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Realizations of Regular Toroidal Maps
Dedicated to our teacher, colleague and friend Donald Coxeter

B. Monson and A. Ivić Weiss

Abstract. We determine and completely describe all pure realizations of the finite regular toroidal polyhedra
of types {3, 6} and {6, 3}.

1 Introduction

Regular figures and their symmetries have been studied since antiquity and from a great
many points of view. Recently there has been a renewed and fresh interest in the combi-
natorial properties of regular figures, a renewal greatly inspired by the many contributions
of Donald Coxeter. For example, his 1937 paper on regular skew polyhedra [2], concerns
one of the first truly significant generalizations of the classical regular polytopes (convex
or starry) and honeycombs. Also his work on regular (and chiral) maps, which we can
now view as key examples of regular (respectively, chiral) abstract polyhedra, is a crucial
component of Generators and Relations for Discrete Groups [5], written jointly with Willy
Moser.

Indeed, from these investigations and from the work of many others, the notion of a
combinatorially regular polytope has developed in several subtly different ways over the
last thirty years. (See for example [6], [7], [8] and [13], as well as the brief history in
[10, pp. 97–100]. In Section 2 we give an overview of the basic theory of regular (abstract)
polytopes, referring to the survey article [10] and forthcoming monograph [13] for details.)

Although the ‘abstract’ side of the theory of polytopes is interesting in its own right,
and does of course clarify many general properties and constructions, one is always drawn
to the ‘real’ part of the theory. The link is provided by McMullen’s work on the cone of
realizations for a regular polytope (see [9], which incidentally was dedicated to Donald
Coxeter on his eightieth birthday).

In this paper, we investigate the pure realizations of finite regular toroidal polyhedra (or
maps) of type {3, 6} and {6, 3}. Burgiel and Stanton have described elsewhere the pure
realizations of these maps, essentially by examining the action of the automorphism group
on a unitary space whose basis is identified with the vertex set of the map [1]. Here we take a
somewhat different approach, which allows us to explicitly describe real representations of
the group. In another paper [14] we have similarly dealt with the regular toroidal polyhedra
of type {4, 4}.
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2 Regular Toroidal Polyhedra of Types {3, 6} and {6, 3}

An (abstract) n-polytope P is a partially ordered set with a strictly monotone rank function
having range {−1, 0, . . . , n}. An element F ∈ P with rank(F) = j is called a j-face;
naturally, faces of ranks 0, 1 and n − 1 are called vertices, edges and facets, respectively. We
also require that P have two improper faces: a unique least face F−1 and a unique greatest
face Fn. Furthermore, each maximal chain or flag in P must contain n + 2 faces, and P

should be strongly flag-connected. Finally P must have a homogeneity property: whenever
F < G with rank(F) = j − 1 and rank(G) = j + 1, there are exactly two j-faces H with
F < H < G.

We shall mostly be concerned with the case n = 3. Thus the facets of the polyhedron P

are 2-faces, or polygons.
The symmetry of P is, of course, exhibited by its automorphism group Γ(P). In particu-

lar, P is regular if Γ(P) is transitive on flags, as we henceforth assume. Now fix a base flag
Φ = {F−1, F0, . . . , Fn−1, Fn}, with rank(F j) = j. For 0 ≤ j ≤ n− 1, there is a unique flag
Φ j differing from Φ in just the rank j face; so let ρ j be the (unique) automorphism with
(Φ)ρ j = Φ

j . In this case, Γ(P) is generated by the involutions ρ0, ρ1, . . . , ρn−1, which
satisfy at least the relations

(ρiρ j)
pi j = 1, 0 ≤ i, j ≤ n− 1,(1)

where pii = 1, 2 ≤ pi j ≤ ∞ for i �= j, and pi j = 2 for |i − j| ≥ 2. Furthermore, an
intersection condition on standard subgroups holds:

〈ρi : i ∈ I〉 ∩ 〈ρi : i ∈ J〉 = 〈ρi : i ∈ I ∩ J〉(2)

for all I, J ⊆ {0, . . . , n − 1}. In short, Γ(P) is a certain quotient of a Coxeter group with
linear diagram, and we call Γ(P) a string C-group.

Conversely, given any groupΓ = 〈ρ0, . . . , ρn−1〉 generated by involutions and satisfying
(1) and (2), one may construct a polytope P with Γ(P) = Γ (see [10, Theorem 2.9]).

As a first example, we consider the regular tessellation {3, 6} of the plane (by congruent
equilateral triangles). Indeed, {3, 6} is an infinite regular 3-polytope; and the full symme-
try group [3, 6] is generated by the reflections ρ0, ρ1, ρ2 indicated in Figure 1. The unit
translations τx = ρ1ρ2ρ1ρ2ρ1ρ0 and τy = ρ1τxρ1 = ρ2ρ1ρ2ρ1ρ0ρ1, along lines inclined
at π/3, generate an abelian subgroup of [3, 6]; and we may regard τ b

x τ
c
y as translating the

origin (0, 0) to the point (b, c). For a fixed pair of non-negative integers (b, c), consider
the translation subgroup 〈τ b

x τ
c
y, τ
−c
x τ

b+c
y 〉, whose fundamental region is the rhombus with

vertices

(0, 0), (b, c), (b− c, b + 2c), (−c, b + c).

Identifying opposite edges of this rhombus, we obtain the finite toroidal polyhedron (or
map) P = {3, 6}(b,c), having v = b2 + bc + c2 vertices, 3v edges and 2v faces. In fact, P

is itself a regular 3-polytope when b ≥ 2, c = 0 (or vice versa), or when b = c ≥ 1 ([5,
Section 8.4]). Moreover, for {3, 6}(b,0), the automorphism group, of order 12b2, has the
presentation

ρ2
0 = ρ

2
1 = ρ

2
2 = (ρ0ρ1)3 = (ρ1ρ2)6 = (ρ0ρ2)2 = 1

(ρ2ρ1ρ0)2b = 1,(3)
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ρ2

(−c, b + c)

ρ1

(0, 0)

ρ0

(b− c, b + 2c)

(b, c)

τy

τx

Figure 1: The tessellation {3, 6}.

([5, Section 8.6]). Similarly, the automorphism group for {3, 6}(c,c) has order 36c2 and the
presentation

ρ2
0 = ρ

2
1 = ρ

2
2 = (ρ0ρ1)3 = (ρ1ρ2)6 = (ρ0ρ2)2 = 1

(ρ2ρ1ρ2ρ1ρ0)2c = 1.(4)

(For simplicity we also use ρ j to indicate the generators of these finite groups; and it is
convenient, though not geometrically accurate, to still speak of τx, τy as ‘translations’.)

We next consider the dual tessellation {6, 3}, that is the tessellation of the plane by reg-
ular hexagons (one of which is indicated in Figure 1). Factoring out by the same transla-
tion subgroup as before, we thereby obtain the (topological) dual of {3, 6}(b,c), namely the
toroidal map {6, 3}(b,c), with v = b2 + bc + c2 faces, 3v edges and 2v vertices. The auto-
morphism groups for the two dual maps are isomorphic, so they are both regular (or both
chiral).

When bc(b− c) = 0 and b2 + bc + c2 ≥ 3, we may view the dual maps as dual regular ab-
stract polyhedra. In this case, the distinguished generators ρ0, ρ1, ρ2 for {3, 6}(b,c) (see (1)),
are simply reversed in order so as to provide the distinguished generators for {6, 3}(b,c).

Although it is fruitful, even necessary at times, to abandon concrete geometric figures
(such as a torus) when thinking of an abstract polytope P, it is nevertheless interesting
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to model P in a natural way in Euclidean d-space E, as is done in McMullen’s theory of
realizations of P. (We assume that P is finite and thus modify slightly the discussion in [10,
Section 3].)

Fixing an origin o ∈ E, we consider any homomorphism

f : Γ(P)→ O(E)

(into the orthogonal group). Taking R j := (ρ j) f , we define the Wythoff space for f as

W := {p ∈ E : pR j = p, 1 ≤ j ≤ n− 1}.

A realization P := [ f , p] is then defined by the homomorphism f , together with a base
vertex p ∈WP :=W .

Now consider the vertex set of P, namely P0 := {F0γ : γ ∈ Γ(P)}. Then the map

β : P0 → E

F0γ �→ p(γ f )

is well-defined, and each γ ∈ Γ(P) thereby induces an isometric permutation on V (P) :=
(P0)β (the vertex set of the realization). If E ′ = aff

(
V (P)

)
, then the dimension of the

realization is dim(P) = dim(E ′). Note that the linear group G(P) :=
(
Γ(P)

)
f leaves E ′

invariant.
We naturally say that two realizations of P, say P j = [ f j , p j] in E j , ( j = 1, 2), are con-

gruent if there is an isometry g : E1 → E2 such that (p1)g = p2 and (γ f1)g = g(γ f2),
∀γ ∈ Γ. It is known that the congruence classes of realizations have the structure of a con-
vex r-dimensional cone, where r is the number of diagonal classes in P [10, Theorem 3.8].
(A diagonal is an unordered pair of distinct vertices in P0.) If the jth diagonal class is repre-
sented by p, q j ∈ V (P), and ||p − q j ||2 = δ j , then P is determined by the diagonal vector
�(P) = (δ1, . . . , δr).

Now if G(P) acts reducibly on E ′, then in a natural way P is congruent to a blend of lower
dimensional realizations, say Q and R, and we write P ≡ Q#R (cf. [10, Section 3.1.4]). On
the other hand, if this does not happen, i.e. if G(P) acts irreducibly on E ′, then P is said to
be a pure realization. The fact that diagonal vectors of pure realizations span the extreme
rays in the realization cone is crucial to McMullen’s proof of the fundamental numerical
results outlined below.

For v = |P0|, let Ē be (v − 1)-dimensional Euclidean space. Clearly, P has a simplex
realization T in Ē, obtained by letting Γ(P) act in a natural way on the vertex set V (T) of a
regular simplex in Ē. Let w̄ = dim(WT).

Take dG to be the degree and wG to be the Wythoff space dimension for each of the
(finitely many) distinct, irreducible representations G of Γ(P), excluding cases with wG =
0. And let Γ0 = 〈ρ1, . . . , ρn−1〉 in Γ(P).

Theorem 2.1 ([10, Section 3.2]) With the notation above and summing over distinct irre-
ducible representations of Γ(P), we have:

(a)
∑

G wGdG = v − 1 = |{Γ0σ : σ ∈ Γ \ Γ0}|.
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Figure 2: The group K and certain automorphisms.

(b)
∑

G
1
2 wG(wG + 1) = r = |{Γ0σΓ0 ∪ Γ0σ

−1Γ0 : σ ∈ Γ \ Γ0}|.
(c)
∑

G w2
G = w̄ = |{Γ0σΓ0 : σ ∈ Γ \ Γ0}|.

These character-like results are extremely useful in classifying the full range of pure re-
alizations for a finite regular polytope P.

3 General Pure Realizations for {3, 6}(b,0) and {6, 3}(b,0)

Throughout this section, b ≥ 2 is a fixed positive integer, and P = {3, 6}(b,0); it is con-
venient to let Q = {6, 3}(b,0) denote the dual polyhedron P∗. Thus P and Q both have
automorphism group Γ = 〈ρ0, ρ1, ρ2〉, whose ‘translation’ subgroup is generated by τx =
ρ1ρ2ρ1ρ2ρ1ρ0 and τy = ρ1τxρ1.

We shall soon produce an exhaustive list of pure realizations for these polyhedra, essen-
tially by mimicking our treatment of the toroidal maps of type {4, 4} in [14]. The group
representations employed there were suggested—after considerable experimentation—by
certain well-known 4-dimensional tori [4, Section 4.5].

Here, an analogous construction begins with the Coxeter group K whose diagram is dis-
played in Figure 2. (The generators r0, r1, . . . , r11 of K correspond to the nodes as labelled.
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As usual, when b = 2 the branches in the diagram are removed.) Thus K is a direct product
of dihedral groups. We also require two outer automorphism ϕ, µ for K, as suggested in
Figure 2: µ interchanges r0 and r2, etc., while ϕ interchanges r0 and r10, r1 and r11, etc. By
adjoining ϕ, µ to K we obtain a group K ′ of order 6(2b)6.

We can faithfully represent K ′ as a group of orthogonal transformations on the Eu-
clidean space E = R12, endowed with the usual inner product. In fact, if e0, . . . , e11 is
the usual basis for E, we may suppose for j = 0, 2, 4, 6, 8, 10 that r j has root e j , and for
j = 1, 3, 5, 7, 9, 11 that r j has root cos(π/b)e j−1 + sin(π/b)e j . Likewise, µ is the linear map
interchanging e0 and e2, e1 and e3, e4 and e10, etc.; ϕ acts similarly on basis vectors.

Our search for just the right subgroups of K ′ was assisted by the fact that K ′ can also
be represented as a group of monomial, unitary (or sesquilinear) transformations on C6.
In this connection, we are indebted to the referee for noting that the unitary reflection
group [1, 1, 1]b is isomorphic to a subgroup of index two in the automorphism group Γ for
{3, 6}(b,0). Indeed, Coxeter anticipated the 6-dimensional realizations described below in
[3, page 263]; see also [12, Section 3].

In any case, we can now define the group of main interest to us:

Definition For integers �, k satisfying 0 ≤ �, k ≤ b − 1, suppose m := −(� + k) and let
G�,k be the subgroup of K ′ generated by

g0 = µ(r0r1)�r0(r2r3)�r2(r4r5)kr4(r6r7)mr6(r8r9)mr8(r10r11)kr10

g1 = ϕr0r2r4r6r8r10

g2 = µ.

Noting that we compose linear mappings left to right, it is easy to verify that

g2
0 = g2

1 = g2
2 = (g0g1)3 = (g1g2)6 = (g0g2)2 = (g2g1g0)2b = I,

where I denotes the identity on E. Hence G�,k is the image of Γ under the homomorphism

f : Γ→ G�,k,

which sends each ρ j → g j . Since r j−1r j has period b ( j odd), we now see why we may treat
�, k as residues (mod b).

We require basic ‘translations’ x := (τx) f = g1g2g1g2g1g0 and y = (τy) f = g2g1g2g1g0g1.
For any integers p, q, we may write xp yq as a 12 × 12 block diagonal matrix (with respect
to the usual basis):

xp yq = [R(pl − qk)R(pl − qm)R(pk− qm)R(pm− qk)R(pm− ql)R(pk− ql)].(5)

(Recall that � + k + m = 0.) Here, R(t) denotes the rotation matrix

R(t) =

[
cos(2πt/b) − sin(2πt/b)
sin(2πt/b) cos(2π/b)

]
.
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Having described the crucial group G�,k, we now determine its Wythoff spaces. Starting
with the polyhedron P = {3, 6}(b,0), we find that the corresponding Wythoff space W�,k =
{u ∈ E : (u)g1 = u = (u)g2} is one-dimensional and is spanned by

v := e1 + e3 + e5 + e7 + e9 + e11.(6)

We therefore have the ingredients necessary to define a realization P�,k := [ f , v] (de-
pending on (�, k)) for P = {3, 6}(b,0).

We are mainly interested in the action of G�,k on E ′, the linear subspace of E spanned by
the vertex set V (P�,k). Notice that g0 fixes v only if � = k = 0, in which case V (P0,0) = {v},
so that P0,0 is a trivial realization for P. Hence dim(P0,0) = 0, although it is still useful
to consider G0,0 as a trivial linear group of degree deg(G0,0) = 1 acting irreducibly on
E ′ = Rv.

Otherwise, when 0 < � or 0 < k, o ∈ E is the unique point fixed by G�,k and so E ′ is
actually the affine hull of V (P�,k). In this case, dim(P�,k) = dim(E ′) = deg(G�,k) > 0. (The
dimension of the realization here coincides with the degree of the induced representation
in E ′, which, as we shall soon see, is always irreducible.)

Somewhat in contrast, we find for the dual polyhedron Q = {6, 3}(b,0) that the Wythoff
space W ∗

�,k = {u ∈ E : (u)g0 = u = (u)g1} is two-dimensional, being spanned by the
(orthogonal) rows of

A�,k =

[
1 0 −C(β�) S(β�) C(βk) −S(βk) −C(βk) −S(βk) C(β�) S(β�) −1 0
0 1 S(β�) C(β�) S(βk) C(βk) −S(βk) C(βk) −S(β�) C(β�) 0 1

]

where β = 2π/b, and (for brevity) we let C(θ) = cos(θ), S(θ) = sin(θ). Up to similarity,
the essentially distinct choices of base vertices in W ∗

�,k are thus given by

u(θ) = [cos θ, sin θ]A�,k, 0 ≤ θ < π.

We thereby obtain a realization Q�,k(θ) := [ f , u(θ)], or just Q�,k, for Q = P∗ =
{6, 3}(b,0).

The description of the linear subspace spanned by the vertex set V
(
Q�,k(θ)

)
is a little

more complicated, since W ∗
�,k may intersect non-trivially with two minimal G�,k-invariant

subspaces of E. Note, however, that W�,k ∩W ∗
�,k �= {o} only when � = k = 0. Indeed,

Q0,0(π/2) is the trivial realization for {6, 3}(b,0). To distinguish from the E ′ used in the
dual case, we let F ′ = F ′(θ) denote the linear hull of V

(
Q�,k(θ)

)
.

After first assembling some general properties of these realizations, we shall separately
consider the particulars in the dual cases:

Theorem 3.1 For any integers �, k and b ≥ 2, let P�,k and Q�,k(θ) be the realizations de-
scribed above for {3, 6}(b,0) and {6, 3}(b,0), respectively. Then

(a) Each such realization is congruent, for unique (�, k), to some realization satisfying

0 ≤ k ≤ � ≤ (b− k)/2

(which we henceforth assume). More specifically, even when the Wythoff space is two-dimen-
sional (i.e. for Q = {6, 3}(b,0)), the realizations Q�,k(θ) are never similar for different θ sat-
isfying 0 ≤ θ < π (apart from two exceptional cases: Q0,0(θ) and Q b

3 ,
b
3
(θ), described in

Theorem 3.3 below.)
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(b) Let d = gcd(b, �, k) and set

ε =

{
3, if (�/d) ≡ (k/d) ≡ ±1 (mod 3), and (b/d) ≡ 0 (mod 3);

1, otherwise
.

(i) For the realizations P�,k of {3, 6}(b,0), the vertex set has size |V (P�,k)| = b2

εd2 .
(ii) For the realizations Q�,k(θ) of {6, 3}(b,0), and for any θ, the vertex set usually consists of

two translation orbits, and so has size

|V
(
Q�,k(θ)

)
| =

2b2

εd2
.

However, in two cases the translation orbits coalesce; indeed,

|V
(
Q0,0(π/2)

)
| = 1 (the trivial realization);

|V
(
Q b

2 ,0
(π/2)

)
| = 4 (when b is even).

Proof (a) It is useful to think of (�, k) as describing oblique coordinates based on the unit
translations τx and τy (see Figure 1). Hence integer points (�, k) describe the vertices of the
tessellation {3, 6}. Regarding the group G�,k, we have already observed that we may take
the integers (�, k) (mod b), so that (�, k) lies in the Dirichlet fundamental region for the
sublattice generated by {τ b

x , τ
b
y}, namely in the regular hexagon defined by

max{|2� + k|, |� + 2k|, |�− k|} ≤ b.

(See Figure 3; indeed, by suitably identifying opposite edges of this hexagon, we again ob-
tain the map {3, 6}(b,0).)

Consider now the isometriesχ, η defined on R12 by permuting the standard basis vectors
according to (0, 10)(2, 4)(6, 8)(1, 11)(3, 5)(7, 9) and (0, 6)(2, 8)(4, 10)(1, 7)(3, 9)(5, 11),
respectively. (These also correspond to automorphisms of the Coxeter diagram in Fig-
ure 3.) Conjugating G�,k by χ (resp. ηr0r2r4r6r8r10), we find that

P�,k ≡ Pk,�, P�,k ≡ P�+k,−k

and

Q�,k(θ) ≡ Qk,�(π − θ), Q�,k(θ) ≡ Q�+k,−k

(
θ − (2πk/b)

)
.

But the transformations (�, k) → (k, �) and (�, k) → (� + k,−k) define reflection sym-
metries for the hexagon in Figure 3, in mirrors inclined at π/6. We may therefore suppose
(�, k) lies in the indicated triangle, with vertices (0, 0), (b/2, 0) and (b/3, b/3).

Finally, consider the parametrized family of realizations Q�,k(θ). At least when G�,k acts
irreducibly on the affine hull of V

(
Q�,k(θ)

)
, it follows from the general theory ([10, Sec-

tion 3.1.6]), that the realizations Q�,k(θ) are inequivalent for distinct θ, with 0 ≤ θ < π.
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Here we can verify this directly, for example by computing the angle between the base ver-
tex u(θ) ∈ W ∗

�,k and its immediate neighbour
(
u(θ)
)
g2. (The angle fails to vary as desired

only when (�, k) = (0, 0) or (b/3, b/3).)
(b) From (5) we see that the translation subgroup 〈x, y〉 of G�,k is isomorphic to the

subgroup of Z6
b generated by the rows of

[
� � k m m k
−k −m −m −k −� −�

]
.(7)

But 〈x, y〉 acts transitively on V (P�,k). After finding the elementary divisors of (7), we
easily compute the stabilizer of a vertex and thus determine |V (P�,k)| as claimed.

Moving to Q�,k(θ), we similarly find that the translation orbit for each u(θ) ∈ W ∗
�,k has

this same size. But another calculation with congruences shows that the two translation
orbits (containing u(θ) and

(
u(θ)
)
g2) fuse only when (�, k) = (0, 0) or (b/2, 0), with θ =

π/2.
A remarkable consequence of the previous and the next theorem is that much of the data

for the pure realizations P�,k is neatly encoded in a picture of the polyhedron {3, 6}(b,0) as
a toroidal map. The general situation is indicated in Figure 3, where we interpret (�, k) as
coordinates (mod b) for a typical vertex of the map, here represented by a hexagon with
opposite edges appropriately identified. Also indicated are two adjacent lines of symmetry
for the hexagon. The upshot of Theorem 3.1 (a) is that
• each distinct pure realization P�,k corresponds to exactly one vertex in the right-

triangular fundamental domain enclosed by the two mirrors of symmetry. (The vertices
in the shaded domain are indicated by a circle or box.)
(Compare [14, Section 3].) In fact, even more is true, as we observe below for Figure 4.

Let us now consider in more detail the realizations P�,k; for each of these there is an
essentially unique base vertex v.

Theorem 3.2 For integers b ≥ 2, and 0 ≤ k ≤ � ≤ (b − k)/2, let P�,k be the realization in
E ′ described above for {3, 6}(b,0). Then

(a) Each P�,k is a pure realization in E ′ with the properties detailed in Table 1 below.
(b) The realizations enumerated in part (a) are mutually incongruent.
(c) Every pure realization for {3, 6}(b,0) is similar to just one of the realizations listed in

(a).

Proof (a) From character theory we know that a (complex) representation f : Γ → O(E)
is irreducible if and only if its character norm equals 1 ([15, page 69]). In the present (real)
case, it follows that G�,k = (Γ) f acts irreducibly on the 12-dimensional space E if

S :=
∑
γ∈Γ

[
trace

(
(γ) f
)]2
= |Γ| = 12b2.(8)

Now the relations in (3) imply that every g ∈ G�,k can be written as

g = hxp yq
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(0, 0)

k

k = l

(b/3, b/3)

l

(b/2, 0)

k = b− 2l

Figure 3: A fundamental region for equivalent realizations.

for some h ∈ 〈g1, g2〉 and 0 ≤ p, q ≤ b − 1. It is then easily verified that all g ∈ G�,k other
than ‘translations’ have trace 0. On the other hand, taking ξ = exp(2πi/b), it follows at
once from (5) or (7) that

sp,q : = trace(xp yq)(9)

= (ξ p�−kq + ξkq−p�) + (ξ p�−km + ξkm−p�) + · · · + (ξ pk−q� + ξq�−pk).

Thus, with a little patience, we find that for 0 < k < � < (b − k)/2, the sum in (8)
reduces to

S =
b−1∑

p,q=0

(sp,q)2 = 12b2,

thereby verifying case (i) in Table 1. (Note that
∑b−1

p=0(ξ j)p = 0 if j �≡ 0 (mod b).)
For other (‘boundary’) values of the parameters (�, k), the group G�,k does act reducibly

on E. For example, in case (ii), with 0 = k < � < b
2 , we easily find by inspection that

V (P�,0) spans the invariant 6-dimensional subspace E ′ of E whose basis is

{e0 − e6, e1 + e7, e2 − e8, e3 + e9, e4 − e10, e5 + e11}.

https://doi.org/10.4153/CJM-1999-056-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-056-3


1250 B. Monson and Asia Ivić Weiss

(Note that the base vertex v ∈ E ′.) Furthermore, g0, g1 act with trace 2 on E ′, g2 with
trace 0, so that some non-translations in the induced representation have non-vanishing
trace. Nevertheless, a similar and straightforward calculation of (8) shows that G�,0 acts
irreducibly on E ′. Thus P�,0, 0 < � < b

2 , is a pure 6-dimensional realization.
The details in the remaining cases (ii) to (vii) are similar.
(b) Given the information concerning dimension and trace, it is clear that realizations

from different classes (i)–(vii) are incongruent—except perhaps for (iii) and (iv). So con-
sider, for example, two realizations in class (i), for pairs (�1, k1), (�2, k2). If these real-
izations were congruent, corresponding translations xp yq would have equal traces, as de-
scribed in (9). Taking (p, q) = (1, 0), (2, 0), (3, 0), we find that all symmetric polynomials
in cos(2π�/b), cos(2πk/b), cos(2πm/b) are equal for (�, k,m) = (�1, k1,m1), (�2, k2,m2)
respectively. Thus one set of cosines must actually be a permutation of the other; with the
given constraints, this implies �1 = �2, k1 = k2. Cases (ii) to (vii) follow similarly and more
easily. Also, we observe that realizations in cases (iii) and (iv) do—in some sense—belong
to one family, but can only be congruent for identical values of �. However, the parameter
� lies in non-overlapping intervals for the two cases.

(c) Finally, we must show that the realizations P�,k exhaust all possibilities. Referring to
Theorem 2.1 (a), we recall that

∑
G

wGdG = v − 1 = b2 − 1.(10)

Now each non-trivial G�,k must occur somewhere in this sum over distinct, irreducible
representations of Γ(P), and always with wG�,k = 1. Furthermore, as described in Theo-
rem 3.1, these G�,k are indexed by those vertices of {3, 6}(b,0) which lie in the fundamental
domain indicated in Figure 3. Comparing part (a) of this theorem we now observe and
use a remarkable fact: for each G�,k the degree dG�,k equals the size of the orbit of the cor-
responding map vertex, under hexagonal symmetry. In short, the sum in (10) is exhausted
by the (non-trivial) G�,k’s.

Further Remarks (see Table 1) In case (v), for b even, we find that {3, 6}(b,0) collapses
onto the regular tetrahedron {3, 3}; and Gb/2,0 acts on E ′ as the Coxeter group [3, 3].

In (vi), when b ≡ 0 (mod 3), {3, 6}(b,0) collapses onto an equilateral triangle. Here
g0, g1 act as reflections, and g2 as the identity on the 2-space E ′.

We can now readily compute the total number r of distinct pure realizations P�,k; in fact,
suppose b ≡ q (mod 6), 0 ≤ q ≤ 5. If q = 0, then r = (b2 + 6b + 12)/12. Otherwise,
r = (b + q)(b − q + 6)/12 (cf. [1]). The cases b = 6 and b = 7, which are typical enough,
are indicated in Figure 4.

We emphasize again our observation that
• the dimension of each non-trivial pure realization P�,k equals the size of the orbit of the

corresponding vertex of the map {3, 6}(b,0), under symmetries of the hexagonal diagram
(with opposite edges identified). (In Figure 4, this dimension appears as a label inside each
circle. The central box, which indicates the trivial realization, also fits into this scheme, if
we replace dimension by degree.)

Let us next investigate further the realizations Q�,k(θ) of the polyhedron {6, 3}(b,0). We
recall that for 0 ≤ θ < π, the vertex set V

(
Q�,k(θ)

)
spans the subspace F ′ = F ′(θ) of E.
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Type (�, k) Dim(E ′) Traces of Comments
(degree) g0, g1, g2

(restricted
to E ′)

(i) P�,k 0 < k < � < (b− k)/2 12 0,0,0 The generic case.
(ii) P�,0 0 < � < b/2 6 2,2,0
(iii) P�,� 0 < � < b/3 6 0,0,2
(iv) P�,b−2� b/3 < � < b/2 6 0,0,2
(v) Pb/2,0 b even 3 1,1,1 See remarks

below.
(vi) Pb/3,b/3 b ≡ 0 (mod 3) 2 0,0,2 See remarks

below.
(vii) P0,0 0 1,1,1 The trivial

(degree= 1) realization.

Table 1: The pure realizations P�,k for {3, 6}(b,0).

Theorem 3.3 For integers b ≥ 2, and 0 ≤ k ≤ � ≤ (b− k)/2, let Q�,k(θ) be the realization
in F ′(θ) described above for {6, 3}(b,0).

(a) When the parameter θ is restricted as indicated in Table 2 below, each Q�,k(θ) is a pure
realization in F ′(θ).

(b) The different types of realizations described in part (a) are mutually incongruent.
(c) Each pure realization for {6, 3}(b,0) is similar to just one of the realizations described in

(a).

Proof The details here are much like those in the proof of Theorem 3.2, so we mention
only a few points.

We still have G�,k generated by g0, g1, g2, which for realizations of {6, 3}(b,0) should be
distinguished in reversed order. Indeed, the Wythoff space W ∗

�,k now consists of points fixed
by g0, g1. Note that G�,k still acts irreducibly on E ′ (the realization space for P�,k); the or-
thogonal complement (E ′)⊥ is also invariant. Moreover, the induced Wythoff space in any
G�,k-invariant subspace F must equal W ∗

�,k ∩ F. With these remarks, it is a straightforward
matter to verify all the details in part (a). It is useful to view cases (v), (vi), (vii) in Table 2
as specializations of two previous 6-dimensional cases, each with its invariant subspaces.
Taking intersections and orthogonal complements, it is then quite easy to determine the
orthogonal decomposition of E into minimal invariant subspaces.

In case (vi), Gb/3,b/3 actually leaves invariant a second 4-dimensional subspace of E; but
the corresponding realization, with θ = π/3, is congruent to that for θ = −π/6

Parts (b), (c) follow in essentially the same way as in Theorem 3.2.

Further Remarks (see Table 2) The fact that W ∗
�,k is 2-dimensional complicates any sort

of nice diagrammatic description for the realizations Q�,k(θ) analogous to that in Figure 4.
Therefore we shall simply conclude this section with a closer look at some special cases.
Recall that E ′ denotes the corresponding realization space for P�,k.

Case (i) is ‘generic’. Only here and in case (ii) is the Wythoff space 2-dimensional. In
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Typ
e

(�,k)
θ

D
im

(F
′(θ))

Traces
of

W
yth

off
(See

rem
arks

(degree)
g

0 ,g
1 ,g

2
space

follow
in

g
th

eorem
.)

(rest.to
F
′(θ))

dim
en

sion
(i)

Q
�,k (θ)

0
<

k
<
�
<

(b
−

k)/2
0
≤
θ
<
π

12
0,0,0

2
(ii)

Q
�,0 (θ)

0
<
�
<

b/2
0
≤
θ
<
π

6
2,2,0

2
(iii)

Q
�,� (
π2 )

0
<
�
<

b/3
θ
=
π
/2

6
0,0,2

1
Q
�,� (0)

0
<
�
<

b/3
θ
=

0
6

0,0,−
2

1
(iv)

Q
�,b−

2� (θ
1 )

b/3
<
�
<

b/2
θ

1
=
π
/2
−

(2π
�)/b

6
0,0,2

1
Q
�,b−

2� (θ
2 )

b/3
<
�
<

b/2
θ

2
=
−

2π
�/b

6
0,0,−

2
1

(v)
Q

b/2,0 (0)
b

even
θ
=

0
3

1,1,−
1

1
Q

b/2,0 (π
/2)

b
even

θ
=
π
/2

3
1,1,1

1
(vi)

Q
b/3,b/3 (−

π
/6)

b
≡

0
(m

od
3)

θ
=
−
π
/6

4
0,0,0

1
(vii)

Q
0,0 (0)

θ
=

0
1

1,1,−
1

1
Q

0,0 (π
/2)

θ
=
π
/2

0
1,1,1

0
(degree

=
1)

(trivial)

Table
2:T

h
e

pu
re

realization
s

Q
�,k (θ)

for
{6,3}

(b,0) .
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k = 0

trivial

6

6

6

12

3

2

b = 6

k = l

k = b− 2l

6

6

6

12

6

6

6

k = l

b = 7

Figure 4: Pure realizations of {3, 6}(b,0) encoded in the polyhedron itself.

fact, in case (ii) we have for all θ that F ′(θ) = E ′ (i.e. the same 6-dimensional realization
space as for P�,0).

Cases (iii) and (iv) are really different portions of one family. In case (iii), for example,
there are inequivalent 6-dimensional realizations in F ′(π/2) = E ′ and in F ′(0) = (E ′)⊥,
each with a 1-dimensional Wythoff space.

In (vii) we observe that besides the trivial realization, the polyhedron {6, 3}(b,0) always
collapses onto the 1-polytope (or segment).

Let us turn now to the remaining realizations. In case (v), where b = 2� is even, � ≥ 1,
the group G�,0 acts on the 3-space E ′ as the Coxeter group [3, 3]; and the realization P�,0
induces a collapse of P = {3, 6}(2�,0) onto the regular tetrahedron {3, 3}. At the same time,
the realization Q�,0(π/2) induces a collapse of the dual polyhedron P∗ = {6, 3}(2�,0) onto
a dual regular tetrahedron {3, 3}. In a natural way P and P∗ are therefore simultaneously
realized by the stella octangula depicted in Figure 5. In a different 3-space, the same group
G�,0 provides the realization Q�,0(0), in which {6, 3}(2�,0) collapses in a natural way onto
{6, 3}4, the Petrie dual of an ordinary cube ([11, Section 4.1]); see Figure 6.

Turning finally to case (vi), where b = 3�, � ≥ 1, the group G�,� acts on the 4-dimen-
sional space F ′ = F ′(−π/6), as an irreducible linear group of order 36 generated by half-
turns. From Theorem 3.1(b) we note that the corresponding realization Q�,�(−π/6) for
{6, 3}(3�,0) has 6 vertices. In fact, these vertices belong to two congruent equilateral triangles
lying in totally orthogonal planes. Each face of {6, 3}(3�,0) is now realized as one of the three
hexagons in F ′ whose alternate vertices belong to the two triangles. In Figure 7 we give the
most symmetrical orthogonal projection of this configuration, together with a distorted
view which separates the faces.

In fact, it follows from Theorem 4.1 below that Q�,�(−π/6) can also be viewed as a
realization for the regular polyhedron {6, 3}(�,�); in particular, this realization is faithful
when � = 1.
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(1,−1, 1)

(1, 1, 1)

Figure 5: The stella octangula, a realization for the duals {3, 6}(2�,0) and {6, 3}(2�,0).

4 General Pure Realizations for {3, 6}(c,c) and {6, 3}(c,c)

The key ‘extra’ relation in the presentation (4) for the automorphism group Γ({3, 6}(c,c))
asserts that τ c

y = τ
−c
x . But τxτy = τyτx, and so

1 = (ρ2τ
c
xρ2)(ρ2τ

c
yρ2) = τ c

x (τxτ
−1
y )c = τ 2c

x τ
−c
y = τ

3c
x .

Thus there is an epimorphism

Γ({3, 6}(3c,0))→ Γ({3, 6}(c,c)),

which preserves the distinguished generators, so that {3, 6}(3c,0) covers {3, 6}(c,c) ([10, Sec-
tion 2.1.2]). Moreover, every pure realization of {3, 6}(c,c) is therefore some pure realization
P�,k of {3, 6}(3c,0), by Theorem 3.2. Indeed, this happens precisely when xc yc = I in G�,k.
Using the matrix (7), and the fact that b = 3c, we conclude that his happens exactly when
� ≡ k (mod 3). Evidently the same conclusions hold for the polyhedra {6, 3}(c,c):

Theorem 4.1 For c ≥ 1, the pure realizations of {3, 6}(c,c) are precisely those realizations
P�,k, with � ≡ k (mod 3). Likewise, each pure realization of {6, 3}(c,c) is of type Q�,k(θ), with
� ≡ k (mod 3).
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Figure 6: {6, 3}(2�,0) realized by the Petrie dual of the cube.

Referring to Figure 4, we find that the pure realizations of {3, 6}(c,c) are encoded in a
diagram of the polytope {3, 6}(3c,0). They correspond to the vertices of a sublattice of index
3 in the {3, 6} lattice, as indicated in Figure 8. Thus {3, 6}(4,4) is the first such map to have
a pure 12-dimensional realization.
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Figure 7: {6, 3}(3�,0) realized in 4-space.

trivial

6

6

6

12

6

3

6

2

l

k = l

c = 4 (i.e., b = 12)

Figure 8: Pure realizations of {3, 6}(c,c) are encoded in the polyhedron {3, 6}(3c,0).
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