we can assume that ρn(x, y) < 1
2

for x, y ∈ Xn. Set

X =

∞
⋃

n=1

Xn

and define ρ : X × X → [0, 1] by the formula

ρ(x, y) =

{

ρn(x, y) if x, y ∈ Xn for some n ∈ N,

1 otherwise.

It is easy to check that ρ is a metric on X, dimT X = ∞ and {Xn : n ∈ N} is a family

of closed disjoint subsets of (X, ρ).

We claim that dimLµ <∞ for arbitrary µ ∈ M1(X). Suppose, for a contradiction,

that dimLµ = ∞ for some µ ∈ M1(X). Since

1 = µ(X) = µ
(

∞
⋃

n=1

Xn

)

=

∞
∑

n=1

µ(Xn),

there exists n0 ∈ N such that µ(Xn0
) > 0. Set X0 = Xn0

and consider the measure

µ̂ ∈ M1(X0) given by

µ̂(A) = µ(A)/µ(X0) for A ∈ B(X0).

For x0 ∈ X0 and r ∈ (0, 1) let BX0
(x0, r) and BX(x0, r) stand for the balls in X0 and X,

respectively. Clearly

µ̂(BX0
(x0, r)) =

µ
(

BX(x0, r) ∩ X0

)

µ(X0)
≤
µ
(

BX(x0, r)
)

µ(X0)
≤

Qµ(2r)

µ(X0)
.

It follows that dimLµ̂ ≥ dimLµ = ∞ and consequently dimL Xn0
= ∞, which con-

tradicts (14).
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