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A NOTE ON YOUNG'S RAISING OPERATOR 

GLÂNFFRWD P. THOMAS 

Consider the following formula due to Young [7] for the calculation of 
the homogeneous product sum, h\, in terms of Schur functions; 

h = E[ns2«]{x} 
where the operation Srs is defined as follows: 

Y\\ Srs, where r < s, "represents the operation of moving one letter from 
the 5-th row up to the r-ih row; and the resulting term is regarded as 
zero, when any row becomes less than a row below it, or when letters 
from the same row overlap; as, for instance, happens when Xi = X2 in 
the case of S13S23." 
The following example of the above is given by Robinson [4]. 

^(3,2,1) = [1 + vS*23 + ^13 + -S^ +<S'i2»S23 + SuSn + Si22S2Z + S ^ S i s ] 
{ 3 , 2 , 1 | 

= {3, 2,1} + {3, 3} + |4, 2) + {4, 1, 1} + {4, 2} 
+ {5,1} + {5,1} + {6}. 

Calculation by other means shows that the above analysis of A(3,2,D 

is correct; however, it will be noticed that the operator S ^ 3 ^ does not 
appear in the above yet it is not specifically excluded by the rule Y\. The 
further condition 

F2: ars ^ X, for s = 2, 3, 

is also required, although neither Young nor Robinson mention this fact. 
(The operators produced by Robinson do in fact satisfy this above 
condition also.) 

It will be shown in this paper that by using a well-established extension 
of the definition of a Schur function that allows for parts in non-de
creasing order of magnitude, both rules Y\ and F2 become unnecessary 
and the expression 

*x = E[n^s"]{\} 
becomes an unrestricted summation. 

1. Raising operators. Let n be a positive integer. A partition of n is a 
set 

(X) = (Xi, X2, . . . , \N) 
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of N integers, (positive, negative, or zero), such that 

Xi + X2 + . . . + \N = n. 

If (X) is such that Xi ^ X2 è • • • ^ X^ ^ 0, then (X) will be called 
a proper partition of n and we shall denote this fact by \\~n. 

We now define an operator 5 -̂ which operates on a partition (X) by 
increasing the term X* by one and decreasing X; by one. We shall be con
sidering the case when i < j in which case we shall call <5i; a raising 
operator. 

If we now consider a function/(X), we can allow ôtj to operate on/(X) 
by defining 

M/(x)] =/(MA)). 

2. Symmetric functions. Let be a set of m variables 
or indeterminates. For a given partition (X) = (Xi, . . . , \N) we define 
the monomial symmetric function, M\, to be the sum 

]>>iXlx2
X2 . . . XN

XN 

of all different monomial expressions of the form 

X X \y A 2 -v* >^N 

Ù ^ ii • • ' ^ iff 

where i\, i2, • • . , % is a selection of N different numbers from the set 
1,2, . . . , m taken in any order. 

The symmetric product sum, sr, is simply defined to be the monomial 
symmetric function for (X) = (V), i.e., 

m 

sT = 2^ %/ for r = 1 ,2 , . . . and s0 = 1. 

Thence, we define s\ = 5xiSx2 . . . S\N. 
The homogeneous product sum, hr, is defined by 

hr = X) MM 
M 

where the summation is over all proper partitions (/*) of r. In addition, 
we define ho = 1, fer = 0 if r < 0, and finally fex = ^xi^x2 • • • ^x^-

Let a = o-(l)<r(2) . . . a(N) be a permutation of the numbers 12 . . . N 
and let 

(X(j) = (Xff(i), X<r(2), . . . , K(N))-

Clearly, we have that 

h\ff = h 

for all permutations a. Thus, any homogeneous product sum hv has a 
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canonical form h\ in which Xi ^ X2 ^ . . . ^ X^ obtained by rearranging 
the terms in (v) into descending order. In addition, h\ = 0 if any \ t < 0. 
Thus we have that the set of all homogeneous product sums is given by 
[fo:(k)\-n,n = 0, 1, 2, }. 

Finally, we shall define the Schur function of a proper partition (X), 
which will be denoted by {X}. There are numerous equivalent definitions 
of these functions and the reader is referred to [1], [2], [3], and [5]. The 
most usual definition is probably in terms of symmetric group characters 
as follows: 

-iz gpXp ^P 

where the summation is over all proper partitions (p) of n, XPX is the 
characteristic of the conjugacy class (p) oîS^n (the symmetric group of 
degree n) in the representation corresponding to (X), gp is the order of 
the conjugacy class (p) i n j ^ , and sp is the symmetric power sum. 

3. Results. 

THEOREM 1. 

M = n a - M*A. 

Example. (X) = (3, 2, 2), and so, 

{X} = (1 - <5l2)U - <513)(1 - <523)/*322 

= ^322 — ^331 — ^421 + ^43 ~ ^412 + ^421 + /&511 ~ ^52 

= ^322 — ^331 — ^421 + ^43 + &511 ~ ^52-

Proof. T h e following expression for {X} is well known (e.g. see [2]). 

(X} = |AXl-,+,| = 

h\2-x 

h„-A 

h\2 h\2+i . . . h\2+N-2 

h\N~N+2 

Hence 

(1) {X} = L ± A(i>jr(i))A(2f<r(2)) • l>(N,<r(N)) 

where &(*,„(<)) = A\t+(r(o-i and the summation is over all permutations 
a, the + or — being taken depending on whether a is even or odd. 
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However, consider the Vandermonde determinant 

1 l 

1 Xi Xi 
1 X2 X2 

Xi 

x2
n-

Clearly, we have 

\Xi I Ĵ  J[ [Xj Xf) 
3>i 

and also 

\x i 
j-i\ Z , 0 1 2 n 

± #<r(l) #<r(2) #a(3) . . . X^(n) 

the summation being over all permutations er, the + and — sign being 
taken according as a is even or odd. Hence, 

n i -i %i \ 0 1 2 n - 1 V ^ , 0 1 

I I IXi X2 X3 . . .Xn = 2-4 ^ X " d ) X*(2) • 
z'< j ' \ X j J 

• ^a(n) 

i .e., 

n /-, ç. \ 0 1 n-1 V ^ i 0 1 n - 1 

( 1 — OijJXi X2 . . . Xn = 2^t ± #<r(l) #<r(2) . • • X«r(n) 

where ô^ operates on the sequence of suffixes 1 2 3 . . . n. 
Comparing this with equation (1), we have 

( 2 ) 2^ ± Â(lf<r(l))fe(2,<r(2)) • • • h(N,v{N)) = 1 I ( 1 ~~ 5^ )^ (1 ,1 ) . . . k(NtN) 
i<j 

where <5î;- operates on the second suffixes. 
But, if D is a term i n f i l l ~ M and D(12 . . . N) = <r(l)cr(2) . . .cr(iV)" 

then 

fe(l,<r(l)) • • • h(N,<r(N)) = ^ ( ^ ( 1 , 1 ) • • • ^ (AT ,2V))-

B u t h(i<a(i)) = hxl-i+ad), so 

Z>(A(i,i) . . . (̂AT.AT)) = £>(/*Xl . . . Z ^ ) = J9AX. 

Thus , from (1), (2), and the above, we have the required result, namely 

M = n a - M̂ A-
i<3 

COROLLARY. 

i<3 U ~ Oij) 
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Proof. We have 

<WM = 8ab I l (1 — àtj)h\ = 11 (ôaô — àabÔtj)hx 
i< j i< j 

= na-M(wo. 
We note from (1) that, if for any i,\t < i — N, then {X} = 0 . Thus, the 
sum (1 + Sab + Sab2 + &ab3 + ){M contains only a finite number 
of nonzero terms, and hence 

= EI (1 + Stj + «,-/ + . . . ) ( ! - M*x = Ax-

Note that the above expression for h\ is in terms of Schur functions 
{juj where (M) is not necessarily a proper partition. However, from (1) 
above, we have that 

(3) {Xi, . . . , Xj, Xi+1, . . . , \N] = — (Xi, . . . , X,+i — 1, X4 + 1, . . . , \N\ 

and also {X} = 0 if X4+i = \ t + 1 for any i. Thus, for any partition (/u), 
the Schur function {ju} is either 0 or equal to ±{X} where (X) is a proper 
partition formed by successive applications of (3). 

Example. 

AlftlAl = (1 + «12 + «122 + ) (1 + «13 + «132 + ) 

X (1 + «23 + X23
2 + ){1, 1, 1} 

= (1 + «12 + «122 + ) (1 + «13 + «132 + ) 

X ({1,1,1} + {1,2,0}) 

= ( l + « i 2 + «i22 + ) ({1,1,1} + {1,2,0}+ {2,1,0}) 

= {1,1,1} + {1,2,0} + { 2 , 1 , 0 } + { 2 , 0 , 1 } 

+ {3, - 1 , 1} + {2, 1, 0} + {3, 0, 0} + {3, 0,0} 

= {1,1,1} + {2,1} - {3} + {2,1} +{3} +{3} 

= {1,1,1} + 2 { 2 , 1} + {3}. 

The above formulae are extensions of Young's formula given in the 
introduction of this paper. They are of particular interest when com
pared with the formulae given by Littlewood [3] for Hall-Littlewood 
polynomials, viz., 

w = n a - ««)&(*) and &<*) = n 7 7 - V T W ; 
(see [6]). 
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