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Abstract
Pectin is composed of a group of complex polysaccharides that are naturally found in various plants and are associated with a range of beneficial
health effects. Health outcomes from dietary pectin can vary depending on botanical origin, dietary dose and structure of pectin. The objective of
this scoping review is to build a comprehensive overview of the current evidence available on intervention studies conducted in humans and to
better understand the possible knowledge gaps in terms of structure–function relationships across the different health-related effects. PubMed
and Embase databases were searched using PRISMA-ScR guidelines, yielding 141 references (from the initial 3704), representing
134 intervention studies performed between 1961 and 2022 that met inclusion criteria. Studies were divided into six categories, which included
gut health, glycaemic response and appetite, fat metabolism, bioavailability of micronutrients, immune response and other topics. Review of
these human intervention studies identified a variety of cohort characteristics and populations (life stage, health status, country), sources/types
of pectin (i.e. citrus, sugarbeet, apple, other and non-defined), intervention timeframes (from one single intake to 168 d) and doses (0.1–50 g/d)
that were tested for health outcomes in people. Gut health, post-prandial glucose regulation and maintenance of blood cholesterol represented
the largest categories of studied outcomes. Further research to strengthen the structure–function relationships for pectin with health properties
and associated outcomes is warranted and will benefit from a more precise description of physico-chemical characteristics and molecular
compositions, such as degree of esterification, weight, degree of branching, viscosity, gel formation and solubility.

Key words: blood cholesterol: dietary fibre: galacturonic acid: glucose regulation: gut health: human intervention studies:
immune response: pectin

(Received 2 February 2024; revised 14 June 2024; accepted 20 June 2024)

Introduction

Health benefits related to high-fibre diets have been
acknowledged for many years; however, average intakes
for adults still do not reach dietary recommendations to
consume 25–30 g/d in many countries across the globe(1).
Moreover, not all fibres are the same, and the structures,
characteristics and interactions with other food ingredients
and beverages differ from one another regarding impact on
the host physiological functions(2).

Pectin, a well-known dietary fibre, is a group of complex
polysaccharides naturally occurring in many plants(3) and is
acknowledged by various health authorities, including the
European Food Safety Agency (EFSA) and the Food and Drug
Administration (FDA) in the USA. Not digested in the small
intestine but fermented in the large intestine, pectin is recognised
for its benefits on the regulation of post-prandial blood glucose
and the reduction of blood total and/or low-density lipoprotein
(LDL) cholesterol levels(3–6). Recent observational studies have
highlighted the specific association of pectin with various
markers of health in diverse populations. Interestingly, intake of

pectin during pregnancy is one of the dietary components
that was associated with a higher secretion of human milk
oligosaccharides in breast milk(7) and positively correlated with
improved accuracy response during cognitive tests among
prepubertal children(8). Physiological effects of pectin may be
related to its physico-chemical properties (i.e. for blood
cholesterol modulation(9)), whereas other benefits might also
be linked to its direct interaction with various receptors located
in the gut or via its fermentation by gut microbiota(10–12).

Not all pectin is the same, and the variety of pectin chemical
structures mainly depends on the botanical origin, part of the
plant and extraction method. The backbone of the polysacchar-
ides is composed of galacturonic acid (GalA) linked by α(1,4)
bonds. Pectin is formed of three blocks: homogalacturonan
(HG), rhamnogalacturonan (RG-I) and substituted galacturonan
(RG-II), the most complex structure (Figure 1). The ratio
between the different blocks is plant-specific and can be
modified by enzymes during the extraction process. Most
commercially available pectin is obtained by up-cycling citrus
peels and apple pomace generated by the juice industry, as well
as sugarbeet pulp from the sugar industry. Besides botanical

Abbreviations: DE, Degree of methyl esterification; HG, Homogalacturonan; RG, Rhamnogalacturonan; LM, Low-methoxyl; HM, High-methoxyl; MW,Molecular
weight.
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origin, pectin is qualified according to its degree of methyl
esterification (DE), that is, the percentage of GalA units
esterified. Pectin structures can be defined as high-methoxyl
(HM) for DE of 50% and above, or low-methoxyl (LM) for DE
below 50%(10,13). Pectin is often used as food additives (E440/
INS440) for gelling and viscosifying properties. A reason to
distinguish pectin according to DE is the different functional
properties and ability to gel in different food applications that
vary in pH and heat treatment. Sugarbeet pectin can also be
acetyl-esterified on the GalA residues of HG having, for
instance, a negative impact on gelling but offering other
properties(13). Several authors suggest that the molecular
structure of pectin can influence its impact on health(9,10,12).
Also, a recent systematic review on in vitro fermentation
studies performed using human faecal samples as inoculum
highlighted the impact of the molecular structure of pectin,
and especially the DE, the ratio between HG and RG and the
molecular weight, on the modulation of the gut microbiome
composition(11).

Few published reviews have focused on pectin and human
health-related outcomes, as most have concentrated on in vitro
or animal studies. To the best of our knowledge, there is no
scoping review of dietary pectin in human intervention trials.
Therefore, the objective is to build a comprehensive overview of
the current evidence available on intervention studies conducted
in humans and to better understand the possible knowledge
gaps in terms of structure–function relationship across different
health-related effects. Pectin is present in many plant-based
foods that are associated with other beneficial nutrients such
as polyphenols, minerals and vitamins. This scoping review
focused on intervention studies where commercial pectin was
tested and would potentially have been characterised to
highlight the variety of botanical sources, wide range of dosages,
intervention duration, study designs and specific categories of
health outcomes.

Methods

This scoping review was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses Extension for Scoping Reviews (PRISMA-ScR)(14)

guidelines (Supplementary Table 1).

Information sources

A systematic search to map the available evidence on nutrition
and health effects of pectin in humans was performed. A
comprehensive literature search was performed using both
PubMed and Embase to identify human intervention studies
published until March 2023. Additional citations listed within
studies assessed for eligibility were also screened, as well as
European Food Safety Agency (EFSA) opinions from 2010 and
2021(4,15), Food Standards Australia New Zealand (FSANZ),
2016(16), Food and Drug Administration (FDA) report on dietary
fibre in 2018(5), Institute for the Advancement of Food and
Nutrition Sciences (IAFNS) ‘Diet-Related Fibers and Human
Health Outcomes Database’(17) and grey literature. The final
comprehensive search was performed on 31 July 2023.

Search and selection criteria

The search strings applied to conduct this search can be found in
Supplementary Table 2. All identified records were imported
into Covidence software(18), which was used to remove
duplicates. The titles and abstract were screened by two
independent reviewers, and conflicts were solved jointly with
the option for review by a third author who was not involved in
the screening. The remaining full-text papers were screened
again by two independent reviewers. Any remaining duplicates
were removed at this stage.

Inclusion criteria were the following: human intervention
study; dietary supplementation or enteral feeding; pectin-derived

Fig. 1. Overview of the pectin structure(11). Copyright: Creative Commons—Attribution 4.0 International—CC BY 4.0. Kdo, 3-deoxy-D-manno-2-octulosonic acid. Dha, -
3-deoxy-D-lyxo-2-heptulosaric acid.
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ingredient (pectin, hydrolysed pectin, pectin oligosaccharides,
rhamnogalacturonan) was tested as a single ingredient or there
was an appropriate control treatment (for instance, the same food/
blend of ingredients without added pectin) or baseline compari-
son; full text availability; and in the English language. Studies were
excluded if they were in vitro, ex vivo or animal studies, were
testing plant extracts/plant fibres, were epidemiological or
observational studies, were testing non-oral intake, or were
conference abstracts or reviews or medical case reports. Authors
that did not report the exact amount of pectin used in the study
were contacted for these details, and if there was no clarification,
these articles were excluded.

Data extraction and synthesis

Data extraction was performed by first importing the list of
included studies from Covidence into an Excel spreadsheet. The
data were extracted and collated from the selected publications
by a single reviewer (F.R., N.P., A.M.W.), with review of the
data by all researchers. The studies were categorised
according to the following categories and their related
reported outcomes: gut health: gut function (transit, symp-
toms), gut microbiota composition, fermentation (short-chain
fatty acids (SCFA), pH, breath gas); glycaemic response and
appetite: gastric emptying, post-prandial blood glucose
and insulin, hormones related to glycaemia and appetite,
and measures of satiety; fat metabolism: measurements of
blood cholesterol, measurement of triacylglycerol, fat absorp-
tion and bile acid changes; bioavailability of minerals/vitamins/
other micronutrients; immune health: immune markers,
response to vaccination and infections; and others for all other
outcomes. The extracted data also included type of population
studied (i.e. life stage, health status and enteral feeding), product
type and dose, duration of intervention, study country, and study
design and size. Populations were listed as ‘healthy’ if stated by
the author and were absent of known disease. As study design,
we considered the following: randomised controlled trial (RCT)
parallel, RCT crossover, and non-randomised: comparison with
baseline only/single-arm studies. If the study did not specify
randomisation, it was classified as ‘non-randomised’(19).

A full list of the charting data extracted can be found in
Supplementary Table 3. The results were analysed and
summarised by the categories listed above and together as a
whole in Excel.

Results and discussion

Selection of sources of evidence and characteristics of the
studies

The number of retrieved publications and the selection is
illustrated in the PRISMA flow diagram (Figure 2). Overall, 134
studies (published in 141 scientific references, due to duplicate
publications on the same study, and instances of multiple studies
in a single publication) published between 1961 and 2022 were
selected. The studies included were conducted in thirty different
countries around the world (Figure 3). The participant character-
istics of the human intervention studies included in this scoping
review are displayed in Table 1.

The majority of studies covered outcomes related to gut
health (n= 50; reported in fifty-two publications) followed by
glycaemic response and appetite (n= 47), fat metabolism
(n= 34; reported in thirty-six publications), bioavailability of
micronutrients (n= 20; reported in twenty-two publications)
and other topics (e.g. radioactivity, heavymetals, cancer-related,
bioavailability of drugs, infant growth parameters, cardio-
vascular health) (n= 21). Immune health-related studies (n= 8;
reported in nine publications) are amore recent subject, with the
first paper published on this topic in 2008 (Figure 4). The most
common reference to pectin source was non-defined; however,
other prevalent botanical origins included citrus and apple
(Figure 5). Citrus was the most common botanical origin of
pectin tested for fat metabolism and bioavailability of micro-
nutrient studies and was widely used for gut health studies.
Types of pectin included in the ‘other’ pectin category included
carrot RG-I and other RG-I sources (e.g. potato).

The maximum reported dose was 50 g/d of HM pectin for
14 d(20). Seven other studies also tested daily doses above 30 g/d
for 1–42 d(21–29) (Figure 6). The longest studies evaluated the
consumption of 1 g/d of citrus pectin oligosaccharides for 127 d
in infants(30) and 0.4–20 g/d of citrus pectin, hydrolysed citrus
pectin and apple pectin for 168 d in healthy and non-healthy
adults(31–35) (Figure 7).

Among the ninety-one studies that were randomised
controlled trials, thirty-three were conducted with parallel
groups and fifty-nine in a crossover manner. Another forty-
two studies were not randomised: thirty-one of them were
conducted before 2000, and the more recent ones were pilot
single-arm studies that explored new areas for potential health
benefits related to pectin consumption (Figure 8).

Summary for gut health

Fifty studies (reported in fifty-two publications) evaluated
markers related to gut health dating back to 1976. Of these
studies, thirty-one were conducted before 2000. The botanical
origin of the pectin used was not described in more than half of
the studies, citrus was the second most frequently evaluated,
followed by apple (n= 3) and sugarbeet (n= 2, Figure 5). The
dose of pectin tested in studies ranged from 0.4 g/d to 50 g/d
(Figure 6), with an average and median tested dose of 13.5 g/d
and 12.6 g/d, respectively. The average duration of pectin
intervention was 22 d, and the median 9 d (Figure 7). Most of the
studies evaluated markers related to gut function (i.e. transit
time, faecal output, digestive symptoms, gut barrier)(20,23–27,30–
32,36–68) or gut fermentation (i.e. breath gas, faecal pH, SCFA,
microbial enzymes)(23–25,36,38–40,43,48–50,54,55,58,60,61,64,66,67,69–75)

(Figure 8).
Most of the studies were conducted in healthy subjects (n= 2

in infants, n= 25 in adults, n= 1 in elderly >65 years). The two
RCT parallel studies in infants have specifically evaluated the
digestive tolerance and other gut-related effects of approx-
imately 1 g/d of citrus pectin oligosaccharides (95%< 3.8 kDa)
supplemented via the infant formula (in replacement of
equivalent dose of maltodextrin) for 50–127 d(30,38). The study
in elderly compared, in an RCT parallel design, the effect of
15 g/d of sugarbeet pectin versus maltodextrin on the gut
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microbiome and associated outcomes between elderly and
younger adults(60). Overall, there is limited impact of a dietary
supplementation with pectin on the gut function (full transit
time, frequency and consistency of stools) of healthy
individuals, illustrating a good digestive tolerance until 50
g/d, which is the maximum reported tested dose in humans. At
this level and similar to what is observed in general with
dietary fibres, there is a transient increase of flatus gas
correlated with higher production of SCFA and, thus, micro-
bial fermentation of pectin(46,47).

Several studies were also conducted in specific sensitive or
non-healthy populations. Two RCT parallel studies evaluated
pectin (non-defined origin) supplementation for 7 d on the
improvement of digestive symptoms and intestinal permeability
in infants and young children with recurrent diarrhoea(46,47).
Studies conducted in non-healthy adults (n= 2 RCT crossover,
n= 4 RCT parallel and n= 5 non-randomised) included:
gastro-oesophageal reflux disease (n= 2)(31), gastric surgery
(n= 2)(61,76), other intestine surgery (n= 2)(49,53), small intestine-

related issues (n= 2)(32,36), ulcerative colitis (n= 1)(56), hyper-
cholesterolaemic adults (n= 2)(20,77). Finally, nine RCT studies
(n= 7 parallel, n= 2 crossover) evaluated the thickening effect
of an equivalent daily dose of 1.4–16 g of pectin (mostly not
described origin) to enteral feeding for 1–30 d during hospital-
isation of patients. Frequency and severity of gut symptoms
usually occurring with this type of feeding were evalu-
ated(42,44,45,52,59,63,65,67). Therewas a general decrease of digestive
symptoms observed in fragile populations such as hospitalised
patients with enteral feeding, who experienced fewer reflux and
diarrhoea events. These benefits can be seen with a minimum of
2.5 g/d of pectin and are certainly explained by a thickening
effect of pectin in the enteral formula especially when the pH
starts to decrease in the stomach. This effect was also observed in
formula-fed infants presenting frequent reflux symptoms when
their usual formula was switched to a pectin-thickened (with
other thickeners) formula(78). Unfortunately, there is a general
lack of description on the type of pectin that was tested, except
that it is of citrus origin. However, LM pectin is known to react

Fig. 2. PRISMA-ScR flow diagram of the publication search and screening process. IAFNS, Institute for the Advancement of Food andNutrition Sciences; FSANZ, Food
Standards Australia New Zealand; EFSA, European Food Safety Agency.
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with ionised calcium, especially in acidic conditions; thus, we
can hypothesise that, as reported by Tabei et al. (2018), LM
pectin could be favoured for enteral feeding(52).

Despite a significant amount of research conducted in vitro in
human gut microbiome models(11), there is still a limited number
of intervention studies that have evaluated the effects of pectin
on the gut microbiota composition(30,38,43,54–56,60), and among
them only three studies report composition obtained with 16S

rRNA/DNA techniques(54,56,60). In general, these studies reported
limited effects, except for pectin-derived ingredients with the
lowest molecular weight(30,54). However, several intervention
studies demonstrate that pectin is slowly but completely
fermented by the bacteria in the human gut microbiome, which
can relate to higher SCFA production, especially acetate(23,24,50,72).
Because of the relatively poor reporting of the characteristics of
the pectin, it is not possible to confirm yet if there is a visible

Fig. 3. World map depiction to highlight countries with human clinical investigations of dietary pectin (n= 134) included in the scoping review. Colours indicate the
number of studies completed in each country.

Table 1. Characteristics of the study participants, pectin daily dose and intervention duration from included studies (n = 134)

Study characteristics Number of studies (% of total) Daily dose (g/d) min–max Duration (d) min–max

Life stage Preterm/infants 5 (3%) 1–10 7–150
Children 8 (6%) 5–15 7–84
Adults 101 (76%) 0.1–50 1–168
Elderly 2 (1%) 2.5–9.9 1–7
More than 1 18 (14%) 0.4–15 1–168

Health status Healthy 82 (61%) 0.1–40 1–168
Healthy and non-healthy 3 (3%) 0.6–50 1–56
Non-healthy 49 (36%) 0.4–20 1–168

Type of health condition* Bariatric surgery 1 (2%) 4.2 1
Cancer 2 (4%) 14.4–15 28–168
Congenital disorder 1 (2%) 5 28
Diabetes 6 (11%) 10–20 1–84
Dumping syndrome 4 (7%) 5–14.5 1
Gut-related disease 10 (20%) 0.4–20 1–168
Haemochromatosis 1 (2%) 15.75 1
Hypercholesterolaemic/hypertension 8 (15%) 9.6–50 14–168
Infection/intensive care 8 (15%) 1.4–16 7–30
Toxicant exposure 5 (10%) 3.6–15 7–28
Undernutrition 1 (2%) 10 10
Obesity 2 (4%) 0.6–15 1–56
Osteoarthritis 1 (2%) 8 84
Pancreatic deficiency 1 (2%) 5 1
Stroke 1 (2%) 5.4 7

Consumption mode Oral intake 122 (91%) 0.1–50 1–168
Enteral feeding 12 (9%) 1.4–16 1–30

* Includes non-healthy participants in ‘healthy and non-healthy’ studies (n= 3), and ‘non-healthy’ studies (n= 49).
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structure–function relationship in human studies as it was found
for in vitro studies conductedwith human gutmicrobiome(11), nor
what the minimum dose and duration of supplementation are to
observe the increased production of SCFA.

Summary for glycaemic response & appetite

The effect of pectin on glycaemic response has been widely
studied, with interventions related to glycaemic response and
appetite being the second largest health topic and including
forty-seven studies. The publication date of these studies ranged

from 1977 to 2020, though only thirteen of these forty-seven
studies were published after the year 2000. The pectin
botanical origin tested in these studies consisted primarily of
non-defined pectin sources (n = 34), as well as apple (n = 8)
and citrus (n = 2) (Figure 5). The dose of pectin tested in
studies related to glycaemic response ranged from 0.1 g/d to
40 g/d (Figure 6), with an average and median tested dose of
13.2 g/d and 14.5 g/d, respectively. The average duration of
pectin intervention was 11 d, though the median was 1 d, as
twenty-nine of the forty-seven studies were 1-d, single-intake
studies (Figure 7).

Fig. 4. Publications (n= 141) timeline for human intervention studies with dietary pectin (n= 134) for the six most common categories of health-related effects. One
reference can include several categories.

Fig. 5. Human intervention studies (n= 134) and pectin botanical origin by health topic.
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Within this health topic, measured outcomes related
to glycaemic response commonly included post-prandial
glucose and insulin response(21,28,54,71,79–96). Other measures
included gastric emptying(36,64,67,80,81,84,86–88,95,97–104), sati-
ety(54,67,80,85,87,95,98,105–108), fasting glucose(54,67,77,85,109–112),

other hormonal responses related to glycaemic
response(29,67,80,84,86–88,98,110,113), and haemoglobin A1C
(HbA1C)/Homeostatic Model Assessment for Insulin
Resistance (HOMA-IR)(85,109,110,113) (Figure 8). Overall outcomes
found pectin to be related with a reduction in post-prandial

Fig. 6. Maximum daily dose of pectin evaluated in human intervention studies (n= 134) according to health topic. Average (red line) and median (green line) pectin
daily dose.

Fig. 7. Study duration for human intervention studies (n= 134) with pectin (number of days) for each health topic category, including average (red line) and median
(green line).
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blood glucose and insulin peaks, increased satiety and delayed
gastric emptying in both healthy and non-healthy individuals.
Study design consisted mainly of RCT crossover (n= 32),
followed by non-randomised studies (n= 11) and RCT parallel
(n= 5). Furthermore, most of the RCT crossover studies were
single intake (n= 24).

Fifteen studies within this health topic were conducted in
adults with various health complications. Participants with short
bowel syndrome and jejuno-colonic anastomosis, when con-
suming ∼10 g/d of citrus pectin, did not experience differences
in gastric emptying time(36). Three studies of hypercholester-
olaemic participants(77,110,112) found no effect of pectin con-
sumption on fasting glucose levels, nor on gastric emptying.
However, Sirtori et al. (2012) found hypercholesteraemic
participants consuming bars with casein þ apple pectin had
significant reductions in post-prandial insulin levels(110). In a
study of adults with obesity, it was reported that consuming 15 g/
d of pectin with a test meal significantly delayed gastric emptying
time and also increased satiety(98). Outcomes in those with
diabetes found some improvement in glucose tolerance related
to pectin consumption(82,86,114), though some found no signifi-
cant change with pectin consumption related to glycaemic
control(96,109,113). The type of test meals consumed with pectin in
the trials may lead to different results, especially in ‘non-healthy’
individuals. In the study by Vaaler et al. (1980), pure pectin
lowered post-prandial blood glucose in insulin-dependent
diabetics; however, the same effect was not seen in a barley/
citrus fibre mix which included pectin along with other fibre
types(114), highlighting the impact of the difference in structures
and composition of fibres, especially in those with diabetes.
Other health complications included dumping syndrome(76,81,97)

and post-bariatric surgery(93). For those experiencing dumping
syndrome, in which after eating there is a rapid emptying of
bowel contents into the colon alongside and rebound hypo-
glycaemia, pectin was generally related to prolonged gastric
emptying and reduction in hypoglycaemia(81). Two studies also

tested pectin in healthy adults through enteral feeding and found
that pectin increased viscosity of enteral nutrition as well as was
related to reduced glucose ingestion(88,115).

These findings on glycaemic response have also been
summarised by EFSA (2010) which states the finding of a ‘cause
and effect relationship has been established between the
consumption of pectin and reduction of post-prandial glycemic
responses’, with at least 10 g of pectin per meal in adults(4).
Possible mechanisms of action related to pectin and controlled
glycaemic responses are likely due to delayed gastric emptying,
reduced sugar diffusion and absorption, and slowed release of
digestion-related gut hormones(116,117). However, many of the
studies in this review related to post-prandial glucose response
were single-intake studies. Future work is needed to identify
relationships between long-term regulation of glycaemic
response and pectin intake.

Summary for fat metabolism

There were thirty-four studies (reported in thirty-six publica-
tions) included in this review related to the health topic of fat
metabolism,with publications dating from 1961 to 2022.Of these
studies, twenty-five were published prior to 2000 (Figure 4).
Pectin botanical origin tested in these studies was commonly
citrus and non-defined sources (Figure 5). The dose of pectin
tested in these studies ranged from 0.1 g/d to 50 g/d, with the
average andmedian dose being 14.6 g/d and 15 g/d, respectively
(Figure 6). The duration of the interventions was on average 28
d, though many were single-intake studies, and the median was
21 d (Figure 7).

Major outcomes studied in these publications were related to
measures of blood cholesterol(9,20,22,26,29,35,37,40,41,44,51,54,55,74,77,85,
109–112,118–125), blood triacylglycerol(9,20,22,26,37,40,41,54,55,74,77,85,
109–112,119,120,122–124), fat absorption/excretion(20,28,36,40,41,48,49,51,
115,126,127), bile acid metabolism(20,40,41,48,51,121,126) and blood
pressure(34,51,54,77,85,110–112) (Figure 8). Most studies in this health

Fig. 8. Heatmap visualisation for types of human study design by health topic. Multiple health topics may be covered in one study. *PP, post-prandial. **Markers of
glucose regulation: fasting blood glucose, HOMA-IR, glycated haemoglobin.
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topic were non-randomised study designs (n= 14), followed by
RCT crossover (n= 11) and RCT parallel design (n= 9).
Furthermore, fourteen studies tested pectin consumption in non-
healthy adults and elderly populations, with obesity(118), diabe-
tes(109), gut-related symptoms(36,49,126), hypercholesterolaemia/
hypertension(20,34,74,77,110,112,124), pancreatic insufficiency(127) or
severe stroke(44).

Of the thirty-four studies related to fat metabolism, twenty-
eight reported positive effects of pectin on lowering cholesterol,
triacylglycerol or fat absorption. Brouns et al. (2012) examined
the cholesterol-lowering properties of pectin derived from
various botanical sources with differing DE and molecular
compositions(9). Here, both citrus (DE 70%) and apple pectin
(DE 70%) were most efficacious in lowering cholesterol,
compared with citrus and apple pectin of low MW and DE,
indicating pectin cholesterol-reduction properties to be depen-
dent on molecular structure.

Several studies that measured cholesterol and triacylglycerol
in relation to pectin consumption found that pectin was related
to serum cholesterol reduction but had no effect on serum
triacylglycerol(20,22,28,29,36,37,40,41,49,109,118–120). These results were
found conclusive by EFSA Scientific Opinion (2010), and it has
since been stated that ‘a cause-and-effect relationship has been
established between the consumption of pectin and mainte-
nance of normal blood cholesterol concentrations’, with at least
6 g/d of pectin in one or more serving in adults(4). This is likely
due to the increased gut viscosity from pectin, which limits the
reabsorption of bile acids, increases cholesterol elimination in
faeces as bile acids, upregulates bile acid synthesis from
cholesterol and decreases levels of circulating cholesterol(128).

Six studies measured blood pressure in relation to pectin
intake. However, only one of the studies demonstrated a
decrease in blood pressure after 16 g/d of sugarbeet pectin for 84
d(85), whereas the others evaluated lower doses (0.1–15 g/d) of
supplementation and did not show any changes to blood
pressure(51,54,110–112).

Summary for bioavailability of micronutrients

Twenty human intervention studies (reported in twenty-two
publications) investigating the effect of pectin on the bioavail-
ability of micronutrients were included in this review. Most
of these studies evaluated citrus pectin (n= 10), apple pectin
(n= 6) or pectin from a non-defined origin (n= 4) (Figure 5).
The doses of pectin tested in studies ranged from 0.1 g/d to
36 g/d (Figure 6), with an average and median tested dose of
14.2 g/d and 11.5 g/d, respectively. The average duration of
pectin intervention was 12.4 d, though the median was 1 d, as
eleven of the twenty-two studies were 1-d, single-intake
studies (Figure 7). Most frequently evaluated outcomes were
iron bioavailability (n = 9; ten publications)(49,112,129–136),
calcium bioavailability (n = 4)(23,49,133,136) (Figure 8) and other
minerals bioavailability: copper (n = 4 non-randomised
studies)(109,130,133,136); zinc (n = 4 non-randomised stud-
ies)(49,109,130,137); magnesium (n = 3 non-randomised and
n = 1 RCT crossover studies)(49,109,136,137); sodium (n = 2
non-randomised studies)(49,136). Fifteen studies were con-
ducted with healthy adults and five with non-healthy adults:

idiopathic hemochromatosis (n = 1)(129,131), ileostomy sub-
jects (n = 1)(49), diabetes (n = 1)(109) and hypercholesterolae-
mia/hyperlipoproteinaemia (n = 2)(112,136).

One study found lower apparent iron absorption from the
small intestine in six subjects with ileostomy(49), and one single-
intake study in patients with idiopathic haemochromatosis
exhibited a significant drop in fractional absorption of inorganic
iron compared with cellulose(129,131). On the contrary, seven
other studies conducted in healthy or hypercholesterolaemic/
lipoproteinaemic subjects found no effect on iron balance at
daily doses between 0.25 and 15 g/d and up to 84 d of
supplementation(112,130,132–136). Similarly, no significant effect
on calcium balance was reported by the four studies that
investigated it with a daily dose of pectin between 15 and 36 g/d
and up to 84 d of supplementation(23,49,133,136). There was also no
effect on the balance of the other evaluated minerals mentioned
above. In general, pectin dietary supplementation had no impact
on mineral balance in humans. There is a possibility that pectin
might bindwith someminerals in foods (e.g. Ca2þ) or in the small
intestine and limit their local absorption, with a possible
influence of the degree of methylation on this phenomenon(138),
but this is not confirmed by human intervention studies(49,135,137),
even at high doses such as 36 g/d of HM pectin (72%) for 42 d(23)

or in sensitive population like preterm infants (0.085% in human
milk fortifier for 28 d)(139). As pectin is completely fermented in
the large intestine and metabolised into SCFA, this can enhance
the absorption of minerals from the colon, as it has been
demonstrated for other non-digestible fermentable carbohy-
drates and prebiotics(140). The potential of colonic absorption
estimated at approximately 10% for calcium in humans might
fully compensate for the potential reduction in the small intestine
and explain the neutral impact on mineral balance.

Contrary to the studies that have evaluated mineral balances,
intervention studies aiming to evaluate the potential impact of
pectin-derived ingredients on vitamins and one type of flavonoid
(i.e. quercetin), are all single-intake studies, except one that was
short-term (7 d), and all were randomised crossover (Figure 8).
Two single-intake studies found no significant impact of pectin
on the mean serum concentration of α-tocopherol (vitamin E)
when it was consumed with pectin (0.1 g of apple pectin or 8.9 g
of HM citrus pectin)(122,141,142). One study reported a reduction of
urinary excretion of ascorbic acid (vitamin C) in healthy subjects
with intake of citrus pectin for 7 d, and the reduction tended to be
more important with 14.2 g/d than 4.2 g/d(143). Another study
demonstrated that a single intake of 15 g of apple pectin could
increase serum vitamin A levels versus an intake of vitamin A
without fibre(144). On the contrary, the mean plasma increase of
β-carotene for the next 48 h after a single intake of 12 g of citrus
pectin mixed with food was lower than with the same meal
without pectin(145). Another single-intake study in six healthy
adults showed a lower relative increase in plasma concentrations
(24-h area under the curve) of β-carotene, lycopene, and lutein
with almost 9 g of HM citrus pectin or other fibres such as guar
gum, alginate, cellulose and wheat bran than without dietary
fibre(142). The possible interaction between pectin and bile salts
may create a transient physical barrier that limits lipase to access
the lipid surface and interferes with the formation of micelles that
are needed for the absorption of hydrophobic compounds such
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as β-carotenes(146), but interestingly, this does not seem to
happen for the vitamins A and E, which are also hydrophobic.
Pectin seemed to impact vitamin A bioavailability positively and
had no effect on vitamin E, as mentioned above.

In an experiment, LM citrus pectin was used to coat folic acid-
fortified rice and, thus, protect the folic acid during the washing
and cooking of the rice. Despite a lower bioavailability of the
folic acid with the pectin coating (5% w/w, equivalent to 10 g),
the coating helped to protect folic acid during washing and
cooking, still providing a slightly higher folic acid intake than
without coating(147). Finally, one study in nineteen healthy adults
reported higher 24-h urinary excretion of quercetin and its
metabolites after a single intake taken via a drink containing 2 g
of HM apple pectin versus the same drink without added pectin.
In another study reported in the samepublication and conducted
in a subgroup of six subjects, a dose–effect relationship
(between 0.6 and 2 g) was suggested, and a greater effect of
HM than LM apple pectinwas found(148). It is difficult to conclude
the effects of pectin on various vitamins and polyphenols from
human studies, but the structure–function relationship is also
thought to play a role there, as suggested by in vitro studies(146).
In addition, it is important to consider that the composition of
food matrices and the conditions of intake will also influence the
role of pectin on the bioavailability of micronutrients. A recent in
vitro study with Caco-2 cells showed that the reduced
bioaccessibility of ferulic acid and naringenin (a citrus flavonoid)
seen with an HM apple pectin was completely counteracted by
the concomitant intake of sucrose or olive oil(149).

Summary for immune health

In total, eight studies (reported in nine publications) were
included in the scoping review related to immune health
outcomes. Studies that evaluated immune health-related out-
comes were the recent studies ranging from 2008 to 2022
(Figure 4). Three of the studies used RG-I from carrots(150–152) and
one RG-I from peels of Korean citrus hallabong(111) and were
performed with very low doses (0.1–1.5 g/d, Figures 5 and 6).
The maximum tested dose was generally lower (mean 6.5 g/d,
median 5.4 g/d) than for other health outcomes, and the duration
of dietary supplementation had a mean of 31 d and a median of
28 d of intervention (Figures 6 and 7). All studies were RCT
parallel studies(44,45,63,67,110,111,150–152) (Figure 8). Four studies
related to enteral feeding evaluated the frequency of infections
and general health status with pectin (5–16 g/d)(45,68,150,152).
Major immune-related health outcomes studies included immu-
nostimulatory markers such as IL-6, soluble intracellular cell
adhesionmolecule-1 (siCAM), high-sensitivity C-reactive protein
(Hs-CRP), IL-10, IL-1β and TNF-α (n= 3)(110,111,151); lymphocyte
count (n= 1)(44); and cases of gastroesophageal reflux disease
(GERD) in children with cerebral palsy (n= 1)(63). General
outcomes found pectin related to enhanced immune response
and reduced disease symptoms. For instance, carrot-derived
RG-I accelerated an innate immune response and reduced
symptoms of an acute viral infection with rhinovirus(150). In
another study, pectin was used in a therapy for children with
cerebral palsy to test effectiveness in decreasing vomiting and
chronic respiratory symptoms(63). Here, it was observed that

children on the high-pectin diet (2:1 enteral formula to pectin
liquid) had significantly decreased reflux episodes and vomiting
and decreased cough and respiratory symptoms.

Summary of other health-related outcomes

Twenty-one studies were categorised as ‘other topics’. Of these
studies, the dose of pectin under investigation ranged from 0.6 g/
d to 36 g/d (Figure 6), with an average andmedian tested dose of
12.4 g/d and 10 g/d, respectively. The average duration of pectin
intervention was 35 d, and the median was 21 d (Figure 7). The
following health-related outcomes in this category include
detoxification from radioactivity (n= 4)(153–156), heavy metals
(n = 3)(133,157,158), cancer-related physiological markers
(n = 2)(33,159), bioavailability of drugs (n = 2)(160,161), and infant
growth parameters (n = 2)(139,162) and another eight studies
investigated various markers related to metabolic and
cardiovascular health(22,23,34,118,163–166) (Figure 8).

Three out of four studies showed a reduction of 137Cs in
populations previously exposed to radioactivity (Figure 8) when
they were given apple pectin (3–10 g/d) for 14–28 d(153–156). The
authors hypothesised that pectin, by binding caesium in the
gastrointestinal (GI) tract, can prevent its absorption into the
systemic circulation and increase its faecal excretion(154); thus, it
might be more efficient in case of exposure to contaminated
foods than to reduce the contamination level of people exposed
via other means(155). Similarly, three single-arm studies also
showed the potential of citrus-derived pectin (15 g/d of
hydrolysed pectin or 3.6 g/d of HM pectin) to reduce blood
levels of toxic elements such as heavy metals in less than 20
d(132,157,158). Authors proposed that the RG-II part of pectic
polysaccharides can chelate very specifically some cations
like Pb2þ but not essential ones like Mg2þ, Zn2þ, Fe2þ and
Fe3þ(133,167). However, there is still debate whether this
mechanism can only happen in the gut and contribute to
preventing exposure from contaminated foods(167) or if it can
also help in case of previous exposure that would require a
partial absorption of pectin molecule before its fermentation by
the gut microbiota(133).

Two single-arm studies suggested that approximately 15 g/d
of hydrolysed citrus pectin could improve quality of life in
patients with cancer and might limit progression of prostate-
specific antigen level in blood(33,159). Two single-intake, cross-
over studies evaluated the bioavailability of drugs (digoxin and
valproic acid) given with pectin (5 g of non-defined pectin and
14 g of HM citrus pectin, respectively) and did not find a reduced
appearance of themolecules in the blood, but possibly a delayed
arrival(160,161).

Two RCT parallel trials have evaluated the use of pectin in
nutritional solutions dedicated to preterm infants(139) or severely
malnourished young children in India(162). While the first one
showed no effect or slight improvement of the growth
parameters after 28 d, the second showed that using pectin at
10 g/kg/d in replacement of arachis oil was not relevant to
accelerate weight gain in these conditions.

The possible protection of dietary fibres in the context of
cardiovascular health does not seem to be related to platelet
function or haemostasis, as suggested by a study where HM
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pectin was given at a daily dose of 36 g for 42 d (wheat bran was
also tested with no significant effect)(22). Similarly, in an RCT
parallel study, dietary supplementation with 9.6 g hydrolysed
citrus pectin for 168 d did not influence various collagenmarkers
possibly involved in cardiac fibrosis(34). An RCTparallel study did
not show any additional benefit of 0.6 g/d pectin for 56 d to
reduce further serum level of trimethylamine-N-oxide (TMAO)
compared with grape pomace polyphenols alone(118). Another
RCT parallel study evaluated a 12-week supplementation with 8
g hydrolysed citrus pectin without showing any significant effect
on knee osteoarthritis severity and pain management(163).
Another three single-intake studies have evaluated the intake
of 2 g of apple pectin on flushing symptoms after niacin
intake(165) and on the release of pancreatic GI hormones and
endogenous methanol production after the consumption of 10–
15 g of pectin (non-described)(164,166).

Structure–function relationships

A remaining gap throughout this review of the literature was
evident regarding the structure–function relationship of pectin.
Pectin structural characteristics such as DE, MW and other
structural regions (homogalacturonan, xylogalacturonan, RG-I,
RG-II) largely influence the functional properties of pectin after
ingestion. These compositions dictate the health-related out-
comes of pectin consumption. For instance, gut microbiota
access and ability to metabolise these pectin structures depends
on traits such as DE, the composition of neutral sugars and the
degree of structure branching (i.e. the ratio between the linear
homogalacturonan and the branched RG-I and -II). Therefore,
gut microbiome composition changes, production of SCFA and
other metabolite production is dependent on these structural
characteristics(11).

Furthermore, while many current studies of pectin demon-
strate post-prandial glucose reduction and maintenance of
normal blood cholesterol, there is little investigation into the
structure of pectin exuding these effects. Much of this gap is due
to the lack of pectin type reported in publications. In this review,
for instance, the majority of pectin botanical sources was ‘non-
defined’. Such dependencies on pectin structure with health
outcomes were demonstrated in a compelling study byWanders
et al. (2014), when comparing non-fibre control with gelled,
bulking and viscous forms of pectin, which found that only gelled
pectin (with high viscosity andwater holding capacity) significantly
improved satiety, as well as reduced glucose and insulin peaks(95).
Such findings demonstrate the important physico-chemical proper-
ties of pectin when examining health outcomes.

Similarly, many of the studies discussed here related to fat
metabolism did not specify pectin structure. A better under-
standing of how MW and DE influence gastric emptying times
and gut viscosity could, therefore, allow for a more precise
pectin structure target in terms of capability to lower total and
LDL-cholesterol and triacylglycerol. For example, in previous
animal studies, higher DE pectin had greater effects on
decreasing triacylglycerol and increased bile acid secre-
tion(168,169). Much has come to light on the role of the structure
of pectin and its ability to lower blood cholesterol. For instance, a
study by Brouns et al. (2012) found that pectin of high MW and

high DE (from citrus or apple) was more effective in terms of
cholesterol reduction(9). Such results have been documented in
animal studies demonstrating the relationship between the
molecular structure of pectin and blood cholesterol(170,171). As
found in this scoping review, human clinical studies have limited
documentation on the types of pectin used, and therefore, results
are less consistent.

While pectin has been demonstrated to have various
immunomodulatory effects in in vitro and animal studies,
including RG bioactivity and the ability to suppress inflammatory
markers such as IL-1β and IL-6(172,173), only recently has this work
been studied in humans. Interestingly, many of the immune
studies in vitro do take into account the structure and source of
pectin, as well as DE(174). Other structural characteristics such as
RG-I regions also influence the functional properties of pectin.
For example, McKay et al. (2021), analysed RG-I extracted from
bell peppers and carrots and classified the composition and
structure before testing in humans(151). This prior analysis
determined that the immunostimulatory effects were due to this
specific type of RG-I backbone more so than the type of side
chain and also confirmed safety and acceptability in humans.
Lutter et al. (2021) andMcKay et al. (2022) then tested this carrot-
derived RG-I in a clinical trial and found that consumption of this
pectin accelerated innate immune responses and decreased
common cold symptoms(150,152). Lee et al. (2016) similarly tested
RG though derived from citrus pectin and also found improved
immune function(111). However, four of the nine studies in the
immune response category listed the pectin source as ‘non-
defined’. This illustrates the structure–function relationship of
pectin being largely unexplored in humans, though extremely
important in determining bioactivity potential. There is, therefore, a
need for further investigation into pectin molecular weights, DE,
RG-I, side chains and monosaccharide components in relation to
health outcomes under controlled experiments in humans(10).

Possible side effects

The highest dose of pectin tested was 50 g/d for 14 d in adults(20),
which did not report any adverse side effects. The longest studies
evaluated pectin consumption at various doses for 168 d in
adults who were healthy (n= 1) and non-healthy (n= 2 gut-
related, n= 1 cancer and n= 1 hypertension), with no adverse
side effects reported. In infants, the sustained consumption of 1
g/d of citrus pectin oligosaccharides for 127 d(30) also did not
report any significant adverse reactions.

The most frequently reported side effects included GI
symptoms such as flatulence or bloating, most classified as mild
and stopped just after consumption or resolved by adaptation
after a few days. These symptoms were typical for dietary
fibre(25,27,39) and do not prevent the use of pectin in sensitive
populations such as hospitalised patients with enteral feeding.
Interestingly, digestive symptoms, such as diarrhoea, were
generally improved with pectin(44,45,62,65,68).

Similarly to what occurs after the consumption of fruits, an
endogenous production of methanol is produced when HM
pectin (DE of 75% such as in apples) is fermented by bacteria
inhabiting the large intestine(164). However, the experimental
model was very specific as study subjects had to consume
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ethanol to maintain a relatively high level of blood ethanol to
annihilate methanol catabolism. As highlighted by EFSA(15), no
sign of liver toxicity was noticed in the study of Cummings et al.
(1979) in which five subjects consumed 36 g/d of HM pectin (DE
72%) for 42 d, and on the contrary, a recent review highlighted a
promising role of pectin to limit the progression of liver damage
in the context of alcoholic and non-alcoholic liver disease as
currently illustrated by pre-clinical data(175).

Study limitations

As mentioned previously, many studies included in this scoping
review neglected to include details of pectin botanical origin and
structure. Without this information, it is difficult to draw conclusions
between pectin intake and health-related functional outcomes, as
many of these health effects are directly related to the physico-
chemical properties and molecular composition of pectin. Also,
some studies were performed with pure pectin products, whereas
others used commercially available pectin solutions, which, most of
the time, are standardised with sugar to provide a specific
functionality in foods and beverages. This may lead to overesti-
mating the tested doses as reported in the publications.
Furthermore, due to the nature of a scoping review, the review
presented here is an overview of the existing literature. Individual
studies included were not subjected to critical quality assessment
and risk of bias. A rigorous systemic review of specific health topics
outlined here would make it possible to draw conclusions on the
health effects of pectin in human intervention studies.

Conclusion

Pectin and pectin-derived ingredients appear to have potential
benefits to improve human health that align with authorised
health claims related to the consumption of dietary fibre. In
addition to well-established effects recognised by health
authorities for the regulation of blood glucose and cholesterol,
this scoping review suggests evidence for pectin to improve gut
health by reducing digestive symptoms in specific situations and
may have a positive impact on the gut microbiome and gut
microenvironment. Pectin composition related to improved
immunomodulatory responses and overall immune health is also
a growing topic. There is a substantial gap in the research on the
structure–function relationship of pectin and human health
outcomes. Further studies are needed to facilitate a deeper focus
and understanding of pectin characteristics such as botanical
origin, DE, MW and viscosity in relation to health outcomes.
Detailed attention placed on these structure–function relation-
ships will allow for a more targeted approach to the develop-
ment of dietary pectin solutions to maintain health.
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