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Wall turbulence perturbed by a bump with
organized small-scale roughness: flow statistics
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Turbulent boundary layers (TBLs) over surface perturbations like bumps with roughness –
notably altering heat and mass transfer, drag, etc. – are prevalent in nature (mountains,
dunes, etc.) and technology. We study a channel flow with a transverse bump on one
wall superimposed with small-scale longitudinal grooves via direct numerical simulation
(DNS) of incompressible flow. Turbulence statistics and dynamics are compared between
grooved wall (GW) and smooth wall (SW) bumps. Streamwise spinning jets emanating
from the crests’ corners alter the flow structure within the separation bubble (SB),
extending the SB length by 30 % over that for SW, and have lingering effects far
downstream. Grooves decrease skin friction but increase the bump’s form drag by 25 %.
In GW, the peaks of turbulence intensity and production decrease by 20 % and shift
downstream, compared with SW. Three regions of negative production, found upstream
as well as downstream of the bump, are explained in terms of two separate mechanisms:
normal and shear productions. Separation upstream of the bump occurs always for GW,
but intermittently for SW. Within the downstream SB, counter-rotating minibubbles form
intermittently for SW but always for GW. Interestingly, a minibubble causes streamwise
vorticity reversal of the upstream moving secondary flow around each crest corner. The
wall pressure in GW is invariant in the spanwise direction and is explained in terms of its
non-local nature and its connection with outer structures. The grooved bump unearths rich
TBL flow physics – upstream separation, dynamics of the downstream minibubble, altered
reattachment dynamics and negative production.
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1. Introduction

Turbulent boundary layers (TBLs) are ubiquitous in nature and technology, with significant
implications concerning, among others, drag, heat and mass transfer, and aerodynamic
noise generation. The majority of practical TBL applications, such as flows over wings,
surface protrusions, dunes, mountains and vegetation, involve roughness. Additionally,
these and many other industrial applications such as diffusers, nozzles, ducts, blowers,
compressors and others also involve pressure gradients, which can have significant effects
on the flow physics. Roughness and pressure gradient effects on canonical TBLs, not
surprisingly, result in notable alterations to the near-wall TBL flow physics. Flow over
a bump involves an adverse pressure gradient (APG) downstream of the bump and a
favourable pressure gradient (FPG) upstream of the bump.

In the case of APG, the typical flat plate TBL is sufficiently altered such that the standard
scaling laws in the outer region – the ‘log law’ and ‘defect law’ – do not hold (Tanarro,
Vinuesa & Schlatter 2020). Furthermore, for increasing APGs, the streamwise Reynolds
stress in the outer region increases and progressively develops a second outer peak outside
the usual buffer layer peak (Skåre & Krogstad 1994; Monty, Harun & Marusic 2011; Lee
2017).

Flow separation caused by strong APG in internal or external flows continues to
have numerous unanswered questions and remains an active research area; see, for
example, Simpson (1996), Krogstad & Skåre (1995) and Cheng, Pullin & Samtaney
(2015). Na & Moin (1998a) numerically demonstrated that the well-known detachment and
reattachment points of the separation bubble (SB) oscillate both temporally and spatially
due to Kelvin–Helmholtz instability of the shear layer above the SB. Mohammed-Taifour
& Weiss (2016) experimentally showed that the spanwise vortices are responsible for
inducing a high-frequency unsteadiness of the detachment and reattachment points of
the SB.

In our study, in addition to the separated flow downstream of the bump, the upstream
flow necessarily involves an FPG, which has two interesting aspects: flow acceleration
induced possible re-laminarization (Balin & Jansen 2020) and flow curvature induced
(incipient) separation (Simpson 1996).

Wall roughness is central to TBL flow physics because of its role in skin friction
and form drag (Leonardi et al. 2003), and it will definitely alter the effects of
pressure gradients. Numerous studies have concentrated on streamwise-aligned riblets
due to their potential for reducing skin-friction drag in TBLs (Choi, Moin & Kim
1993; García-Mayoral & Jiménez 2011). Lin, Howard & Selby (1990) experimentally
showed that in the case of a separation bubble behind a ramp (smooth, sigmoid-like
backward step), the addition of longitudinal V-shaped grooves (riblets) placed at
the beginning of the ramp shortens the bubble length. Similarly, transverse or
longitudinal grooves placed rearward of bluff bodies can reduce form drag (Howard &
Goodman 1985, 1987). Recent experiments by Simmons et al. (2022) have examined
the TBL with APG and large-scale flow separation over a smooth two-dimensional
convex (backward-facing) ramp with sidewalls detailing the highly three-dimensional
flow through inspection of near-wall topography and topology of both separation
and reattachment. Their study highlights that two counter-rotating vortical structures
(secondary flow) dominate the resulting flow separation. The secondary flow described
by Simmons et al. (2022) may relate to that occurring at a smaller scale on top of
the longitudinal grooves; this secondary flow will be examined here in some detail.
Song & Eaton (2002) (experimentally) and Wu & Piomelli (2018) (numerically) found
that a TBL with a strong APG over a random rough surface results in earlier flow
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separation and delayed reattachment, contrasting that of an organized roughness such as
riblets.

We investigate the physics of (separated) TBL over a bump with small-scale, organized
roughness over the entire wall. More specifically, the physics of the near-wall turbulence,
with pressure gradients, flow separation (and reattachment) over a transversal, sinusoidal
bump with small-scale longitudinal square grooves is examined and compared with a
smooth bump case. The flow over longitudinal grooves with pressure gradients and flow
separation has not yet been addressed – hence the thrust of this paper.

2. Flow configuration and numerical method

The flow geometry is shown in figure 1: a precursor simulation (figure 1a), which connects
smoothly (i.e. without any jump) with the main simulation domain (geometry detailed
in figure 1b), is employed to provide the inflow. Unless stated otherwise, all quantities
are non-dimensionalized using the bulk velocity (Ub, flow rate/channel cross-section
area), channel half-height (H), density (ρ, set equal to one) and the kinematic viscosity
(ν ≡ μ/ρ, where μ is the dynamic viscosity); dimensional variables are starred. In SW,
the computational domain sizes (Lx, Ly, Lz) of the precursor and main simulation are
respectively (6, 2, 1.6) and (12, 2, 1.6) in the streamwise (x), wall-normal (y) and spanwise
(z) directions. Note that at any x, the vertical height from the wall is denoted as Y; Y is
equivalent to y away from the bump but not over the bump. Additionally, y is the distance
from the flat bottom wall, independent of the bump, as shown in figure 24.

Bump profile. The TBL is perturbed by a transversal, sinusoidal bump, placed on the
bottom wall (figure 1b). The sinusoidal geometry of the bump is defined by

f (x) =

⎧⎪⎨⎪⎩
h
2

sin
[

2π

λb
(x − xs) − π

2

]
+ h

2
, xs � x � xs + λb,

0, otherwise,
(2.1)

where xs is the starting location of the bump, h the maximum height of the bump and λb
the total length of the bump, i.e. one sinusoidal wavelength (figure 1c). The parameter
xs is chosen to be 3.5 – far enough from the inlet so that the flow modified by the
bump does not discernibly modify flow at the inlet. The height of the sinusoidal bump
is h = 0.15(h+ = 45) and the length is λb = 1.5(λ+b = 450). Hereinafter, the superscript
+ denotes non-dimensionalization by the friction velocity u∗

τ ≡ √
τ ∗

w/ρ at the inlet and the
viscous length scale ν/u∗

τ , where τ ∗
w is the wall shear stress (see Appendix B for details on

the computation of τw). The bump height is relatively large but no more than the buffer
layer height (note that the bump length is even larger – 10 times the bump height h and
30 times the groove width w), and the bump induces a notable flow separation bubble, but
it is sufficiently small such that the top wall TBL is minimally affected (without inducing
any separation on the top wall, as well as keeping the alteration of the wall shear stress at
the top wall to <0.4 % of a flat wall smooth channel, further discussed in § 4.3).

Longitudinal square grooves are incorporated throughout the bottom wall of the whole
domain both in the precursor and the main domains, while the top wall remains flat
and smooth. Note that (2.1) corresponds only to the profile of the crest, and since the
groove cross-section is exactly the same throughout the entire computation domain Lx,
the groove’s bottom portion is not a sine curve. The grooves consist of identical repeats of
square cavities along the z direction, each with equal crests and troughs of width w = 0.05;
the groove depth is k = 0.05 (figure 1f ). Between SW and GW, the computational domain
is the same, except in GW, where the bottom wall extends downward by the groove depth;
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Figure 1. Computational domain and boundary conditions. (a) Precursor channel flow simulation domain
with periodic boundary conditions in the streamwise (x) and spanwise (z) directions; (b) main channel flow
simulation domain; (c,d) bump details with panel (c) emphasizing that Y is vertical coordinate and not normal
to the local bump surface and panel (d) delineating the height and length of the bump; (e) bump isometric view;
( f ) cross-sectional geometry of the grooves showing crest, crest corner and groove.

i.e. Ly in GW is larger by the groove depth. The square groove size in wall units is k+ = 15,
found to reduce skin friction drag (without bump) by 3.3 %, with the grooves behaving as
a riblet-like surface. A set of simulations with a smooth wall boundary condition (i.e. with
the bump but no grooves) was also performed to compare all (instantaneous and statistics)
flow measures and analyse the effects of the grooves.

We perform direct numerical simulation (DNS) of the non-dimensional incompressible
Navier–Stokes equations,

∂Ui

∂t
+ ∂UiUj

∂xj
= − ∂P

∂xi
+ 1

Reb

∂2Ui

∂x2
j

+ fi; ∂Uj

∂xj
= 0, (2.2a)

where Ui is the velocity component in the ith direction, fi is a forcing vector term to model
a solid body (i.e. the bump and crests) using the immersed boundary method (Fadlun
et al. 2000), P(= P∗/ρU2

b) is the non-dimensional pressure with P∗ denoting pressure and
Reb(≡ UbH/ν) is the bulk Reynolds number.

The equations are solved using a second-order finite difference scheme for spatial
derivatives and a third-order Runge–Kutta algorithm for the time stepping combined with
the fractional-step method. The numerical method details can be found from Orlandi
(2000) and Orlandi & Leonardi (2006). Periodic boundary conditions are applied in the
spanwise (z) direction. The inflow boundary condition is obtained from the precursor
simulation of the channel flow with periodic conditions in x and z (figure 1a) at the bulk
Reynolds number Reb = 5300 (friction Reynolds number Reτ ≡ u∗

τ H/ν = 300). Between
SW and GW cases, the bulk Reynolds number is kept the same at the inlet of the channel.
Note that grooves add 1.25 % to the total channel cross-sectional area; that is, the maxima
of the mean velocity profiles between GW and SW are slightly different – but not of
any significance. The outflow boundary condition is ∂Ui/∂t + C∂Ui/∂x = 0, where C
is chosen to be the maximum instantaneous streamwise velocity at the channel exit plane
in the previous time step of each computation step (Orlanski 1976). The no-slip condition
is imposed on both the top and bottom walls. Details of the computational grid are in
Appendix A and computational validation is in Appendix B.
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3. Instantaneous flow field example

Figure 3(a) depicts a snapshot of the instantaneous streamwise velocity in an x–y plane of
the entire computational domain for SW, showing the bump’s relative size and perturbation
of the flow. A shear layer starts near the bump peak (figure 2, R3), overlying the SB,
and subsequently rolls up into spanwise rollers; the rollers undergo pairing and tearing,
and interact with the SB structures before the reattachment. In figure 3(b), we see only
three large-scale swirling regions within the SB – these swirling regions change with time,
varying between 3 and 5 structures. Also, vortex dipoles are present around and inside the
SB. They are not evident in the streamlines, but can be identified through the vorticity and
corresponding pressure fluctuation field (figure 3c,d). The dipoles are expected, given the
proximity of the shear layer to the wall, as the spanwise rollers would detach vorticity from
the wall. The dynamics of these inherently unsteady vortical structures within the bubble,
coupled with the grooves-induced secondary flows, presents a highly complex flow of
interacting vortical structures and is the focus of our study.

A groove alters the flow by channelling fluid into the groove on the upstream side
of the bump (figure 2, R2) and also jetting fluid out of the groove immediately after
the peak of the bump (figure 2, R3) – illustrated in figure 3(h,i) via instantaneous
streamlines colour-coded by the Y-distance from the crest (blue below the crest and red
above). The initiation of the shear layer is pushed upwards in GW because of the jetting
of the fluid from the grooves (compare figure 3c, f ). Inside the SB of GW (figure 2,
R4), we often find smaller vortical regions attached to the wall with opposite signed
circulation to that of the shear layer rollers as well as the SB (figure 3e–g); we call them
‘minibubbles’, further discussed later. Although a minibubble is not present for the SW
snapshot in figure 3(b–d), they do occur intermittently for SW. Despite the low speed in the
separated region, the flow channelling within the grooves and the minibubble (figure 3e,i)
significantly modify the drag (discussed later). Note that the instantaneous reattachment
length in GW is larger than in SW. We will see later that this is also the case for the
mean SB.

Figure 4(a–d) show the streamwise velocity fluctuations, u = U − Ū, on the curved
surface parallel to the (SW and GW) bump at Y = 0.01(Y+ ≈ 3) and Y = 0.033(Y+ ≈
10). The overbar (·) denotes the average over time and the spanwise (z) extent at every
x and y location within the domain. The dashed lines A-A, B-B and C-C indicate the
start, peak and end of the bump, respectively. In SW (figure 4a,c), the typical (low-speed)
streaks are present near the channel inlet (figure 2, R1), and the characteristic length scales
(in both streamwise length and spanwise spacing) agree with those found in documented
flat wall turbulence (Kim, Moin & Moser 1987). In SW, near the peak of the bump, the
flow detaches around x = 4.4 (indicated by the zero-shear stress wiggly black thick line in
figure 4a,e). Note that all streaks disappear a short distance behind this separation line, and
velocity fluctuations of the upstream flow become very weak past this point (more apparent
in the zoomed-in view in figure 4e), to be expected in this decelerated flow (Simpson
1996).

Past the SW bump (x > 5), streamwise velocity fluctuations persist without streaks
with a significant increase in magnitude due to the reattaching shear layer. While the
detachment is uniform in the spanwise direction, the turbulent reattaching shear layer (with
embedded spanwise vortices) induces some spanwise inhomogeneity of the instantaneous
reattachment line (figure 4e) – overlooked in the averaged flow field.

In contrast, the streaks in GW far upstream (figure 2, R1) and downstream of the bump
have weak spanwise modulations due to the grooves at Y+ ≈ 3 (figure 4a) (caused by
the streamwise swirls at the crest corners; see Arenas et al. 2019); but this modulation
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R1: Upstream

I

II

IV V

VI

VIII

VII

IX
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R2: Upstream

side of the bump

R3: Flow

separation R4: Separation bubble

R5: Recovery

after reattachment

Figure 2. Schematic denoting the regions of interest and important flow features as a summary. I – upstream
separation; II – incipient separation; IIIab – negative production; IV – favourable pressure gradient (FPG);
V – adverse pressure gradient (APG); VI – spinning jets; VII – shear layer; VIII – separation bubble; IX –
minibubble.

disappears away from the wall (Y+ ≈ 10, figure 4b). The (random) streaks persist past
Y+ = 10 with spanwise spacing and streamwise length the same as in SW (see figure 4c,d).
The grooves’ modulation may be more important for different groove sizes, either larger
or smaller, but is not explored here.

A notable feature for GW (unlike in SW) is the small-scale streaks downstream of
the bump’s peak (x � 4.2, figure 4b, f ) generated by the flow channelling. Clearly, the
groove-induced streamwise velocity fluctuations, u, are strong at the bump’s peak and
diminish moving downstream in x near the wall at Y+ = 3 (figure 4f ) and across the shear
layer in z at y+ = 48 (figure 4h). In the reattachment region (5.5 < x < 6), u (at Y+ = 3)
for GW are similar to those for SW, i.e. the groove-induced u completely disappear.
Interestingly, the reattachment line – which reflects the presence of grooves – has no
correspondence with u at Y+ = 3 (figure 4f ) and hence there is no significant bottom-up
effect, presumably because of the flow stagnation around the reattachment point.

A perspective in terms of λ2 vortical structures (Jeong & Hussain 1995) is shown in
figure 5 to better separate vortices from shear layer vorticity (in contrast to figure 3c, f ). As
the typical near-wall quasi-streamwise vortices (Robinson 1991) approach the (SW) bump,
they follow the wall curvature and become stretched due to flow acceleration. Then, they
drastically weaken after the bump peak when facing flow deceleration (compression) due
to the APG (see figure 15a) – consistent with the vanishing streaks in figure 4(a). After
the streaks vanish, spanwise vortices (rollers) develop in the shear layer from the peak of
the (SW) bump, along with numerous spanwise arch vortices (not hairpins) and finer-scale
structures in the SB (figure 5c,e). The increased velocity fluctuations noted earlier are
detailed by the myriad of small-scale λ2-structures emerging in the separated bubble.
After reattachment (around x = 5.5–6), where new streaks begin to re-emerge, the vortical
structures are a mixture of fine-scale structures and newly generated quasi-streamwise
vortices. Far downstream of the (SW) bump (figure 2, R5), the boundary layer gradually
relaxes to a flat wall channel flow state, and quasi-streamwise vortices are the prevalent
structures near the wall (figure 5a).

For GW, the vortices far upstream and downstream of the bump are very similar to
SW, confirming that the GW does not significantly modify the streaks and overlying
structures on a flat surface. However, near the peak of the bump, numerous small
streamwise structures are observed to be attached to the grooves’ corners (figure 5d, f ),
which are associated with the flow channelling through the grooves. The corner structures
predominantly connect to the rollers in the developing shear layer (figure 5f ). While the
rollers are the dominant contributors to turbulence intensity and production in the SW
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Figure 3. A sample instantaneous flow field. (a) Colour map of streamwise velocity in an x–y plane for the
full domain SW bump case at z = Lz/2. Zoomed-in views of instantaneous x–y plane contours of: (b) SW
streamwise velocity; (c) SW spanwise vorticity; (d) SW pressure fluctuations; (e) GW streamwise velocity; ( f )
GW spanwise vorticity; and (g) GW pressure fluctuations. Isometric views of instantaneous streamlines over
the GW show (i) flow channelling into the grooves and (h) flow ejection (blue originating below the crest and
red above). The letter markers identify locations of specific flow features: (M) secondary recirculation bubble
(minibubble), (R) shear layer rollup, (P) vortex pairing, (D) vortex dipole and (T) vortex tearing.
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Figure 4. Instantaneous colour maps of streamwise velocity fluctuation, u, in an x–z plane: (a) SW at Y+ = 3;
(b) GW at Y+ = 3; (c) SW at Y+ = 10; and (d) GW at Y+ = 10. Zoomed-in views of the dotted regions in
panels (a,b): (e) corresponding to panel (a) for SW and ( f ) corresponding to panel (b) for GW. Zoomed-in
views of u in an x–z horizontal plane at y+ = 48 for (g) SW and for (h) GW. Recall that Y+ measures vertical
distance from the bump surface, while y+ denotes constant horizontal surface; hence panels (e, f ) are parallel
to the bump surface, while panels (g,h) are horizontal surfaces capturing the shear layer structures. The solid
thick lines in panels (a–h) denote the SB detachment and reattachment. The thin line contours in panels (e–h)
denote constant u values: 0.02, solid; −0.02, dotted. Line A-A identifies the start of the bump, B-B the bump
peak and C-C the end of the bump.

developing shear layer, the corner vortices connecting to these rollers play a significant role
in GW. Here, we focus only on their significance to flow statistics, while in a subsequent
paper (García et al. 2024), we will address the spanwise rollers and streamwise groove
corner vortex dynamics in more detail.

4. Flow statistics

4.1. Mean flow field
To understand the underlying effect of the grooves, consider 〈U〉, which denotes the
value of U averaged over all grooves at the same relative point and averaged over 500
flow realizations, which are sampled one non-dimensional time unit (i.e. H/Ub) apart.
Figure 6(a–d) show the colour maps of the mean streamwise velocity (in x–y planes),
both 〈U〉 and Ū, superimposed with the corresponding mean streamlines around the bump
(3 � x � 6.5) for (a) SW and (b–d) GW.

Let us focus on the 2-D mean flow only. We consider x–y planes at the centre of the
groove and centre of the crest; note that by symmetry, W is zero in these two planes,
resulting in a purely 2-D flow. In these two planes, the separation and reattachment
points are identified by the locations of zero wall shear stress τw. The separating
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(a) SW and (b) GW. (c–f ) Zoomed-in views of −λ2 = 4 iso-contours coloured by streamwise velocity U:
(c,e) SW and (d, f ) GW.
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superimposed with corresponding mean streamlines, where the thick red line denotes the mean dividing
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( f –h) GW; (c,g) GW x–y section at the crest centre and (d,h) GW x–y section at the trough centre. The vertical
dotted line corresponds to the x position of SW separation, slightly after the bump peak.

streamline starting from the separation point and the reattachment streamline ending at
the reattachment point must be identical where they meet in between; otherwise, the SB
cannot be steady. Hence, this line is used as the outer boundary of the SB. Various other
criteria for determining detachment and reattachment, such as intermittency of backward
flow, near-wall velocity vector angle and the effect of roughness, are discussed in the
supplementary material (S1) available at https://doi.org/10.1017/jfm.2024.465. Although
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there are several co-rotating swirling motions and, in some instances, a minibubble
attached to the wall in the instantaneous flow field (figure 3e), mean flow for SW (figure 6a)
only displays a single SB.

The mean detachment location in Ū (figure 6b) is slightly altered by the grooves (which
has implications on the bump’s form drag, discussed in § 4.3). The locations of detachment
and reattachment vary along the spanwise direction for GW (figure 6c,d at the crest and
trough, respectively). In particular, detachment occurs slightly earlier in the troughs than
on the crests, but the reattachment reverses this order – resulting in a longer recirculation
bubble in the troughs compared with the crests. Furthermore, the spanwise variation of
�x between the adjacent crest and trough detachment points is much smaller than that
of the reattachment points. The spanwise variation of the detachment points is related to
the counter-rotating streamwise swirling flow at each crest corner, discussed in § 4.2. The
most significant effect of the grooves is to delay the bubble reattachment.

Upstream separation. A less prevalent but significant feature is the intermittent flow
separation (not visible in the mean streamlines) at the upstream end of the smooth
bump despite a favourable streamwise pressure gradient in the centre of the channel. A
mean streamline curvature is associated with a pressure gradient across the streamline
obeying the transverse Bernoulli equation ∂〈P∗〉/∂n∗ = ρ〈U∗

s 〉2/R∗ (at each point of the
streamline, R is the radius of curvature, n the coordinate normal to the streamline and
Us the speed along the streamline – strictly, in the inviscid sense). The curvature of
the streamline causes an APG in the upstream side of the bump, i.e. ∂〈P〉/∂x > 0 along
the wall in the converging flow region, whereas the free stream flow is accelerating, i.e.
∂〈P〉/∂x < 0 (see in figure 9a,d that ∂〈P〉/∂s < 0 along the free stream streamline versus
∂〈P〉/∂s > 0 along the streamline near the wall at x = 3.5). To reaffirm, while the free
stream flow is accelerating, there is an APG along the wall as the flow approaches the
bump – hence, the possibility for counterintuitive flow separation.

The mean streamlines in figure 6(a–d) suggest there is upstream separation only for GW.
However, even though no upstream mean flow separation occurs for this SW bump height,
a mean separation is very likely to occur for a higher bump, i.e. large h, as well as for
a shorter bump with a steeper slope – an important consideration in the design of wind
tunnel contractions and nozzles.

Intermittent separation upstream of the bump for SW is detailed (figure 8) in terms of the
instantaneous wall shear stress τw and the flow field (this separation is also apparent in the
instantaneous P(x), although ∂P∗/∂n∗ computed at this instant does not match ρU∗2

s /R∗,
as the flow is highly unsteady). The time series of τw (figure 8a) shows that positive shear
stress (τw > 0, in red, also reflected by the red region in the probability density function
(p.d.f.) in figure 8c) occurs more often than negative shear stress (τw < 0, in blue, reflected
by blue in the p.d.f.); the negative minima are smaller in magnitude than most of the more
numerous red maxima – the red maxima are typically approximately 3.8 times the blue
minima.

While apparently intriguing, the skin friction increase due to sweep events is much more
than the decrease by ejection events induced by streamwise vortices, and hence reflect the
inherent sweep ejection asymmetry effect on the skin friction (Jeong et al. 1997; Schoppa
& Hussain 2002). These features are well captured in the p.d.f. of τw at a particular
location (x = 3.5, z = 1.35) in SW – showing that the peak of the p.d.f. occurs mostly
to the left of τw in figure 8(b). Also shown (dashed line in figure 8b) is the p.d.f. of τw
of all (640) points in z at x = 3.5 for all (500) realizations. Because the p.d.f. is based
on a very long flow time, the occurrence of sweep and ejections should be stationary.
The p.d.f. of our localized sample and the p.d.f. of the entire z range are quite congruent,
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Wall turbulence over a bump with fine grooves

implying that our data are not biased by the detection point being preferentially on one
side of a streak. Somewhat surprisingly, the two p.d.f.s around the peak match exactly
(figure 8b) – this congruence confirms the expectation that the statistics, particularly p.d.f.,
is independent of z. The tails for the selected z location have unavoidable fluctuations,
which are significantly reduced in the dashed curve because it covers a much larger
ensemble (640 times). The integral of the blue region (negative wall shear stress, i.e.
τw < 0) amounts to 9.6 % of the total integral of the p.d.f. – the upstream separation
(τw < 0) is intermittent and infrequent (figure 8a), not unexpected for this small curvature
upstream of the bump.

The asymmetric p.d.f. of τw (with skewness of +1.004) seems to be a consequence
of the near-wall streamwise vortices having sweeps inherently stronger than ejections, as
previously mentioned, i.e. the longer right tail of the p.d.f. Coincidentally, the wall shear
stress in flat wall channel flows (without APG) also has skewness of ∼1 (Nakagawa &
Nezu 1977; Kim et al. 1987); surprising because one would expect the TBL with an APG
would modify the level of asymmetry of the p.d.f. of τw. The kurtosis of τw in figure 8(a)
is 4.96, also very close to that of flat channel flows (Alfredsson et al. 1988). These two
coincidences are unexpected and may suggest that the intermittent flow separation does not
significantly alter the near-wall streamwise vortices – a topic that remains to be explained.

The top view of instantaneous τw in figure 8(c) illustrates an extreme event with
minimum τw (marked by the vertical dashed line in figure 8a), showing that the upstream
separation is highly non-uniform in z, in addition to being intermittent, unlike the SB
downstream which is uniform in z. The x–y section in figure 8(d) (corresponding to the
solid grey line in figure 8c) reveals that the SB is extremely thin and does not significantly
affect the overlying coherent structures. The small streamwise extent of this upstream
recirculation region has a peak in the ωz contours (dotted lines, figure 8d) in contrast to
the streamwise extended vorticity layer above the SB downstream (figure 3c). Moreover,
the streamlines in figure 8(d) have a spiral-like pattern (focus, at x � 3.43, y � 0.005),
and hence with a strong spanwise velocity; no such spanwise motion is evident in the
downstream SB. Here, we emphasize that flow separation due to streamline curvature
is relevant to wind tunnels (upstream of the working section), flow over dunes, bumps,
large-scale roughness, etc.

Intermittent flow reversal is a known behaviour within flat plate longitudinal grooves
TBL flows (Chu & Karniadakis 1993). Here, we see that the APG (due to streamline
curvature) in GW induces a steady upstream separation within the grooves, i.e. a mean SB
around x = 3.5 (figure 6d). Notably, the near-wall mean streamline curvature is lower in
GW than in SW, resulting in a lower wall pressure in GW, and hence slightly decreases
the APG with respect to SW at x = 3.5 (figures 9e and 15a). Interestingly, the APG at
the grooves remains strong enough to cause the upstream mean SB at the centre of the
grooves. We speculate that this phenomenon is the combined effect of the APG and the
inherent flow reversal of grooves that, when superimposed, leads to a steady separation
at the centre of grooves. Note that on the crests, although there is no mean separation
(figure 6c), intermittent separation indeed occurs.

Secondary bubble. Surprisingly, on the downstream end of the bump, there is also a
small and steady separation bubble (‘minibubble’) within the grooves. It is embedded
within the SB (at x � 4.8), having a circulation opposite (counterclockwise) to that of the
much larger SB. Also, it is surprising that in the instantaneous flow for GW (figure 3e), a
swirl with counterclockwise rotation can be identified (at x � 4.8), which is the opposite
direction of rotation to all the other swirls within the instantaneous SB. The generation
mechanism of this minibubble appears to be similar to that of the upstream SB. Adjacent
to the wall, the larger SB behind the bump has an upstream-directed flow before the
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Figure 7. Mean velocity profiles: (a) streamwise, Ū (SW) and 〈U〉 (GW); and (b) wall-normal, V̄ (SW) and
〈V〉 (GW), at different x. Red lines denote the SW case and blue lines denote GW at the crest (dotted), at the
trough (dash-dotted) and spanwise averaged (dashed).

reattachment point; as this flow approaches the bump, it induces a reverse APG (due to
streamline curvature), resulting in flow separation. Additionally, while it is intermittently
present at the crests (and also as in SW), the minibubble is apparently steady and not
moving within the grooves – indicating that the grooves stabilize the minibubble (see
figure 3f ). The immobility of the minibubble is presumably due to the fact that the flow
of the SB near the wall pushes it upstream, while its own image vortex under the solid
surface pushes it downstream.

The effect of grooves on the mean velocity field is further documented through the
mean wall-normal velocity component (figure 6e–h). Directly after the bump’s peak, a
negative patch of 〈V〉 is observed at crests (downwash) along with the delayed detachment
(figure 6g), while positive 〈V〉 at grooves (upwash) is associated with an earlier detachment
(figure 6c). These are features connected with the streamwise swirling motion (§ 4.2)
induced by grooves. The peak value in 〈V〉 located above the SB and near reattachment is
shifted downstream in GW, consistent with the delayed flow reattachment.

The mean velocity profiles at various streamwise positions, extracted from figure 6, are
shown in figure 7. For the 〈U〉 profiles, the effect of GW is most noticeable in the near-wall
region – particularly near the bump – where 〈U〉 is higher at the troughs than crests. All
profiles collapse far from the wall for both SW and GW – emphasizing that the localized
effect of the grooves does not modify the overlying flow. From x = 5 to 5.5, an overall
decrease in 〈U〉 is observed in the shear layer region (i.e. in the range of Y = 0.1–0.2,
Y ≈ 0.15) in GW. This decrease of 〈U〉 results from a higher skin friction drag induced by
the grooves (upstream) at the bump’s peak (figure 13a) and hence the reduced momentum
downstream (at x > 5). GW alters the mean streamwise stretching rate (∂〈U〉/∂x) in the
developing shear layer (the flow accelerates as it channels into the grooves and decelerates
as it ejects out of the grooves), which in turn affects turbulence production from Reynolds
normal stresses via stretching, to be discussed in § 5.2.

The effect of grooves is further detailed in the 〈V〉 profiles. At x = 3.575, while 〈U〉
profiles show an increase near the wall for GW, 〈V〉 decreases at all y (figure 7a,b), i.e. the
upward deflection is suppressed as the flow is channelled. Also detailed is the variability
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Figure 8. Incipient separation details in SW. (a) Wall shear stress τw as a function of time and
(b) probability density function (p.d.f.) of τw at a location (x, z) = 3.5, 1.35 for SW – circles denote p.d.f.
at z = 1.35 for all realizations, while the dashed line denotes additionally averaging in z. (c) Top view of
instantaneous colour contours of wall shear stress τw at the time (×) marked in panel (a). (d) Instantaneous
colour map of streamwise velocity superimposed with line contours of instantaneous ωz (dotted lines denote
−ωz, dashed lines +ωz) and the instantaneous streamlines in the x–y plane (solid lines) at z = 1.35 marked
with a solid grey line in panel (c).

of 〈V〉 in the z direction near the wall at x = 4.5, as noted earlier, with 〈V〉 negative at
crests and positive at troughs. Around the reattachment point (x = 5.5), within grooves,
〈V〉 increases abruptly in magnitude, consistent with a flow channelled upstream at high
speed (figure 7a) at x = 5.25.

Mean pressure. For P in figure 9, we chose a reference pressure P0 such that P − P0 in
the outflow plane is zero at the wall for SW and zero at the crest for GW; henceforward,
〈P〉 stands for 〈P − P0〉 and P̄ for P − P0.

We now discuss the mean pressure field, 〈P〉, streamwise pressure gradient, ∂〈P〉/∂s,
and normal pressure gradient, ∂〈P〉/∂n, along streamlines. The APG at x = 3.5 (point a
in figure 9e) in SW that causes intermittent separation is due to streamline curvature with
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Figure 9. Colour map of mean pressure in the x–y plane for: (a) P̄ for SW and (b) 〈P〉 for GW at the centre of
grooves. (c) Colour map of 〈P〉 in the x–z plane (top view) at Y+ = 3 for GW, over 1 groove and crest. Measures
computed along the selected streamlines (at three arbitrary distances from the wall – two near the wall and one
farther away) shown in panel (a) for SW and panel (b) for GW: (d) P̄ for SW, 〈P〉 for GW; (e) ∂P̄/∂s for SW,
∂〈P〉/∂s for GW; ( f ) velocity along the streamlines Us; (g) curvature 1/R (R is the radius of curvature of the
streamline); (h) ∂P̄/∂n for SW, ∂〈P〉/∂n for GW. Measures and streamlines in panels (a,b) have the same colour
and line style.

∂P̄/∂n > 0 (marked by E in figure 9h); this results in an increase of mean pressure towards
the wall at x = 3.5 (figure 9a), and hence +∂〈P〉/∂x along the wall (satisfying a necessary
condition for flow separation). In GW, recall that we have a steady separation due to APG
(∂〈P〉/∂s > 0, marked by a′), although a lower ∂〈P〉/∂n occurs at x = 3.5 in comparison
to SW (point E versus E′, figure 9h). Notice that ∂〈P〉/∂n > 0 occurs earlier in x for GW
as illustrated in the inset of figure 9(h) causing the (steady) separation on grooves.

The local minimum in 〈P〉 near the bump peak, following the strong FPG (at points A
and A′ in figure 9d), is less pronounced for GW in comparison to SW, i.e. less negative;
similar is the pressure variation 〈P〉(x) on the crests also (figure 9c). The vanishing of
the local minimum of 〈P〉 in GW leads to a significant reduction in the APG along the
streamline (point c versus c′, figure 9(e); this aspect will be discussed further in § 4.3 in
the context of form drag and the mechanism of flow separation for GW). In an inviscid
sense, it is an unexpected change in 〈P〉 for GW (point A′ versus A) because mean velocity
is higher for GW than SW at this location (figure 9f ); therefore, a lower pressure for
GW compared with SW is expected apropos Bernoulli’s equation. The suppression of the
local minimum of 〈P〉 in GW (points A, A′) can be explained in terms of the streamline
curvature changes due to grooves, being lower in GW at this location (figure 9g, points
F and F′). Figure 9(h) shows that for GW, ∂〈P〉/∂n at the location of minimum 〈P〉
(x � 4.2) has a lower magnitude (due to lower streamline curvature) than ∂〈P〉/∂n in SW.
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The grooves modify the flow near the wall, while the pressure variation away from the wall
is similar for both SW and GW (see black and green curves in figure 9(d) for the pressure
variation far from the wall). Thus, the lower magnitude ∂〈P〉/∂n necessarily results in
higher near-wall pressure for GW – attributed to the flow channelling due to grooves.

In GW, after flow channelling at the peak of the bump, we have a flow ejection at
the point of flow separation, evident by the maximum in ∂〈P〉/∂n and 1/R (point G in
figure 9g,h) – obviously absent in SW because of the lack of channelling and ejection.
This peak value in ∂〈P〉/∂n is followed by another maximum (point H in figure 9g,h)
caused by a second streamline curvature due to flow being redirected downstream after the
ejection.

Another distinctive difference in ∂〈P〉/∂n between SW and GW is the local maximum
at x ≈ 4.8 (point N in figure 9h). In GW, the large ∂〈P〉/∂n caused by sharp streamline
curvature at the downstream foot of the bump, hence causing APG of the near-wall
upstream flowing flow of the SB (figure 9g,h points P and P′), initiates flow separation
leading to the formation of the minibubble. The near-wall upstream flowing flow goes
around the minibubble and returns back to the wall past the minibubble, somewhat similar
to point H of the streamline above the SB, and a change in curvature occurs, leading to
a maximum ∂〈P〉/∂n (point N′). This effect is sensed in the flow above the SB, causing
the change in curvature of the streamline above the SB and hence the local maximum in
∂〈P〉/∂n (point N).

Now, let us focus on the outer part of the SB. The local ∂P̄/∂n, ∂〈P〉/∂n maxima
– points S and S′ (figure 9h) – are caused by the streamlines turning towards the wall
before reattachment. Points S and S′ are followed by another change of curvature at T and
T ′ (figure 9g) at reattachment as the streamlines transition to the flat wall configuration
further downstream. The peak locations S′ and T ′ are shifted downstream with respect to
S and T – i.e. the local extrema for GW occurring after SW – resulting from a longer SB
in GW.

Intuitively, one would assume that due to the grooves-induced flow alteration near the
wall, the spanwise pressure variation for GW is significant (in comparison with SW being
uniform in z). However, in contrast to the mean velocity, which is strongly dependent on
z near grooves (figure 6), the spanwise variation of wall pressure in GW is negligible
(figure 9c). In our case, the external flow is similar between SW and GW; thus, no z
variation of wall pressure appears in GW. Because of spanwise homogeneous flow, the
mean velocity in the core of the channel is homogeneous in z and so is the pressure there.
Since pressure is a non-local variable, the wall pressure – footprint of outer pressure –
will also be homogeneous in z (Townsend 1976). In reality, the curvatures of streamlines
within the grooves are different from those of SW (compare figure 9a,b); the streamlines
immediately above the crests are also altered. However, above the crests – also above the
groove – the streamline curvature remains unaltered at all z; hence, the near wall mean
pressure does not vary in z for GW also (see figure 9c).

Some caveats. It is important to recognize that the detailed discussion in the
above paragraphs invoking the streamline curvature and ∂〈P〉/∂n discussion has some
caveats. Streamline curvature-induced pressure gradient in this highly viscous flow,
particularly within the grooves, cannot be the complete explanation as the flow there
is not rotational, and the pressure variation cannot be strictly completely described by
∂〈P∗〉/∂n∗ = ρ〈U∗

s 〉2/R∗. Furthermore, pressure is a non-local variable, and the wall
pressure distribution will also be altered by the effect of structures and the flow field further
away from the wall.
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Figure 10. (a–k) Colour maps of 〈ωx〉 superimposed with velocity vectors in a Y–z plane at different
streamwise positions for GW. The dashed line contours denote the wall-normal thickness of the vorticity
thickness δω = (〈U〉max − 〈U〉min)/(∂〈U〉/∂Y)max, the dash-dotted line contour denotes (∂〈U〉/∂U)max and
the dotted line contour denotes 〈V〉 = 0. (l) Diagram showing how to determine δω. Zoomed-in top (x–z) view
of (m) 〈U〉 − Ū and (n) ∂〈U〉/∂y at y = 0.16 ( y+ = 48) (shaded regions denote crests).

4.2. Secondary swirl
The GW is characterized, not surprisingly, by secondary flows over the entire x domain
with interesting consequences in flow separation, drag and turbulence intensity. Over the
flat regions away from the bump, there are Reynolds stress-driven secondary swirling
motions (termed secondary flow; see figure 10a,k), but these are very weak, and the
associated drag increase is more than negated by other forms of drag reduction over riblets
of this size (Suzuki & Kasagi 1994).
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Figure 11. (a) Isosurfaces of 〈ωx〉 = (−0.33, 0.33) along with the streamlines at the centre of grooves for
reference; the grey Y–z planes denote location for colour maps in figure 10. (b) Zoomed-in view of streamlines
around the secondary recirculation bubble (minibubble) within grooves at the location denoted by the dashed
line box in panel (a).

As the flow approaches the bump and enters the grooves, naturally, we see the formation
of strong patches of streamwise vorticity, 〈ωx〉, at the crest’s corners (figure 10a). The
velocity vectors at x = 3.65 on a Y–z section (figure 10a) show that while the flow is
entering (channelled) the grooves in the streamwise direction, it is moving vertically away
from the wall above the grooves – not obvious by the streamlines in the x–y plane. The
channelling is due to the upstream recirculating bubble reattaching in this location. Around
x = 3.875 (figure 11a), there is a change in the sign of 〈ωx〉 with flow ejecting from the
grooves during the contraction, which persists up to the point of flow separation (see
figure 10b–e). The vorticity patches before the change of sign of vorticity detach from
the wall while diminishing via cross-diffusion (figure 10b,c); hence, streamwise vortices
parallel to the wall (due to flow ejecting from grooves) are expected to be present in this
region.

Simultaneous with separation at x ≈ 4.4, the 〈ωx〉 patches detach from the wall and form
two streamwise vortices embedded in the developing shear layer above the recirculation
bubble, detailed by showing the vorticity thickness (δω) and (∂〈U〉/∂Y)max of the shear
layer to emphasize that these are embedded in the shear layer (figures 11a and 10e–g). The
counter-rotating streamwise jets eventually disappear near the end of the bump (figure 10g)
because of cross-diffusion (detailed vortex dynamics discussed in a subsequent paper by
García et al. 2024). Patches of 〈ωx〉 at the crest’s corners form inside the SB near the
flow reattachment as the flow enters the grooves (figure 11a at x ≈ 5.5 and figure 10j).
Interestingly, for the flow going upstream at the wall within the recirculation bubble, there
is another change in the sign of 〈ωx〉 (x ≈ 5.25) – the consequence of the flow encountering
the minibubble forcing flow to exit grooves (figure 11b). Similar to that in the upstream
side of the bump (x = 3.65) and at separation (x = 4.4), the 〈ωx〉 patches within the
recirculation bubble at the crest’s corners, prior to the change in sign, detach from the wall
(figure 10g–i); therefore, streamwise vortices also occur within the recirculation bubble.

At x = 4.25 (figure 10m, × symbol), high x-momentum is in the grooves due to flow
channelling, but shifts in z downstream to the crests (x = 4.5; see figure 10m, ∗ symbol)
due to downwash induced by streamwise vortices. The associated spanwise shift of the
x-momentum within the shear layer induced by the streamwise vortices hints that the
spanwise vortices in the developing shear layer evolve similarly to the rib and rollers
documented by Metcalfe et al. (1987); in our case, such a situation is forced by the grooved
wall inducing the z variation (figure 10n). The spanwise shift in x-momentum will help
explain a spanwise shift in dissipation, which will be discussed later.

Swirl strength. The strength of the secondary swirl motion is further investigated by
calculating the line integral of the velocity vector in the y–z plane over the closed curve C
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Figure 12. Swirl strength Γ as a function of streamwise position. (b) Sketch of the region considered to
compute Γ denoted by the loop (curve C).

in figure 12(b) (half of the groove),

Γ =
∮

C
〈Ui〉 dli, (4.1)

where dli are the components of a differential length over the curve C. The sign of Γ

indicates the direction of 〈V〉 at the centre of grooves and, of course, the resultant sense
of rotation around the crest’s corners – Γ > 0 occurs when flow enters the grooves and
Γ < 0 when flow leaves. Note that in the absence of grooves (i.e. SW), Γ ≡ 0 due to
the z homogeneity of the mean flow. As expected, far upstream and downstream of the
bump, Γ is positive for the Reynolds-stress-induced swirling motions (Goldstein & Tuan
1998), but negligible compared with that near the bump (figure 12a). The upstream SB
(figure 6d) has an associated streamwise swirl with (small) positive Γ at x = 3.65 since
the flow is pushed down into the grooves at the reattachment point (figure 11a). As the
flow is deflected upwards in the upstream side of the bump, fluid leaves the grooves
throughout (x = 3.875–4.75), resulting in a negative peak in Γ , where flow accelerates
due to FPG (figure 9d). Examining Γ uncovers that maximum |Γ | occurs where flow
accelerates due to FPG. Moreover, a peak in Γ occurs near reattachment with a strong APG
(figure 9d). Therefore, Γ reveals that pressure gradients significantly enhance secondary
swirling motions induced by the grooves.

After flow separates past the bump’s peak, there is a small region around x ≈ 4.75
(figure 12a), where a local minimum follows a local maximum in Γ . This local transition
results from the combined weakening of the detached 〈ωx〉 patches (streamwise vortices)
(figure 10f,g at Y = 0.125) through viscous diffusion and the generation of corner vorticity
patches at the wall due to fluid moving upstream and out of the grooves (figure 10g,h). At
x � 5.5, the Γ sign is due to induction by Reynolds stress and progressively becomes
weak.

We will see later that |Γ | correlates well with the skin friction at the wall, indicating
that the secondary swirls are responsible for the significant modifications of the flow mean
characteristics, such as drag and flow separation (discussed in § 4.3).

Görtler vortices? One may raise the question, because of the concave curvature of the
bump upstream and downstream, whether Görtler vortices should occur in these regions.
Here, of course, the flow is fully turbulent, yet this is a valid question. It turns out that
the Görtler number (G) at these two locations indeed satisfies the criterion for Görtler
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instability (G > 0.3) reaching a maximum exceeding 100. This, however, is unable to
induce the Görtler vortices because it only happens abruptly in a small x range and, in
fact, there is no evidence of Görtler vortices in our simulation.

4.3. Skin friction and wall pressure distribution
The surface differences between SW and GW naturally provoke the question: what are
the effects of GW on the skin friction and pressure drag of the bump? The skin friction
coefficient is cf (x) = 2τw

∗(x)/(ρU2
b) = 2τw(x), where τw is the time average of wall

shear stress, averaged over the entire z range of the computation. In GW, τw includes the
contributions of the crest wall and groove’s side walls and bottom wall (details of the skin
friction coefficient, cf (x), and wall shear stress, τw, computations are in Appendix B).
At the top wall, cf is positive and remains almost constant throughout without separation
(figure 13a) because the influence from the bottom wall bump is too weak. Furthermore,
not surprisingly, the grooves also have no effect in cf on the top wall. For the rest of the
paper, we will only focus on the bottom wall.

For SW, cf decreases just before the bump, consistent with the intermittent flow
separation (see § 4.1). Then, on the upstream side of the bump (at x ≈ 4.05; R2 in figure 2),
cf increases sharply with increasing in x, due to flow acceleration near the wall. Next,
cf drops to zero at flow separation (x = 4.4; R3 in figure 2) and becomes negligible on
the downstream side of the bump (from x = 4.4 to 4.8), where flow moves upstream
(Mollicone et al. 2017). Downstream of the bump (x > 5), cf (x) has its minimum at
x ≈ 5.1, coinciding with the centre of the recirculation bubble (figure 6a), then gradually
increases, switching sign at the reattachment point, followed by a prolonged but gentle
decrease towards the value of the flat wall case.

Upstream of the bump, cf (x) for GW is smaller than SW – a consequence of having a
riblet-like surface giving an effective slip velocity at the height of the crests. Just before
the bump, cf (x) decreases to zero at x = 3.5 but does not become negative, although the
flow is upstream within grooves (figure 6d). Hence, the z integrated quantity cf (x) does
not capture the SB if it remains within the grooves, i.e. not penetrating past the crests.

Although the location of maximum cf (x) in GW is similar to that in SW, the magnitude
is significantly higher in GW (by 20 %). The upstream side of the bump (x ≈ 4.1) cf in
GW is higher than that in SW because the roughness length scale of the grooves doubles
locally in wall units (k+ = 33.5), far exceeding the drag-reducing size (k+ = 15), and
locally becomes drag increasing. Similarly, the minimum cf has a greater magnitude than
SW in addition to being shifted further downstream (to x � 5.3) with respect to SW. The
flow channelling and associated secondary flow (figures 10j and 14a) cause the increase of
cf inducing intense wall shear at the corner of the crests, as discussed next.

As the flow enters the grooves – either on the upstream side of the bump or upstream of
reattachment – 〈τw〉 increases locally at the crest corners, better depicted by the top view
of 〈τw〉 and spanwise profiles of 〈τw〉 in figure 14(a,b). Although the velocity is low within
the SB, the jump in 〈τw〉 at the corner of the grooves exceeds the skin friction obtained
in SW. The elevated corner 〈τw〉 on the crests due to the fluid channelling and secondary
flow is responsible for the pronounced maximum and minimum in cf in GW (Jelly, Jung
& Zaki 2014). The wall shear stress as a function of x in GW at the centre of crests, crest
corner, groove corner and centre of grooves is included in figure 13(b) as a reference.

Recall that the grooves studied here are drag reducing over flat TBL, so let us now
delve further into the role of the grooves in producing drag reduction and its quantification
through the local skin friction drag reduction r(x) = 1 − cf ,GW(x)/cf ,SW(x) around the

989 A13-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.465


F. Hussain, E. García, J. Yao and E. Stout

0.04

0.02

–0.02
2 3 4 5 6 7 2

2
〈τ w

〉

3 4 5 6 7

2

–1

0

1

3 4 5
x

r

x x

6 7

0

0.04
SW Crest centre

Crest corner
Groove centre
Groove corner

SW top wall
GW top wall

GW

0.02

–0.02

0

cf

(b)

(c)

(a)

Figure 13. (a) Skin-friction coefficient cf (x), (b) wall shear stress at different z positions for GW and
(c) skin-friction drag reduction r(x).
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Figure 14. (a) Colour map of wall shear stress, 2τw,x, for GW. The dashed line contour corresponds to
〈τw〉 = 0. (b) Skin-friction profiles in the z-direction at different streamwise positions. The lines in panel (b)
correspond to the x position denoted by the black dots over the bump in panel (a).

bump (figure 13b). As the flow approaches the bump, r increases, achieving a maximum
at x = 3.5. Note that r is equal to one at this location because the flow separates in the GW
case but not for the SW. At the region of flow acceleration (3.75 < x < 4.2), r becomes
negative, denoting drag increase up to the point of separation, which occurs for both SW
and GW approximately at the same location (x = 4.4). Hence, r tends to infinity at x = 4.4
since cf ,SW appears in the denominator with zero value. After separation, cf is negative (for
both SW and GW) but with a lower magnitude for GW; therefore, within the recirculation
bubble, r returns to a finite positive value for a drag-reducing stage. In the downstream
side of the bump, cf (x) in SW and GW is negligible, where r oscillates between −1 and
+1. After the bump (x > 5) where cf is non-negligible, r is negative before reattachment,
indicating that the grooves cause a significant drag increase over the flat region inside the
recirculation bubble. Beyond reattachment, the grooves are drag-reducing and eventually
return to the flat channel state.

To explain the bump’s total drag, we further consider the pressure coefficient cp(x) =
2pw

∗/ρU2
b = 2pw, where pw is the spanwise and time-averaged wall pressure. Figure 15(a)

shows streamwise variations of cp, dcp/dx, 〈pw〉 at crests and 〈pw〉 at grooves. As discussed
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Figure 15. (a) Pressure coefficient cp, wall pressure at the centre of grooves, wall pressure at the centre
of crests and pressure coefficient gradient dcp/dx. (b) Pressure coefficient difference between SW and GW
(cp,SW − cp,GW ).

earlier, the wall pressure at the centre of grooves (dash–dotted line) and at the centre of
crests (dotted line) are almost identical. For SW, a weak APG occurs upstream of the bump;
and for GW, the APG decreases slightly in magnitude but remains positive and strong
enough to produce the upstream separation within grooves (see x = 3.6, figure 6d). Not
surprisingly, a strong FPG develops on the upstream side of the bump (x � 4), stronger in
SW than in GW (marker a in figure 15a). This is because, in GW, due to flow channelling,
streamlines have lower curvature producing lower ∂〈P〉/∂n resulting in a higher 〈pw〉, and
hence lower FPG (discussed previously in § 4.1).

Now we address the wall pressure downstream of the bump peak. Interestingly, the
transition from an FPG to a significant APG (point b in figure 15a) occurs only for SW,
i.e. the grooves suppress the APG (at x = 4.4). This can be understood by recognizing
that grooves reduce the streamline curvature for 4.2 < x < 4.4, allowing flow to continue
straight (discussed in § 4.2), and hence, the lower magnitude of the APG (figure 9e,d).
Despite the lack of APG in GW (dashed line in figure 15a at x = 4.4), flow separates
at the same location as SW (x ≈ 4.4). This unexpected separation without APG in GW
at the same point as SW, rather than at a farther downstream x, is because of the high
momentum fluid emanating from the grooves (i.e. jetting with a wall-normal velocity
component resulting in separation). This jetting-induced separation over a bump surface
(with grooves) without any APG is quite akin to the flow behind a backwards facing step.
Moreover, despite jetting, the average velocity very close to the bottom wall of the groove
trough is smaller than the average velocity near the wall on top of the crest. Hence, the
flow over the crest separates later, and the flow within the groove separates earlier – as is
indeed the case (figure 6) – while keeping the z average separation point unchanged.

Further downstream (x > 5), the dcp/dx distribution for the SW and GW cases show
similar trends, but the peak is delayed for the latter (point c in figure 15a), because of the
longer SB.

The effect of the grooves is quantified in figure 15(b) by showing the difference in wall
pressure distribution between the SW and GW, cp,SW − cp,GW . On the upstream side of
the bump (3.5 < x < 4.25), cp,SW is lower than cp,GW , while on the downstream side of
the bump (4.25 < x < 5), cp,SW is higher. As the form drag acts only on the bump, this
change in cp along the bump means the form drag is larger on the GW bump.

The total drag coefficient at the lower wall is defined as

Cd = Cd,f + Cd,p, (4.2)

where Cd,f = L−1
x
∫

cf (x) dx is the skin friction drag coefficient and Cd,p =
L−1

x
∫

cp(x)niδi1 dx is the form drag coefficient (δij is the Kronecker delta tensor).
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Cd,f × 10−3 Cd,p × 10−3 Cd × 10−3

SW 6.97 3.09 10.06
GW 6.62 3.87 10.49(

1 − Cd

C0
d

)
× 100 5.02 −25.24 −4.27

Table 1. Drag coefficients for the SW and GW bump.

In table 1, Cd, Cd,f and Cd,p are reported for SW and GW. Even though grooves can
locally be drag increasing at the peak of the bump, on average, a global reduction of 5 %
in Cd,f is obtained. In contrast, the grooves increase Cd,p by 25 %. As a passive drag
control, skin-friction drag-reducing grooves over a bump increase form drag significantly;
this contrasts other passive drag control methods such as superhydrophobic surfaces that
can reduce the form drag of a similar bump (Mollicone et al. 2022). These grooves over a
bump also contrast with active drag control methods such as streamwise travelling waves
of spanwise velocity (Banchetti, Luchini & Quadrio 2020), where both the skin friction
and form drag significantly decrease. The increase in form drag due to the grooves causes
a 4.2 % increase in the total drag Cd (see table 1). Note that the bump is an isolated fixed
size perturbation (regardless of grooves), the contribution of Cd,p to Cd becomes less with
increasing the channel length.

5. Turbulence statistics

5.1. Reynolds stresses and variance of pressure fluctuations
SW Reynolds stresses. Far upstream of the bump (e.g. x < 3), the streamwise normal
stress (uu, recall u = U − Ū) has a peak around y = 0.05 ( y+ ≈ 15) (figure 16a), due
to the typical meandering of near-wall streaks on flat plate TBL (Kim et al. 1987). In
the upstream side of the (SW) bump (R2 in figure 2), uu decreases compared with that
upstream (R1 in figure 2), consistent with a flow accelerating on the upstream side of
the bump (Narasimha & Sreenivasan 1973; Balin & Jansen 2020). Downstream of the
bump’s peak, the uu is maximum in the shear layer above the recirculation region (due
to higher ∂Ū/∂y and hence higher production) and increases in x reaching its peak at
(x, y) = (5.25, 0.15).

In contrast to uu, the normal stress vv shows no significant reduction in magnitude
on the upstream side of the bump (figures 16b, 17a; R2 in figure 2), perhaps because
quasi-streamwise vortices in this region are being streamwise stretched, and thus
maintaining the vv intensity. Behind the bump (x > 5), vv increases with its peak value
in the shear layer similar to uu, although at a lower y position than the peak of uu. In
particular, the peaks of uu and vv at x = 5.25 are y = 0.123 and y = 0.0933, respectively
(figure 17a,b; × symbol as reference). The variation of streamline curvature downstream
of the bump peak necessarily introduces non-zero ∂V̄/∂x and ∂V̄/∂y strain rates, which
occur predominantly below the shear layer (y < 0.15), as seen in figures 6(b) and 7(b).
This non-zero ∂V̄/∂x and ∂V̄/∂y further generates vv via −vv∂V̄/∂y and uv∂V̄/∂x, and
hence the different y between the peaks of uu and vv. As a reference fact, in a plane mixing
layer, the peaks of uu, vv and ww all lie at the same y-location (Oster & Wygnanski 1982)
and production occurs only for uu due to ∂Ū/∂y and ∂Ū/∂x.
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Figure 16. Colour maps of Reynolds normal stresses: (a) uu, u′u′, 〈u′u′〉; (b) vv, v′v′, 〈v′v′〉; (c) ww, w′w′,
〈w′w′〉 and (d) Reynolds shear stress −uv, −u′v′, −〈u′v′〉, in x–y sections. From top to bottom in each panel
are the SW, spanwise averaged GW, GW at the centre of crests and GW at the centre of grooves.

The spanwise normal stress ww (figure 16c) doubles its magnitude on the upstream side
of the bump with respect to that upstream of the bump; different to uu, which decreases by
50 %, and vv, which remains the same. This is surprising because the accelerating flow on
the upstream side of the bump should reduce turbulence, but again, it can be attributed to
the stretching of quasi-streamwise vortices. A notable feature of ww, absent in uu and vv,
is that the high intensity ww in the shear layer spreads more in y, particularly below the
shear layer in the region 5 < x < 6 (figure 17a,c; + symbol as reference) due to transport
of TKE from the shear layer towards the wall. In SW, ∂W̄/∂z ≡ 0, so there is no production
of ww at 5 < x < 6; therefore, the source of ww must be the redistribution of energy via
pressure fluctuations (further discussed in Appendix C); note that this is also the case in
GW as ∂〈W〉/∂z ≈ 0, implied by the velocity vectors in figure 10.
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Figure 17. (a) Normal Reynolds stress profiles; red line, uu (SW), u′u′ (GW); blue lines vv (SW), v′v′ (GW);
black lines ww (SW), w′w′ (GW). (b) Reynolds shear stress profiles; red lines −uv (SW); blue lines −u′v′
(GW). For both panels, the solid lines correspond to SW and the dashed lines to GW.

The overall distribution of −uv in figure 16(d) is similar to that observed in the normal
stresses with a peak value in the shear layer above the recirculation bubble. Interestingly,
on the upstream side of the bump, a region of negative −uv is observed very close to the
wall (the blue region in figure 16d) – consistent with the finding by Mollicone et al. (2017)
for a similar configuration and by Elyasi & Ghaemi (2019) in separating and reattaching
flows on a backwards-facing ramp. It is attributed to the curving instantaneous streamlines
with u > 0 due to accelerating flow and v > 0 due to flow pushed away from the wall.
Note that the negative −uv can result in a negative production – further discussed in § 5.2.

GW Reynolds stresses. One distinct effect of the grooves is to delay and decrease
the peak of the streamwise Reynolds normal stress (〈u′u′〉, where u′ = U − 〈U〉); see
figure 16(a). Such suppression of turbulence in shear layers has been observed with
controlled excitation (Zaman & Hussain 1981) or by perturbing the shear layer with
an obstruction such as a spanwise cylinder (Rajagopalan & Antonia 1998). Here, the
organized roughness acts as an excitation via flow channelling and the resulting jetting
out – also causing turbulence suppression in the local shear layer. The grooves introduce
streamwise vortices into the local shear layer, altering the evolution of the naturally
forming energetic spanwise rollers (formed via Kelvin–Helmholtz instability), presumably
by changing the roll-up frequency, and hence, the strength (circulation) of the rollers.
Like 〈u′u′〉, the 〈v′v′〉 and 〈w′w′〉 peaks are also delayed in x in GW, with respect to SW
(figure 16a,b); the 〈w′w′〉 value is not notably modified by GW, unlike the 〈u′u′〉 and
〈v′v′〉 peaks (figure 16c). A similar result has been observed in separating TBLs with
embedded streamwise vortices (Angele & Muhammad-Klingmann 2005). The difference
in Reynolds stresses between a crest and a groove is negligible, except near the wall where
the turbulence intensities slightly increase inside the grooves at the crest height (clear in
Y–z contours of the Reynolds stresses, but not shown for brevity).

The spatial variation (in x–y) of the peak of −〈u′v′〉 between SW and GW is similar
to those of the normal Reynolds stresses – presumably for the same reason as peaks in
normal Reynolds stresses. The region (in x–y) of negative −〈u′v′〉 for GW is larger and
with higher magnitude in the grooves.

989 A13-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.465


Wall turbulence over a bump with fine grooves

3.0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

3.5 4.0 4.5 5.0 5.5

x

y

y

6.0 6.5 7.0 3.0 3.5 4.0 4.5 5.0 5.5

x
6.0 6.5 7.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

0

5

(×10–4)

(b)

(a) (c)

(d )

Figure 18. Colour contours of variance of pressure fluctuations in an x–y plane: (a) pp SW; (b) p′p′ GW
spanwise averaged; (c) 〈p′p′〉 GW at the crest centre; (d) 〈p′p′〉 GW at the groove centre.

Figure 17 shows the vertical distribution of Reynolds stresses at various streamwise
locations extracted from the contours in figure 16. Figure 17(a) confirms that the 〈v′v′〉
and 〈w′w′〉 peaks are closer to the wall than 〈u′u′〉 – for both SW and GW. In addition to
lowering the peak of 〈u′u′〉, the grooves also shift the peak location vertically away from
the wall with respect to the SW case (figure 17a). This vertical shift is due to the overall
increased wall-normal velocity associated with fluid jetting out of the grooves pushing the
shear layer away from the wall (figure 7). The vertical shift is also apparent for 〈v′v′〉,
〈w′w′〉 and −〈u′v′〉. Further downstream, as the shear layer diffuses and the flow gradually
returns to the flat wall state, the differences between SW and GW in all Reynolds stresses
disappear (figure 17a,b at x = 5.5).

The normal Reynolds stresses budgets upstream of the bump where flow accelerates
(with negative production) and downstream of the bump at the location of peak turbulence
intensity are discussed in Appendix C.

Variance of pressure fluctuations. The peak of the variance of pressure fluctuations
(〈p′p′〉) within the shear layer also shifts downstream in GW compared with SW
(figure 18b–d); but unlike 〈u′u′〉, 〈p′p′〉 does not decrease. As pressure fluctuation is
primarily related to the vortical structures (Na & Moin 1998b), the fact that the peaks
of pp and 〈p′p′〉 between SW and GW are the same implies that the dominant structures
in the shear layer are similar between SW and GW. However, the dominant structure in
GW is modified by the ejecting jets – yielding lower spanwise-averaged Reynolds stresses
in GW.

5.2. Turbulent kinetic energy: production and dissipation
To gain some insight into the dynamical significance of the grooves’ alteration of the flow
around the bump, we analyse the turbulent kinetic energy (TKE) balance. Henceforward,
for simplicity, we will only use the 〈·〉 notation, which corresponds to GW, although
in SW, the same equations apply but with (·) instead of 〈·〉. The mean kinetic energy
K = 1/2〈UiUi〉 (per unit mass) can be split into two parts, K = KM + kT , where KM =
1/2〈Ui〉〈Ui〉 is the kinetic energy of the mean flow and kT = 1/2〈u′

iu
′
i〉 is the TKE.

The equation for the transport of TKE in an incompressible, statistically steady flow is
(Pope 2000)

〈Ui〉∂kT

∂xi︸ ︷︷ ︸
mean advection

= P − ε −
∂

1
2
〈u′

iu
′
ju

′
j〉

∂xi
− ∂〈u′

ip
′〉

∂xi
+

∂
2

Re
〈u′

js
′
ij〉

∂xi︸ ︷︷ ︸
turbulent transport

, (5.1)
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where P = −〈u′
iu

′
j〉∂〈Ui〉/∂xj is the turbulence production and ε = 2/Re〈s′

ijs
′
ij〉 dissipation

(s′
ij = Sij − 〈Sij〉 is the fluctuating string rate tensor). Equation (5.1) can be re-cast in a short

form by defining a vector φTi :

∂φTi

∂xi
= P − ε, (5.2)

where φTi = 〈Ui〉kT + 1/2〈u′
iu

′
ju

′
j〉 + 〈u′

ip
′〉 − 2/Re〈u′

js
′
ij〉 represents flux of TKE in

different directions (i = 1, 2, 3) due to mean advection, turbulent transport, pressure
transport and viscous diffusion. By combining all transport terms into φTi , we now need
to address only the three terms in (5.2) (φTi , P and ε) whose spatial distribution might be
more tractable than looking at all terms of φTi separately.

Figure 19 shows P superimposed with the vector field φTi . Consistent with the
Reynolds stresses shown in figure 16, the production occurs predominantly in the shear
layer, with a decrease in magnitude and a downstream shift of the peak in GW. The
increased production in the shear layer is accompanied by significant transport of energy
in the vertical direction. The vectors in figure 19(a–c) show that the TKE transport is
predominantly from the peak of production towards the wall. Previously, we mentioned
that 〈w′w′〉 contours extend more towards the wall than away (figures 16c and 17a from
5 < x < 5.5); this y-asymmetric distribution is different from the more symmetric 〈u′u′〉
and 〈v′v′〉 around the shear layer. Since 〈w′w′〉 has no production (∂〈W〉/∂z ≈ 0), its larger
y extent below is due to transport terms of TKE – in both SW and GW.

Figure 19(d) shows contours of P superimposed with φTi in Y–z planes at different x
locations; note that the x locations are chosen to highlight regions with higher spanwise
variations of P and they are located upstream of the peak of P . The local peaks of
production near corners of the crests, associated with the local increase in shear stress
(figure 13b) and the secondary Reynolds shear stress TKE production −〈u′w′〉∂〈U〉/∂z.
The vectors φTi predominantly point towards the wall below the local peaks of P and
away from the wall above the local peaks, with a weak modulation in z caused by the
swirling motion at the crests corners, i.e. ∂φTi/∂xi > 0 in the shear layer, which is not
surprising as the layer is the source of φTi . The transport above the shear layer is dominated
by wall-normal velocity advection, 〈V〉kt (figure 19l). However, all transport terms in φTi
have some contribution in the shear (figure 19i–h).

Negative production. In steady turbulent shear flows, the mean production integrated
over the entire domain must be positive to counter the mean dissipation. In this sense,
‘negative production’ – implying net transfer of turbulence kinetic energy to mean flow
kinetic energy – always has remained enigmatic and has been the subject of considerable
curiosity. Only in the specific case of the plane mixing layer, Zaman & Hussain (1981)
documented a region of negative mean production and explained the phenomena involved.
In the case of TBLs with pressure gradients, local regions of mean negative production
have been reported (Mollicone et al. 2017; Elyasi & Ghaemi 2019; Banchetti et al. 2020)
but not explained. Here we find regions of steady negative production – one upstream of
the bump for SW and GW, a second appears within the grooves upstream of the bump, and
a third in the SB near the wall for both SW and GW – and attempt to explain this enigmatic
phenomenon in some detail.

For SW, streamwise acceleration can alter production due to −〈u′u′〉〈S11〉, −〈v′v′〉〈S22〉
and −2〈u′v′〉〈S12〉, while both 〈u′w′〉〈S13〉 and 〈v′w′〉〈S23〉 are identically zero by
z-symmetry at all x. However, for GW, very close to the wall and within the grooves,
all the above five contributions to P are non-zero – with corresponding alterations to
the dissipation components also. Note that further outside, 〈u′w′〉 and 〈v′w′〉 would be
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Figure 19. Colour maps of TKE production (P) with superimposed vectors of TKE flux vector (φTi , defined
in text) for: (a) SW; (b) GW at the centre of crests; (c) GW at the centre of grooves. The red dashed line denotes
the mean streamline through the point of peak P . (d) P in the Y–z plane superimposed with (black) vectors of
φTi and velocity (blue) vectors. Transport terms contributions at x = 4.5: (i) 〈u′

iu
′
ju

′
j〉/2; ( j) 〈u′

ip
′〉; (k) −2〈u′

js
′
ij〉,

〈Ui〉kT . The dashed line contours denote the shear layer thickness δω = (〈U〉max − 〈U〉min)/(∂〈U〉/∂Y)max, and
the dash–dotted line identifies (∂〈U〉/∂Y)max.
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negligible compared with 〈u′v′〉, and normal productions −〈u′u′〉〈S11〉, −〈v′v′〉〈S22〉 are
even more dominant due to pressure gradient (i.e. flow acceleration/deceleration). In the
following, we briefly discuss first the FPG effect of the bump in the SW case, then the GW
case, and highlight the differences.

In the upstream region of the SW bump, although the peak of net production is
positive near the wall (with a positive peak −〈u′u′〉〈S11〉 dominant over a negative peak of
−2〈u′v′〉〈S12〉; see figure 28 in Appendix C), we see negative mean production in the outer
region (figure 19a) – our main interest here. Examination of all contributions to P reveals
that the negative P is caused by mean streamwise stretching 〈S11〉〉 > 0, −〈u′u′〉〈S11〉
being approximately five times either −2〈u′v′〉〈S12〉 or −〈v′v′〉〈S22〉 productions there
(figure 28 in Appendix C). This negative production is consistent with the previously
observed decrease of 〈u′u′〉 in figure 16(a) around x = 4.

For GW, the non-negligible contributions to the production at the centre of crests and
grooves are −〈u′u′〉〈S11〉, −〈v′v′〉〈S22〉 and −2〈u′v′〉〈S12〉 (the term −〈w′w′〉〈S33〉 � 0, and
the rest are exactly zero at the centre of crests and grooves). The negative P in the outer
region is similar between GW and SW; however, an additional region of negative P occurs
at x � 4 within the grooves (figure 19c,d). This is due to negative −〈u′v′〉 (with positive
〈S12〉); see figure 28.

The negative P downstream of the (SW) bump near the wall within the SB is purely
from streamwise stretching, ∂〈U〉/∂x > 0 as −〈u′v′〉 > 0 there. In GW, this layer with
negative P moves inside the grooves and extends longer in x. Additional details on the
origin of negative production can be found in the decomposition of P along streamline
coordinates, discussed next.

Production along streamline. The production consists of different components
contributed by different mechanisms, which can be decomposed and analysed for both SW
and GW, as the two cases are likely to be different, particularly near the wall. It is prudent
to analyse these components in the streamline coordinate as these are simpler, compared
with the Cartesian coordinates. The decomposition of P along a streamline coordinate is

P = Pσ + Pτ + PG, (5.3)

where Pσ = −〈u′
su

′
s〉∂〈Us〉/∂s is the production by the Reynolds normal stress, Pτ =

−〈u′
nu′

s〉∂〈Us〉/∂n is the production by the Reynolds shear stress and (in the case of
grooves) PG = −〈u′

sw
′〉∂Us/∂z is the production by the Reynolds shear stress associated

with secondary flow (see § 4.2). Note that s denotes a coordinate along a streamline and n
is normal to s in the x–y plane.

The contributions from the normal stresses (Pσ ) and shear stresses (Pτ , PG) to the
total production P along the streamline passing through the peak of P (denoted by the red
dashed line in figure 19a–c) are displayed in figure 20. On the upstream side of the bump
(x = 3.5–4), the region with negative P is confirmed to be caused by flow acceleration
from the normal stress contribution Pσ having ∂〈Us〉/∂s > 0, due to local streamwise
stretching – for both the SW and GW (figure 19).

Past the strong FPG (x � 4, figure 15a) upstream of the bump peak, around the bump
peak (4 < x < 4.4), although P is positive, unexpectedly we find a patch of negative Pσ at
the crests for GW, indicating that flow continues to experience streamwise stretching there
(see figure 20f ). Of course, the negative Pσ does not lead to negative net P because the
shear production (Pτ ,PG) dominates in this region. Note that even though Pτ is negative
at the corners of the crest at 4 < x < 4.4 (figure 20b), it is countered by PG (figure 20c),
which is strong precisely at the same locations. Therefore, in GW, the net contribution
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locations denoted in panels (a–c) on the left side of the panels): (d) Pσ , Pτ , PG; (e) 〈u′

su
′
s〉, 〈u′

su
′
n〉, 〈u′

sw
′〉;

and ( f ) ∂〈Us〉/∂s × 20, ∂〈Us〉/∂n, ∂〈Us/∂z. The solid lines correspond to SW, the dashed lines to GW at the
centre crests, the dash–dotted line to GW at the crests corners and the dotted line to the centre of grooves.

from the shear production components to P , namely Pτ + PG, turn out to be positive and
dominate over Pσ at 4 < x < 4.4.

Let us focus now on P in the downstream region past the bump peak and above the
recirculation bubble (4.4 < x < 6). As expected, the contribution from Reynolds shear
stress Pτ is the dominant component of P , particularly at the peak of P which lies in
the middle of the shear layer, for both SW and GW. For GW, there is non-negligible PG

downstream of the bump peak (x = 4.5), but it is much weaker than PG at the bump peak
(x � 4.25) and PG quickly vanishes before reaching the peak of P (figure 20c). At the peak
of P , both Pτ and Pσ also have peaks for both SW and GW. The magnitude and location
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Figure 21. Colour maps of TKE dissipation (ε) with superimposed vectors of kinetic energy transport vector
(φTi , defined in the text) for: (a) SW; (b) GW at the grooves; (a,b) with a zoomed-in view of contours of ε and
P . The red dashed line denotes the mean streamline through the point of peak P . (c) Same data in the Y–z
plane; the dashed lines contours denote the shear layer thickness δω = (〈U〉max − 〈U〉min)/(∂〈U〉/∂Y)max, and
the dash–dotted line identifies (∂〈U〉/∂Y)max.

of the peak of Pτ in GW is very close to that of the SW Pτ at 5 < x < 5.5 (figure 20d),
and ∂〈Us〉/∂n remains unchanged between SW and GW (figure 20f ). In contrast, the peak
of Pσ decreases notably in magnitude and moves further downstream (figure 20d) due
to the suppression of both 〈u′

su
′
s〉 and ∂〈Us〉/∂s for GW, as observed in figure 20(e, f ).

Hence, we recognize that the reduction in the peak of P and the change in location is
primarily due to the changes in Pσ , i.e. streamwise stretching rate ∂〈U〉/∂x and 〈u′u′〉,
and not because of Pτ . In other words, the grooves are significantly modifying ∂〈U〉/∂x,
lowering the normal production of 〈u′u′〉. This surprising effect of ∂〈U〉/∂x by grooves is
presumably connected with the streamwise vortices.

Dissipation. The spatial distribution of dissipation (ε) is rather similar to that of
production (P), except adjacent to the wall where they differ as in any TBL (figure 21)
– true for both SW and GW. The ε has a distinct peak near the shear layer, but the peak
is closer to the wall and further downstream than the peak P (again true for both SW and
GW, as seen in figure 21a,b); also noticed by Mollicone et al. (2017). The downstream
shift is perhaps expected since turbulence needs to be produced first so that it can be
soon dissipated, while the vertical shift is less obvious. The vector field φTi (figure 19a–c)
indicates that the vertical transport of TKE is mostly from the peak P towards the wall.
This downward transport perhaps is responsible for the vertical shift of the ε peak and
the wider contours of ε in y towards the wall, compared with that in P (figure 21a,b).
Figure 21(b,c) show lower dissipation for GW, as expected from the lower turbulence
intensity compared with SW.
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The Y–z plane distribution of dissipation in figure 21(d) reveals additional details due to
the grooves-generated secondary motions. On the upstream side of the bump, x = 3.875,
dissipation is maximum at crests and, moving downstream, local peaks appear at the
corner of crests, which detach and move away from the wall (figure 21d, x = 4.25). The
detachment of the ε peaks from the corners of the crest has a similar evolution to that
observed in 〈ωx〉 (figure 10) associated with the streamwise swirling jets induced by
the grooves. However, this is a puzzling result as vortices have zero dissipation at their
cores and we expected a further reduction in ε at these sites. Possibly, this is because
of the unsteady meandering of the streamwise jets, resulting in the increased ε. Further
downstream, 4.45 < x < 5, as expected, the peak dissipation is closely linked to the
regions of high shear in the shear layer (i.e. shear production of turbulence). Recall from
§ 4.2 that there is a spanwise shift of the peak shear in the shear layer from the centre of
crests to the centre of grooves due to the streamwise swirling jets (secondary motions)
induced by the grooves. Therefore, not surprisingly, dissipation has a similar spanwise
shift.

TKE spectra. The pre-multiplied spanwise wavenumber spectra of TKE, κzΦkT (x, Y, λz),
are shown (figure 22a) at different x locations (those near the bump, figure 22b–g,
are marked by dashed lines in figure 22l,m). Here, ΦkT (x, Y, κz) = (Φuu(x, Y, κz) +
Φvv(x, Y, κz) + Φww(x, Y, κz))/2, where Φuu, Φvv and Φww are respectively the spectra
of velocity components U, V and W; Φuu(x, Y, κz) = 〈Û(x, Y, κz, t)Û·(x, Y, κz, t)〉, Û is
the Fourier coefficient of U (similarly Φvv and Φww for V and W); f · denotes the complex
conjugate of f ; and κz and λz are the wavenumber and wavelength, respectively, in the z
direction. The x locations chosen capture well the spectral evolution in the flow domain.
First, far upstream (x = 1.75), where the bump has no effect, the energy spectra resemble
that of a flat plate TBL. The contours show a peak at Y = 5 × 10−2 (Y+ ≈ 15) and
λz = 3.3 × 10−2 (λ+z ≈ 100) associated with the averaged spanwise spacing of streaks
in the buffer layer – in agreement with previous studies (Kim et al. 1987). Also consistent
with previous observations, the effect of grooves on the TKE spectra is only slightly sensed
near the wall for the lowest level contour.

Further downstream (3.875 < x < 4.25), as flow structures impinge on the upstream
side of the bump, more energy appears closer to the wall, and the contours of κzk̂T extend
to lower Y; these structures are pushed up and stretched due to the local flow acceleration
on the upstream side of the bump (discussed in § 3). As a result, the extent of the TKE
spectra expands in both the y-direction and λz, particularly on the upstream side and around
the peak of the bump. The effect of the grooves is to expand the outer contours towards
the wall and shift towards lower wavelengths, particularly around λz = 0.1 and 0.05, the
pitch (wavelength) of grooves and the width of grooves, respectively. The TKE at λz = 0.1,
as expected, is associated with the fluid jetting out of the grooves generating streamwise
vortices with spanwise size half of the groove size, λz = 0.05 – more clearly shown in
figure 22(k).

For the initial stages of the developing shear layer (x ≈ 4.5), there is an increase in
the energy content at the lower wavelengths for GW, owing to the additional small-scale
structures associated with the grooves. For GW, the peak of the energy spectra decreases
and shifts away from the wall as the local shear layer shifts up (as seen also in figure 17).

At x = 4.75, the contours become elongated and clumped together in the middle of the
shear layer (figure 22a). In GW, the additional small-scale structures with a peak of energy
around λz = 0.05 to 0.1 are still persistent at x = 4.75, now embedded in the developing
shear layer. Moreover, the energy distribution remains unchanged above the local shear
layer (i.e. Y > 0.15) in GW, but weakens below the shear layer (x = 4.75). Note that the
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Figure 22. (a–j) Pre-multiplied spanwise wavenumber spectra of TKE (κzΦkT (Y, λz)) at different x locations.
(k) ΦkT (κz) at (x, Y) = (4.5, 0.049). Solid lines are for SW and dashed lines for GW in panels (a–k). Contours
of 〈ωz〉 for (l) SW and (m) GW, with vertical dotted lines denoting locations for spectra in panels (b–g). The
green vertical lines denote wavelengths of λz = 0.1 and 0.05 corresponding to the groove size.

energy at λz = 0.05 near the wall, which appears around the bump (3.875 < x < 4.5),
disappears further downstream within the SB, but, not unexpectedly, reappears at x = 5
(figure 22f ) where there are strong swirling motions at the corners of crests with flow
advecting upstream (discussed in § 4.2) and where flow reattaches (figure 22g).
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Further downstream, in both SW and GW, the narrow energy band associated with
the shear layer grows in the wall-normal direction and transitions to the flat wall state.
Interestingly, there are two peaks of energy spectra in this transition region (figure 22i),
also noted by other researchers (Krogstad & Skåre 1995; Laval, Marquillie & Ehrenstein
2012). One is associated with the local shear layer and the other is due to the reappearance
of the typical low-speed velocity streaks. The grooves, however, smear these peaks into
a single combined region. In GW, far downstream of the bump, the outer (i.e. low-level)
contours extend further in y towards the bottom wall (figure 22j). Thus, when combined
with the bump, the effect of the grooves is felt very far downstream despite the contours of
mean spanwise vorticity (and other mean quantities) being indistinguishable between SW
and GW.

5.3. Anisotropy invariants
Turbulence modelling is challenging when the flow is in a non-equilibrium state, such as
TBLs with strong APG or FPG (Wilcox 1998; Witherden & Jameson 2017). For example,
in an accelerating flow caused by a contraction, the history of streamwise stretching to
which turbulence is subjected persists long after the contraction, and the local mean strain
rate tensor cannot accurately predict the Reynolds stress tensor anisotropy (Pope 2000).
For this reason, the changes in the anisotropy of the Reynolds stress tensor are frequently
reported for such complex flows, see Krogstad & Skåre (1995) and Mollicone et al. (2017).
The normalized anisotropy tensor with components bij is defined as bij = 〈u′

iu
′
j〉/〈u′

ku′
k〉 −

δij/3. Since the first invariant I = bii = 0, the anisotropy tensor has only two non-zero
invariants: II = −bijbij/2 and III = bijbjkbki/3. A comparison of the overall anisotropy
between SW and GW can be obtained by examining the function F = 1 + 9II + 27III
(figure 23), which is the determinant of the tensor with components 〈u′

iu
′
j〉/(1/2〈u′

ku′
k〉)

in terms of the invariants II and III of the anisotropy tensor (Pope 2000). The function
F is a measure of the approach of the Reynolds stress tensor to either two-component
turbulence (F = 0) or a three-component isotropic state (F = 1) (Krogstad &
Skåre 1995).

Far from the bump (either upstream or downstream), turbulence near the wall is highly
anisotropic, associated with the low-speed streaks expected for a flat channel. In these
regions, the grooves mildly reduce the anisotropy near the wall, while F in GW is
indistinguishable from the SW for y > 0.017 ( y+ > 5).

In the flow around the bump (the region 4 < x < 4.4), turbulence isotropy extends closer
to the wall, as the flow is accelerated, and the isotropic state of the Reynolds stress tensor
comprises most of the wall-normal extent (figure 23a) with F ≈ 0.6. Very close to the
wall, of course, turbulence stays highly anisotropic (F ≤ 0.1).

The downstream side of the bump, where the local shear develops, is characterized
by highly anisotropic turbulence, similar to a mixing layer above the SB (Bell & Mehta
1990) and a separating TBL near the wall (Skåre & Krogstad 1994; Mollicone et al. 2017).
The grooves notably reduce anisotropy at the peak of the bump – similar to roughness
on flat plate TBL (Leonardi et al. 2004). Further downstream, at x = 4.6, the grooves
reduce anisotropy in the near-wall region and at the height of the shear layer (see the two
local maxima of F profiles in figure 23e). The decrease in anisotropy persists downstream,
particularly inside the recirculation region.

In GW, after flow reattachment, the layer of high F sloping away from the wall in the
range of 0.1 < y < 0.2 has F greater than SW (figure 23e), and the higher F persists
further downstream (see also García et al. 2024) Again, this isotropic turbulence layer
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Figure 23. Colour maps of F = 1 + 9II + 27III, the invariant function, for the (a) SW, (b) GW spanwise
averaged, (c) GW at crest and (d) GW at grooves. (e) Profiles of F at the streamwise locations denoted by
dotted vertical lines in panels (a–d). The red contour in panels (a–d) denotes the mean dividing streamline. In
panel (e), the solid line corresponds to SW, the dash–dotted line to GW spanwise averaged, the dotted line to
GW at crest and the dashed line to GW at grooves.
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Figure 24. Cross-sections delineating the computational grid in different planes: (a) x–y section, dashed black
line indicates the groove trough, y coordinate is vertical and starts from the top of the crest; (b) y–z section at
the bump’s peak; (c) y–z section away from the bump – both upstream and downstream. The Y coordinate in
panel (c) is the same as in panel (b). Note that the darker shadings in panels (a–c) denote solid portions within
the wall. We show only every 4th grid point in each direction.
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persists very far downstream in GW, even though it is relatively far from the grooves in
the wall-normal direction. Thus, this change must be a historical effect due to grooves
at the recirculation region and the onset of the local shear layer. The anisotropy of the
Reynolds stress tensor as a function of y at various streamwise positions is discussed in
the supplementary material (S3) via the anisotropy invariant maps (Lumley triangle).

6. Concluding remarks

Recognizing the prevalence of roughness and its effects on the TBL characteristics in
a variety of near-wall flows in nature and technology, we study via DNS the flow over
the idealized case of a spanwise bump with small scale longitudinal square grooves
to understand how these two organized disparate perturbations together affect the flow
physics.

The sinusoidal bump chosen in this study is large enough to noticeably perturb the TBL
and induce a smooth-body flow separation downstream of the bump peak and subsequent
reattachment without substantially modifying the flow at the top channel wall. In this
part, important turbulence statistics in a grooved wall bump (GW) flow are quantified
and compared with the smooth wall bump (SW) flow.

At large streamwise distances away from the bump, the groove size considered yields
a mild drag reduction compared with a smooth flat plate. The effect of the grooves is
profound around the bump. At the start of the bump, the incipient flow separation due
to mean streamline curvature observed for the SW bump is augmented by the grooves,
inducing a steady SB within the grooves. After the upstream separation, the flow tunnels
into the grooves at the upstream end of the bump and ejects past the bump’s peak,
initiating streamwise swirling jets (secondary motions) at the corners of the crest. The
swirl generates upwash motion out of the grooves and downwash motion and impingement
on top of the crests leading to the separation points at crests and grooves to occur at
different x-locations – earlier at the grooves and later at crests. Although the spanwise
averaged x-location of flow separation in GW is nearly the same as that in SW, the
x-location of flow reattachment is significantly delayed in GW by 30 %. Interestingly, a
secondary, wall-attached separation bubble (minibubble), embedded within the primary
bubble, occurs with a circulation opposite to that of the SB at nearly the same distance
from the bump peak as that of the upstream SB. However, the minibubble (typically
two or three instantaneously) is due to the similar mean streamline curvature induced
separation of the wall boundary layer as that upstream, except in this case, the separation
is of the upstream flowing boundary layer at the bottom of the SB and the minibubble is
much weaker (lower circulation) than the upstream SB. Why the upstream bubble is much
longer than the downstream minibubble and why there are multiple minibubbles remain
an interesting curiosity. The minibubble is also present in SW but only intermittently –
like the intermittent upstream separation in SW.

Prior studies have shown that longitudinal grooves locally in the region of APG could
be beneficial in reducing form drag and delaying flow separation in a TBL when the
groove size is comparable to the boundary layer thickness. The present study shows
that small-scale grooves, in case of a bump perturbation, have the opposite effect – the
small-scale grooves fail to delay flow separation, increase the form drag of the bump and
prolong the SB length. Consequently, the total drag caused by the grooves outweighs the
benefits of skin-friction drag reduction achieved over the flat part of the channel away from
the bump. The effect of the groove size on the upstream and downstream separations is the
subject of our further research.
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While GW increases form drag and, thus, total drag, it reduces turbulence intensity
and TKE production in the developing shear layer behind the bump. The TKE balance
along a streamline coordinate shows that the decrease in TKE production and the
associated decrease in turbulence intensities for GW result from modification of the
streamwise mean stretching rate (∂〈U〉/∂x). The reduction in ∂〈U〉/∂x suppresses
the contribution of production by normal Reynolds stress. The production from the
secondary motion Reynolds shear stress in GW becomes important only near the bump
peak – not at the point of peak of production further downstream. Additionally, the
production decomposition in the streamline coordinate shows that the shift in x of
the peak production in GW is due to the post-peak groove jetting flow shifting the
peak normal stress production – not due to any notable shift in the peak shear stress
production.

Interestingly, three regions of negative mean production have been identified involving
two different mechanisms – two upstream of the bump and a much thinner region
downstream. The downstream negative production region has the same thickness in
SW and GW, while it is longer in GW. In the upstream side of the (SW) bump,
the negative production is shown to be a result of a mean streamwise stretching of
the flow, i.e. positive ∂〈U〉/∂x resulting in −〈u′u′〉∂〈U〉/∂x < 0. In GW, an additional
patch of negative production occurs inside the grooves on the upstream side of the
bump; it is purely due to positive 〈u′v′〉 (hence, counter-gradient Reynolds shear
stress) and not because of streamwise stretching. That is, one is due to negative
normal stress production and the other due to negative shear stress production, both
regions of negative production occurring at the same x but different y. The near
wall negative production downstream of the (SW and GW) bump within the SB
is due to mean streamwise stretching of the flow, although this flow is locally
moving upstream. Hence, the downstream value is much lower than the upstream
value.

TKE spectra, in addition to detailing the energy associated with the flow structures
induced by the grooves in the shear layer, also emphasize that the effect of grooves on
the shear layer past the bump is persistent until the end of the flow domain considered,
far beyond the SB. This fairly interesting result revealed by the spectra is not obvious
from the mean flow quantities far downstream after reattachment, although it is not totally
surprising because of the lingering effect of the upstream spinning jets. This history
effect of grooves far downstream is further emphasized by analysing the anisotropy of
the Reynolds stress tensor. Reduced anisotropy of the Reynolds shear stress tensor in GW
is persistent until the end of the computational domain, similar to the lingering persistence
of TKE spectra features. Therefore, the presence of longitudinal grooves, even if small,
over a bump perturbation have notable prolonged effects on the flow and must be included
in turbulence modelling.

The present study may help understand flows over bumps in various technological
devices and vehicles, and flows over sand dunes at riverbeds and around hills, as well
as aspects related to heat transfer, aerodynamic noise and erosion. In the case of hills
(with organized vegetation and vine rows), the vapour transport and, hence, irrigation
requirements can be optimized by the application of this study.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.465.
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Appendix A. Computational grid

For the main domain, uniform grid cell sizes are used in x and z directions, with �x+ =
1.8 and �z+ = 0.75. These grid sizes are adequate to resolve the flow details within and
around grooves and, hence, also the flow around the bump (20 grid points in z within each
groove and crest, and 250 grid points over the length of the bump). A non-uniform grid
is used in y, with grid points clustered near the walls (top and bottom) from a minimum
grid size of �y = 0.001 (�y+ ≈ 0.3) (which is constant in y up to the bump’s peak) to
a maximum in the channel centre of �y = 0.02 (�y+ ≈ 6). In the precursor simulation,
the grid sizes in y and z are identical to those in the main channel, and the grid size in x is
held constant at �x+ = 3.5.

Appendix B. Numerical procedure validation in rough flat channels

The flow around the roughness elements is computed by means of the efficient immersed
boundary method (IBM), avoiding body-fitted grids. The IBM has been used extensively
for flows over transversal square bars (Leonardi et al. 2003; Orlandi, Leonardi & Antonia
2006; Burattini et al. 2008) as well as longitudinal grooves (Fu et al. 2017; Arenas et al.
2019; Bernardini et al. 2021) and details of the method can be found from Orlandi &
Leonardi (2006). In the IBM, velocity is set to zero in the grid points inside the body (red
crosses in figure 25), while the boundary of the body (green solid line in figure 25) does not
necessarily coincide with the grid. Here, we use the methodology of Orlandi & Leonardi
(2006) where viscous terms are treated with special care considering the exact distance
from the grid point in the fluid neighbouring the solid body (�z and �y in figure 25)
rather than using the mesh size. The correction for the viscous terms is particularly critical
in this work, not only for accurately solving the flow over the grooves, but also in the
regions around the bump perturbation, which has a smooth curvature.

The computational method used here is validated by replicating the results for
longitudinal square bars of Orlandi et al. (2006), Orlandi & Leonardi (2006) and
transversal bars of Leonardi et al. (2003).

The longitudinal bars are with k = 0.2 and k/w = 1, where k is the height of
the bars and w the separation between bars (see figure 26d) – this configuration is
equivalent to longitudinal square grooves. The bulk Reynolds number is Reb = 2800,
which corresponds to Rec = UcH/ν = 4200, where Uc is the centreline laminar Poiseuille
velocity as used by Orlandi et al. (2006) and Orlandi & Leonardi (2006). The bars, as well
as the grooves, have 20 grid points in the z direction and 40 points in y. In the cavity, the
grid points in y are equally spaced, and stretching is implemented above the bars. The grid
is 256 × 192 × 400 in the entire computational domain (from the bottom of grooves to the
top wall) of (Lx, Ly, Lz) = (8, 2.2, 4) in the x, y and z directions, respectively – hence, we
have 10 bars in the z-direction.

Figure 26(a,b), displaying the mean velocity profiles and turbulence intensities, shows
excellent agreement with the data of Orlandi et al. (2006) and Orlandi & Leonardi (2006).
Excellent agreement is also achieved in the top smooth wall when compared with the
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Figure 25. Geometrical sketch of the grid around the corner of a groove. The arrows indicate the position in
the grid where the velocities are specified (staggered). Blue circles correspond to fluid points near the boundary
of the roughness element where derivatives of the velocities are computed using the real distance to the body
(�y, �z). The green solid line corresponds to the boundary of a groove. The velocities inside the solid body
(red crosses) are set to zero.
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Figure 26. Flow statistics of a simulation with longitudinal square bars: (a) mean streamwise velocity profiles;
(b) turbulence intensities and Reynolds shear stress profiles; (c) total shear stress; (d) 〈U〉 in the y–z plane; and
(e) wall shear stress on the side walls, bottom and crest of the grooves.

results of Lee & Moser (2015) for approximately the same Reynolds number (figure 26a,b).
The wall shear stress is a critical measure to compare.

989 A13-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

46
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.465


Wall turbulence over a bump with fine grooves

Here, we review how the wall shear stress is computed applicable for a wall with a bump,
i.e. the wall shear stress is a function of x. The wall shear stress x component is

〈τ ∗
w〉(x, l) = μ

∂〈U∗〉|wall

∂x∗
i

mi; 〈τw〉(x, l) = 1
Reb

∂〈U〉|wall

∂xi
mi, (B1a,b)

where mi = (ni − (njsj)si)/(|ni − (njsj)si|) is the normalized projection of the normal
vector to the wall with components ni into the y–z plane, si the components of the unit
vector parallel to the x direction and l is the coordinate that follows the wall contour in
the y–z plane. Equation (B1a,b) is for the case of grooves over a bump state, where we
consider the wall shear stress x component on the crest, side walls and bottom wall of
grooves over the bump; for SW, we replace 〈U〉 with Ū and (B1a,b) equally applies. As
an example, for the wall shear stress over the crest, side walls and bottom wall of grooves,
boundaries 1 to 4 denoted in figure 26(d), (B1a,b) becomes as follows:

〈τw〉|1,3 = 1
Reb

〈U〉boundary,1,3

�z
〈τw〉|2,4 = 1

Reb

〈U〉boundary,2,4

�y
, (B2a,b)

where �y and �z are the distances to the body from the neighbouring grid points (red
crosses in figure 26d). Figure 26(e) shows the wall shear stress distribution at the four
boundaries for the longitudinal square grooves we are replicating. The wall shear stress x
component is then integrated along the contour of the wall in the y–z plane to obtain the
total wall shear stress

τw(x) = 1
λg

∫
〈τw〉(x, l) dl

= 1
λg

[
2
∫ 0

−0.2
〈τw〉|1,3 dy +

∫ 0.2

0
〈τw〉|2 dz +

∫ 0.4

0.2
〈τw〉|4 dz

]
, (B3)

where λg = k + w. The skin friction coefficient is cf (x) = 2τw
∗/(ρU2

b) = 2τw.
For validation, the wall shear stress in a channel with longitudinal grooves but without a

bump (thus no variation in x) is calculated to be τw = 0.004867. The same wall shear stress
is obtained if computed only at the crest height, i.e. τw = τ̄ |y=0 (figure 26c), so that within
the groove, Reynolds shear stress is included with the viscous shear stress. The friction
velocity is uτ = u∗

τ /Ub = √
τw

∗/ρ/Ub = 0.06976, but for the purpose of validation with
Orlandi et al. (2006), we need to non-dimensionalize this value using as reference value the
smooth wall laminar centreline velocity Uc; uτ (Ub/Uc) = 0.0465. The present simulation
agrees within <1 % of the value of uτ = 0.0463 reported by Orlandi et al. (2006).

The longitudinal bars can be characterized by the roughness Reynolds number k+ =
kuτ /ν ≈ 40, considered in the range of a fully rough surface by Orlandi & Leonardi (2006)
with a drag increase of 15 % with respect to a smooth wall with the same Reynolds number
– we obtain the same value here. Interestingly, this particular roughness has no form drag
contributions, and the total drag is due to skin friction, as is the case with riblets. Note that
riblets are characterized using a length scale based on groove cross-sectional area Ag, l+g =√

A+
g (García-Mayoral & Jiménez 2011), which in this case is equivalent to k+. Riblets

with l+g = 15 have a drag reduction of approximately 5 % (García-Mayoral & Jiménez
2011). We find that for the square grooves described in § 2, which have k+ = l+g = 15, a
mild drag reduction of 3 % is achieved, with the square grooves behaving as a riblet-like
surface.
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Figure 27. Flow statistics of a simulation with transversal square bars: (a) mean velocity profiles in wall units;
(b) distribution of viscous shear stress at the wall, 〈Cf 〉 = Re−1∂〈U〉/∂y, where the 〈·〉 here denote averaging
with respect to time, z and the 5 bars in x; distribution of wall pressure on the (c) horizontal walls and
(d) vertical walls, and (e) mean streamlines averaging in time and z. The dotted lines of reference in panel
(a) are for Ū+ = 0.41−1 ln y+ + 5.5 − �U+, with �U+ = 0 and 13.2.

To further emphasize the validity of the present numerical code, we also reproduce the
results for a turbulent channel flow with transversal square bars in one wall of Leonardi
et al. (2003). The bars are with k = 0.2 and w/k = 7 (figure 26c). The bulk Reynolds
number is Reb = 2800. The grid is 320 × 160 × 128 on a computational domain of
(Lx, Ly, Lz) = (8, 2.2, 3.2) with 40 points in y within the cavity and 8 points in x for each
square bar.

Figure 27(a) shows the comparison of mean velocity profiles in wall units with those
of Leonardi et al. (2003) – also the comparison of the smooth wall with that of Lee &
Moser (2015). As discussed in detail by Leonardi et al. (2003), Orlandi et al. (2006) and
Orlandi & Leonardi (2006), the roughness will produce a downward shift of the log region
with respect to the smooth wall. Correctly plotting the mean velocity profile will rely on
accurate measurement of uτ (which has contributions from viscous drag and form drag)
as well as the y+-origin, d0. We follow the procedure delineated by Leonardi et al. (2003).
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The friction velocity is uτ = (Pd + Cf )
1/2, where Cf = λ−1

g
∫ λ

0 〈Cf 〉 ds = −5.838 × 10−4

and Pd = λ−1
g
∫ λ

0 〈P〉nixi ds = 0.0118 (ni is the normal vector to the surface and s a
coordinate starting at the leading edge of the bar). Note that Cf is the average of that
in figure 27(b) and Pd is the form drag using pressure distributions in the vertical walls in
figure 27(d). These results are in good agreement with that reported in figure 5 of Leonardi
et al. (2003). The y+-origin, d0, is computed using the centroid of the moments of forces
around roughness elements, giving d0/k = 0.4872 in good agreement with figure 8(a) of
Leonardi et al. (2003). The downward shift �U+ = 13.2 in figure 27(a) is also in good
agreement with figure 9 of Leonardi et al. (2003).

Finally, for validation of the distributions in the x–y plane, we compare the mean
streamlines and viscous wall stress as the flow over transversal square bars involves flow
separation relevant to the flow over the bump. Figure 27(e) shows a similar pattern to that in
figure 2 of Leonardi et al. (2003); the reference values in figure 27(e) taken from that work
correspond only to the mean dividing streamline, with good agreement. Accordingly, the
distribution of viscous stress 〈Cf 〉(x) is in excellent agreement with Leonardi et al. (2003)
(figure 27b).

Appendix C. Generation of spanwise and normal velocity fluctuations and their roles
in negative production and peak production

The Reynolds stress budget is delineated and analysed in locations of negative production
and peak of production to identify the origin of negative production and clarify the
production of wall-normal and spanwise Reynolds stress. The transport equation for the
Reynolds stresses is

〈Uk〉
∂〈u′

iu
′
j〉

∂xk
= Pij + εij + Tij + Πij + Vij, (C1)

where Pij = −〈u′
iu

′
k〉∂〈Uj〉/∂xk − 〈u′

ju
′
k〉∂〈Ui〉/∂xk is the production tensor, εij =

2/Re〈∂u′
i/∂xk∂u′

j/∂xk〉 is the dissipation tensor, Tij = ∂〈u′
iu

′
ju

′
k〉/∂xk is the turbulent

transport (also called turbulent diffusion) tensor, Πij = −〈u′
i∂p′/∂xj + u′

j∂p′/∂xi〉 is the
velocity-pressure-gradient tensor and Vij = 1/Re∂2〈u′

iu
′
j〉/∂x2

k is the molecular diffusion
tensor.

Negative production region. The negative production observed in the upstream side of
the (SW) bump is shown to be due to flow stretching, S11 > 0 (figure 28a) (streamwise
stretching of a fluid element that can increase w′w′ and v′v′, but not u′u′). Additionally,
near the wall (Y < 0.05), negative production due to Reynolds shear stress is countered
by positive contribution of −u′u′S11 > 0; note that for this production term to be positive,
S11 has to be negative – hence locally, the flow must be contracting rather than stretching.
In GW, the negative production at Y > 0.02 is similar to that in SW at x ∼ 4. In contrast,
the additional patch of negative production inside grooves at the same x is due to negative
Reynolds shear stress (−〈u′v′〉 < 0) and not due to local stretching (figure 28b).

In the turbulence statistics section, we discussed that in the region of flow acceleration,
the intensity of 〈u′u′〉 decreases, consistent with the negative production (figure 28c).
However, 〈v′v′〉 remains approximately the same, and 〈w′w′〉 even increases slightly. The
〈v′v′〉 and 〈w′w′〉 budgets reveal that their just stated changes are predominantly due to
the advection term contribution (figure 28d,e). In terms of vortex dynamics, as the flow
accelerates, the near wall quasi-streamwise vortices are streamwise stretched, and as v′
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Figure 28. Contributions to TKE production from normal and shear Reynolds stresses in the region of negative
production (x = 4.05) for (a) SW and (b) GW. Balances for Reynolds stress components (at x = 4.05) in the
region of negative production: (c) balance of 〈u′u′〉; (d) balance of 〈v′v′〉; (e) balance of 〈w′w′〉; the solid lines
correspond to SW and the dashed lines to GW.

and w′ intensify, both 〈v′v′〉 and 〈w′w′〉 should increase equally. Note that 〈v′v′〉 has
an additional (marked) loss due to turbulent transport (figure 28) – hence, the different
variations of 〈v′v′〉 and 〈w′w′〉. In GW, the trends at Y > 0.2 of the normal Reynolds
stresses budgets are similar to SW, while near the wall becomes too complex to interpret.

Peak production region. The Reynolds stress budget at the peaks of production (x = 5.1
for SW and x = 5.3 for GW) are shown in figure 29 with the y coordinate normalized
by the inflection point, yIP, of the mean streamwise velocity, which collapses the profiles
between the SW and GW cases. Note that away from the shear layer, there is no inflection
point, and hence, this scaling is not applicable. Previously, Song & Eaton (2004) and
Schatzman & Thomas (2017) showed that turbulence statistics profiles from a separated
flow region collapse with yIP scaling of the y coordinate. Recall that the GW induces a
shift of the peak of turbulence in the wall-normal direction (see § 5.1); hence, the scaling
of y with yIP is particularly useful to assess the influence of grooves on the profiles.
In a simple (equilibrium) shear flow, the production is that of the streamwise normal
stress 〈u′u′〉 (i.e. P = 1/2Pii = 1/2P11) and the production of wall-normal, 〈v′v′〉, and
spanwise, 〈w′w′〉, stresses are by redistribution of energy from the streamwise direction
through pressure fluctuations – since P22 = P33 = 0 (Pope 2000). However, in a TBL
with a bump perturbation, the mean velocity in the wall-normal direction is non-zero, and
hence, P22 /= 0 for both SW and GW (figure 29b). In GW, there is non-zero P33; however,
at the peak of production, we find P33 ≈ 0, i.e. emphasizing that secondary motions
are negligible at this position. Of course, transport terms, as mentioned in the turbulent
statistics section, become important, particularly transport due to pressure fluctuations and
turbulent transport – the latter more noticeable for 〈v′v′〉 (figure 29a,b).
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Figure 29. Balances of Reynolds stresses components showing the effect of grooves at the peak location of
TKE production: (a) balance of 〈u′u′〉; (b) balance of 〈v′v′〉; (c) balance of 〈w′w′〉; (d) pressure-rate-of-strain
redistributive terms (R11 = 〈p′s11〉, R22 = 〈p′s22〉, R33 = 〈p′s33〉). The wall-normal coordinate is normalized
by the height of the inflection point (yIP) in the mean velocity profile. The dashed lines are for GW.

The budget of Reynolds stresses gives insight on the production of 〈w′w′〉, since the peak
value of 〈w′w′〉 is not decreasing as much as in the other directions due to the grooves. The
intensity of 〈w′w′〉 is predominantly due to the redistribution of energy through pressure
fluctuations, as seen in figure 29(c). Note that Π33 has two peaks, one at the streamwise
velocity inflection point and another closer to the wall, which in part explains the wider
distribution of 〈w′w′〉 in the wall-normal direction compared with 〈u′u′〉 and 〈v′v′〉.

We further look at the redistribution of energy due to fluctuating pressure revealed by
the pressure-rate-of-strain tensor:

Rij = 2〈p′s′
ij〉, (C2)

where the rate of transfer of energy among normal stresses exactly balance each other
since the trace of Rij is zero for incompressible flow (i.e. R11 + R22 + R33 = 0). At
the inflection point, the redistribution of energy is from 〈u′u′〉 (i.e. loss) to 〈v′v′〉 and
〈w′w′〉, but near the wall, the loss is predominantly of 〈v′v′〉, and gain in 〈w′w′〉 and 〈u′u′〉
(figure 29d).
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