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A CATEGORICAL CHARACTERIZATION OF THE FOUR 
COLOUR THEOREM 

BY 

BARRY FAWCETT 

ABSTRACT. The surjectivity of epimorphisms in the category of planar 
graphs and edge-preserving maps follows from and is implied by the Four 
Colour Theorem. The argument that establishes the equivalence is not 
combinatorially complex. 

1. Introduction. Category theory tells us: to learn about A, study pairs of maps out 
of A. The Four Colour Theorem of graph theory is studied here by considering pairs 
of planar homomorphisms whose common domain is a minimal 5-chromatic planar 
graph. It is proved that epimorphisms are surjective in the category of planar graphs and 
homomorphisms. This proposition is equivalent to the Four Colour Theorem in the 
sense that the two results follow from one another using arguments that are not 
combinatorially complex. Assaults on the Four Colour Theorem, including the 
computer-assisted proof in [1], make use of a minimal 5-chromatic planar graph, 
therefore new properties of this presumably non-existent graph may be of interest. It 
is proved below that such a graph is rigid, i.e. admits no nontrivial homomorphisms, 
or has a non-trivial automorphism with a fixed point. 

The graphs are undirected graphs without loops or multiple edges. A graph X is a 
pair (V(X),E(X)) of sets; V(X) the vertex set and E(X) the edge set. The elements 
of E{X) are certain unordered pairs [x, x'] of elements of V(X). A homomorphism (j>: 
X —» Y is a function from V(X) to V(Y) which maps edges to edges. Thus 4> induces 
amap())#:£'(X)-^£(F)by the rule C))#[JC,X'] = [<|>JC, <J>x']; <$> is a/w//homomorphism 
if the graph $X = (§V(X),$*E(X)) is an induced subgraph of Y. The category of 
graphs and homomorphisms is denoted by % 2P denotes the full subcategory of planar 
graphs. We require the notion of a strict monomorphism. 

DEFINITION. A monomorphism <\>: X —» Y in a category 3C is strict if and only if for 
every morphism i|i: Z—> Y which has the property that/4» = gty for all morphisms/, g: 
Y —> Y' such that/<|> = g'<$> (i.e. i|/ equalizes any pair of morphisms that (J) equalizes), 
there exists a morphism h: Z —> X such that fyh = t|/. (These are the regular mono-
morphisms of [3].) 
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All concepts relating to the theory of categories, unless stated otherwise, will be used 
as in [6]. 

2. The Category <§. In [2] it is shown that the monomorphisms of ̂  are the injective 
homomorphisms and that the epimorphisms are the surjective homomorphisms. The 
first assertion depends on the existence of a one-point graph. Thus, in the full sub­
category of graphs without isolated points, monomorphisms need not be injective (see 
[2]). The second assertion is proved in the following manner: assuming that §: X -» 
Y is not surjective and that y (p $X, one constructs Y' identical to Y except that y is 
replaced by two vertices y,, y2 which have the same neighbours as y. Using these one 
readily constructs two homomorphisms / , ,f2: Y —» Y' satisfying/,^ = /2<f> and/! j= 
f2, which demonstrates that $ is not epi. What is noteworthy for our purposes is that 
this pushout construction does not carry over into 2P; the graph Y' constructed from a 
planar graph Y is not necessarily planar. This difficulty may be circumvented by 
employing K$ in place of Y'. (K~ is a complete graph K„ with one edge deleted). 
However, the proof depends on the Four Colour Theorem. 

Another way of demonstrating the surjectivity of epimorphisms in <S is to observe 
that the functor from the category of sets to ^ which associates with any set X the 
complete graph structure on X is right adjoint to the forgetful functor. Epis are sur­
jective in the category of sets and adjointness preserves epimorphisms. (The same 
argument works in many other categories which admit "indiscrete" constructions of this 
sort: e.g. the indiscrete topology, the All relation in posets, etc.). 

LEMMA 1. In <§, the following are equivalent: 

(1) c|> is a strict monomorphism, 
(2) c|) is an extremal monomorphism, 
(3) (() is a full monomorphism. 

PROOF. (1) => (2) holds in any category, and is part of the folklore. 
(2) =̂> (3) Let c|>: X —» Y be extremal; take Z to be the subgraph of Y induced by $X 

and consider the factorization given below. 

0 extremal 
($ differs from cj) only by virtue of its codomain.) 
Since <j> is surjective on the vertex set, it is epi and 
therefore iso. Since Z — (J)X, (J> is full. 

(3) => (1) Take $: X —> Y a full monomorphism and v|/: Z —> Y as in the defini­
tion of strict. Provided that \\iZ C $X one may define h by h = $~]\\f. (Note that <|) full 
mono => 4>_1 preserves edges.) If there exists y G i|/Z - <\>X, Y' may be constructed 
as before; that is two copies y \ ,y2 of y with the same adjacencies as y replace y in Y'. 
The morphisms/i,/2: Y —> Y' have the properties/,^ = f2§ and/,i|/ =£ /2v|i. This 
violates the hypothesis on I|J. 
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3. The Category <3> 

THEOREM 1. Epimorphisms are surjective in 9\ (The proof uses the Four Colour 
Theorem.) 

PROOF. Suppose that a\ P —> Q is not surjective and that q (p. aQ. (It may be assumed 
that | Q | > 2.) In AT5~ let us take the vertex set to be {1, 2, 3,4, 5} with [4, 5] the deleted 
edge. Since Q is colourable in 4 or fewer colours there is a (planar) homomorphism/: 
Q -> K$ such that V(fQ) £{1 ,2 ,3 ,4} and/4 = 4. Construct g: Q -> AT5" by putting 
g = / o n g — {4} and g(g) = 5. Then ga = fa and/ =£ g. Therefore a is not epi. 

THEOREM 2. In 2P the following are equivalent. (The proof uses the Four Colour 
Theorem.) 

(1) ()) is a strict monomorphism 
(2) § is an extremal monomorphism 
(3) (|> is a full monomorphism. 

PROOF. (3) =̂> (1). (The remaining implications are proved as in Lemma 1). It is 
necessary to verify that \\iZ Ç (f>X. If y E \\fZ and y p $X construct two morphisms 
/ , g: Y —» Kl as in the proof of Theorem 2 with y in the role of q. Then/cj) = g§ and 
f\\j 41 gty. This violates the hypothesis on i|>. 

REMARK. Theorem 1 follows from Theorem 2 in a fairly general sense: In every 
category with pushouts and an epi-mono factorization system (£, M), the statement 
"M = strict monos" implies the statement "£ = epimorphisms". (See [3] and [5]). So, 
in the category 2P, take E = surjective homomorphisms and M = full embeddings. 

EXAMPLE. A category in which planar epimorphisms are not surjective. 
Let M be the category of Planar Graphs and injective homomorphisms. Consider the 

inclusion a of K4 into K^. If/, g: K$ —> P are any morphisms in M satisfying fa = 
ga then/ = g. This follows from the following observations:/^ and gK$ are copies 
in P of the maximal planar graph K$. If/5 j= g5 the two sets of vertices {/4,/5, g5} and 
{/1 ,f2 J?} determine a copy of K3 3 inside P. Since P is planar f5 = g5 and a is epi. 

THEOREM 3. The Four Colour Theorem follows from the assumption that epi­
morphisms in 2P are surjective. 

https://doi.org/10.4153/CMB-1986-067-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-067-8


1986] THE FOUR-COLOUR THEOREM 429 

PROOF. Let 5 be a critically 5-chromatic graph of minimum cardinality; all of the 
properties assumed of 5 used in this section can be found in [4]. 

Let x E 5. The inclusion map $: 5 — {x} —> 5 is a non surjective epimorphism. For 
suppose that/, g : 5 —» P are such that /cj) = g<|) and/ = g on 5 - {x}, butfx j= gx. 
Now any morphism out of 5 is injective (if/ is not injective/5 is of smaller cardinality 
and hence 4-colourable. A 4-colouring 7: fS -» AT4 induces a 4-colouring of 5 by 
composition.). The vertex gx falls inside a triangular face of the maximal planar 
(triangulated) graph fS, in any of the equivalent embeddings. Now gx can be adjacent 
to at most 3 vertices in/5, and therefore also adjacent to at most 3 vertices in gS. This 
is a contradiction, as all vertices in 5 have degree > 5. Thus/* = gx and c() is epi. 

THEOREM 4. The Four Colour Theorem follows from the assumption that the extremal 
monomorphisms in SP are the full injective morphisms. 

PROOF. The mapping $ of Theorem 3 is a full injective morphism, but not extremal, 
as the diagram illustrates. 

S 

s 
4. Automorphisms of S. Let/, g be a pair of planar morphisms out of 5. If the vertex 

sets V(fS) and V(gS) do not coincide, the argument of Theorem 3 shows that all 
vertices of/5 lie in the same face of gS, since 5 has no separating triangle. Thus/5 and 
g S have at most a triangle in common. The other possibility is that V(fS) = V(gS). 
In this case, if/ =£ g then /and g determine a non-trivial automorphism of 5, namely 
fg~l. Since 5 has a non-trivial full subgraph inclusion in 5 of which is epi, it has one 
which is of minimum cardinality. Call this graph 5'. In the following lemma uniqueness 
of 5' is not claimed. 

LEMMA 2. The graph 5' has these properties. 
(1) 5' is not a triangle, edge, or point 
(2) 5' has at least 2 non adjacent vertices 
(3) 5' does not contain a copy of K\. 

PROOF. (1) Inclusion of a triangle K3 C 5 is not epi. To see this construct a planar 
graph P from 2 copies of 5, one in the outer face of the triangle, one in the inner, having 
the triangle in common, and so obtain a pair of unequal morphisms equalized by the 
inclusion. (2) 5 contains no copy of K4. S' is not Kn for n = 1, 2, 3 by (1). (3) Suppose 
K4 C 5'. By dropping from 5' a vertex x which has degree 3 in KA a graph 5 — {x} 
of smaller cardinality is obtained, inclusion of which cannot be epi. Therefore there 
exists a pair of planar morphisms/,g out of 5 with/ = g on 5' — {JC} but/* T6 g*. 
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If the morphism pair/ ,g is of the type which has V(fS) = V(gS) then S has a 
separating 4-cycle, which is impossible. (See [3] p. 192 ff.) In this case it is also 
impossible that gx falls into a triangular face of/5. That triangle would have vertex set 
{fa,fb,fc}. The existence of the edge [fa.fc] implies that S contains a copy of K4, 
contradicting the lemma. 

THEOREM 5. S is rigid or S has a nontrivial automorphism with a fixed point. 

PROOF. Let x, y be non adjacent points of Sf as guaranteed by the lemma. Inclusion 
(|> of S' - {x} in S is not epi, therefore there exists a pair of planar homomorphisms 
f,g out of s such that/(t> = g$ and/ ^ g. It must be that/x i=- gx otherwise/and g 
agree on S' and inclusion of Sf is epi. It may be that S is rigid and the only pairs of maps 
/ , g out of S with/ =£ g are those which agree on a AT3 subgraph. In this case/S and g S 
are two copies of S each lying in a triangular face of the other and having at most that 
triangle in common. Assume now that S is not rigid; without loss of generality we may 
suppose that the pair of homomorphisms/, g is not of the type where/and g agree on 
a K3. Thus gx does not fall into a face of/S, else all of g S falls into the same face. This 
would imply that gy = fy is separated from/5 by a triangle, which is impossible. 
(Recall that g S is a copy of S and therefore has no separating triangle.) It follows that 
the vertex sets V(fS) and V(gS) coincide, and that h - fg~l is a nontrivial auto­
morphism of S with fixed point y. 

REMARK. The author conjectures that the alternative of non-rigidity can be elimi­
nated. An automorphism fixed on y permutes the first neighbourhood circuit of y 
cyclically or anti-cyclically. It appears that, at least in the cyclic case, one can use such 
an automorphism to 4-colour S. 

ACKNOWLEDGEMENTS. The author is indebted to the referee for many useful sugges­
tions, in particular for the remark following Theorem 2 and the associated references. 
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